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Abstract: Recognizing and segmenting surgical workflow is important for assessing surgical skills
as well as hospital effectiveness, and plays a crucial role in maintaining and improving surgical
and healthcare systems. Most evidence supporting this remains signal-, video-, and/or image-
based. Furthermore, casual evidence of the interaction between surgical staff remains challenging
to gather and is largely absent. Here, we collected the real-time movement data of the surgical
staff during a neurosurgery to explore cooperation networks among different surgical roles, namely
surgeon, assistant nurse, scrub nurse, and anesthetist, and to segment surgical workflows to further
assess surgical effectiveness. We installed a zone position system (ZPS) in an operating room (OR)
to effectively record high-frequency high-resolution movements of all surgical staff. Measuring
individual interactions in a closed, small area is difficult, and surgical workflow classification has
uncertainties associated with the surgical staff in terms of their varied training and operation skills,
patients in terms of their initial states and biological differences, and surgical procedures in terms of
their complexities. We proposed an interaction-based framework to recognize the surgical workflow
and integrated a Bayesian network (BN) to solve the uncertainty issues. Our results suggest that the
proposed BN method demonstrates good performance with a high accuracy of 70%. Furthermore, it
semantically explains the interaction and cooperation among surgical staff.

Keywords: surgical phases prediction; individual interaction measurement; bayesian network; zone
position system

1. Introduction

In recent years, the evaluation of hospital effectiveness has gained increased atten-
tion with the introduction of new surgical techniques and procedures, such as surgical
video database development and real-time tool-usage signal management [1–6]. In particu-
lar, there are studies aiming at recognizing and segmenting surgical workflow to assess
efficiency inside an operating room (OR) and the skills of the surgical staff [7–11]. Fur-
thermore, maintenance and improvement of surgical systems can benefit from surgical
workflow monitoring and analysis, e.g., reducing surgical errors and better allocating
health resources [12,13].

Various advanced approaches have been proposed to represent surgeries in an OR.
These include collecting signals, videos, and images from a surgical procedure in an au-
tomatic way and using image preprocessing, speech recognition, and machine learning
techniques to analyze and model this information [1,2,4,7,14–16]. James et al. developed a
novel eye-gaze tracking technique to monitor eye movements underlying the cognitive
processes of surgeons and their interactions with their surroundings [17]. To analyze surgi-
cal movement and gesture, Blum et al. detected 17 signals of tool usage in a laparoscopic
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cholecystectomy. The phases of the surgery were segmented to predict the remaining time
of the surgical procedure [18]. Ahmadi et al. developed an automatic recovery of surgical
workflow based on 17 signals from six different surgeries [19]. Leong et al. evaluated
the representation of 3D trajectories of surgical instruments with hidden Markov models
(HMMs) [20]. One key challenge in segmenting surgical procedures is data reduction. A
large volume of information is often collected during a surgery with discriminative visual
and spatial-temporal features. In the work of Giannarou and Yang, minimally invasive
surgery videos were collected to assess surgical workflow. However, such valuable video
data associated with high temporal redundancy requires a long time for visualization,
making the analysis difficult [21]. To analyze and understand the surgical workflow with
minimal information loss, they proposed a novel framework for a surgical representation to
convey the content of the videos. The visual content information was generated by tracking
100 affine-invariant anisotropic regions. To solve the “extremely voluminous data” issue,
Blum et al. extracted a variety of simple image features from laparoscopic video records to
annotate which instrument was used at which time [18]. Then, the information regarding
instrument usage was suggested as a dimension reduction in the raw video images, and
further used to recognize the surgical phases.

Another challenge is that hospital systems have evolved into highly complicated,
advanced, and technologically rich environments that increase the sophistication and com-
plexity of surgical workflows, which leads to uncertainties in segmentation and recognition
of the surgical phases [22]. For example, correct surgical performance and skills do not
often produce satisfactory outcomes, partly due to the different initial status and biological
conditions of the patients, even with the same degree of health improvements [5]. Even
though surgical procedures are followed correctly, and regular steps are standardized,
surgeons and other surgical staff never perform in the same way as their training and
experiences vary individually [18]. Surgical procedures and the OR are complex systems
with uncertainties because many individuals and units contribute to the surgical outcomes
and health care system [5].

Despite the increasing interest among researchers in signal-, video-, and/or image-
based surgical workflow segmentation, owing to high accuracy, casual evidence of individ-
ual interactions remains limited. Contrarily, the purpose of our study is to model surgical
phases from individual interactions of surgical staff, and such interaction-based segmen-
tation requires less voluminous data. To identify individual interactions of the surgical
staff during a surgery, we installed a zone position system (ZPS) in an OR and collected
high-frequency high-resolution movement data from all surgical staff. Such movement data
highlight not only their movement trajectories and activity space, but also their interaction
and cooperation [23,24]. This location-based staff interaction, including close-distance ver-
bal communication, surgical instrument transfer, and collaborative surgical tasks, is unique
to surgical phases, and can be used to characterize surgical workflows [25]. To cope with
the uncertainty issues mentioned above, we integrated a Bayesian network (BN) that uses
probabilistic reasoning to build a causal relationship between interactions of the surgical
staff and surgical phases. We conducted the case study at the Tokyo Women’s Medical Uni-
versity (TWMU) in Japan, where we collected staff movement data from 10 neurosurgical
operations, and developed a BN to segment the operations into six phases: ”Preparation”,
”Craniotomy”, ”Close”, “Magnetic Resonance Imaging” (MRI), “Tumor Resection” (TR),
and ”End”. The results demonstrated that this novel interaction-based framework not only
considers uncertainties regarding surgical procedure, surgical environment, surgery staff,
and patients, but also provides a comprehensive, semantic explanation of the interaction
and cooperation among the surgical staff.

2. Materials and Methods
2.1. Experiment Setup and Data Collection

As a case study, a neurosurgical operation in an OR at the TWMU was chosen to collect
the real-time location of all surgical staff during the surgery with their written informed
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consent for participation. The OR room, where the ZPS is installed, had a dimension
of 5.8 × 4.8 × 2.9 m The ZPS is an ultrasonic-based 3D location-aware system that is
built on a surgical management system (SMS) offering real-time support for observing
and recording surgical processes by collecting staff movement data. The ZPS consists of
ultrasonic tags, receivers, and four control units. The ultrasonic tags are hooked at the
back of each member of surgical staff and transmit signals, which are later detected by
the receivers on the ceiling. Then, the four control units installed on the wall near the OR
entrance detect the identification of each tag, as well as the location. At the TWMU, a
neurosurgery is generally performed by four types of surgical staff: anesthetists, assistant
nurses, scrub nurses, and surgeons. The accuracy of the ZPS for location tracking is 80 mm,
and the sampling frequency is 50 Hz per tag. Ten cases of neurosurgical operations in
2007–2008 were chosen to model the surgical phases.

2.2. Interaction Measurement between Surgical Staff

In ORs, individual interactions play an essential role in recognizing surgical workflows
and evaluating hospital efficiency [26–30]. As Flood et al. proposed, the characteristics
of the corporate structure, where individual surgeons and other surgical staff organize
themselves, attribute to the quality of surgical skills and workflow [5]. This study is
conducted in an OR at the TWMU, with dimensions 5.8 × 4.8 × 2.9 m. Such a small, closed
area presents the following issues: identifying individual interaction becomes difficult, and
“fake” co-occurrences would be more prominent [31]. Here, a trajectory-based interaction
simulation was conducted [32]. We calculated the trajectory similarities between any two
surgical staff using the longest common subsequence (LCSS) and interpreted the computed
similarity values as the interaction and cooperation of two surgical staff.

2.3. Bayesian Network-Based Surgical Phase Classification

With the increased sophistication of surgical instruments and techniques, surgeries
and ORs have become a complex system where the differences among surgical staff (e.g.,
training and operation skills) and variance among patients (e.g., initial health status, age,
and gender) lead to uncertainty and complexity in the recognition and segmentation of
surgical workflow. The Bayesian network, a probabilistic reasoning methodology, can be
applied to solve such uncertainty and complexity. BNs are graphical models that reason
and infer under uncertainty, where the nodes represent the variables of interest, both
continuous and discrete, and the directed arcs between any pair of nodes represent the
strength of the connection between them. BNs use probabilistic beliefs to qualify the
connections and update the strength automatically based on the input of new evidence.

BNs are commonly understood as a representation of the joint probability distribu-
tion of the variables/nodes involved [33]. Consider a BN with n nodes X1, X2, . . . , Xn.
The joint distribution is computed by P(X1, X2, . . . , Xn) at a particular value, e.g., at
X1 = x1, X2 = x2, . . . , Xn = xn. Based on the chain rule of probability theory, the joint
probability P(X1, X2, . . . , Xn) is factorized as follows [34]:

P(X1, X2, . . . , Xn) = P(X1 = x1) . . .× P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1)

= ∏i p(Xi|Parents(Xi))
(1)

The basic task of a BN is to compute the posterior distribution of a query node,
given the evidence input of other nodes. Then, the value for the query node is estimated.
Consider two nodes as an example, X->Y:

Posterior(X) = P(X|Y) = P(X)× P(Y|X)
P(Y)

(2)

where P(X) is the prior distribution of a query node and P(Y|X) is the likelihood of the
query node.
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Given these data, the structure of a BN is learned first. Many methods have been
developed to learn the structure, and the learning methods are generally classified into
two types: score-based structural learning and constraint-based structural learning [35–37].
The constraint-based learning method, which identifies the conditional independence
between nodes, is popular and close to the semantics of the BN. Furthermore, most structure
learning algorithms belong to the score-search type, where a search algorithm is created to
seek through the space of all possible BNs, and a score function that considers not only the
model fit to data, but also the complexity of the model is defined to measure the quality of
the candidate BN [38]. Consider a BN with a graph G and dataset D:

score(G, D) = P(G|D) =
P(D|G)× P(G)

P(D)
(3)

where P(D) does not depend on G and P(G) is the prior information [28]. Because the
score-based method attempts to maximize the score function, P(G) can be ignored, and
the key parameter is P(D|G) . Different score functions have various equations for P(D|G).
Here, a maximum likelihood estimation was used to define the score function.

Although learning a BN structure is known to be computationally intense, the hill
climbing algorithm (HC) is particularly efficient and popular because of its good trade-
off between model fit with respect to data and computational demand [39,40]. The HC
traverses the space of all candidates by starting from an initial network and performs a local
change at each step, such as adding, deleting, and reversing the arc. Given a well-defined
score function, the score of the new BN is computed, and finally, the BN with the highest
score is identified. Once the optimal structure is known, the parameters are learned to
estimate their posterior distribution, given the new evidence predicting the possible value
of the query variable. We use the maximum likelihood estimation:

L(θ|D) = P(D|θ) = ∏i P(Xi = xi|Parents(Xi) = a, θ) (4)

where xi is the state for the node Xi and a is the state for combination of the node Xi’s
parent nodes.

BNs, generally known as casual models, explanatory models, or predictive models,
have been applied to a variety of problems such as casual reasoning, regression, and
prediction, as well classification problems [41]. In other words, a BN classifier is learned
using the training data consisting of a target node T and a set of attribute nodes Ai, and it
is used to classify the target node T based on new evidence and the learned BN.

P(T|A 1, . . . , An) =
P(T, A1, . . . , An)

P(A1, . . . , An)
=

BN
P(A1, . . . , An)

=
∏i p(Xi|Parents(Xi))

P(A1, . . . , An)

(5)

where Xi ∈ U(T∪Ai) [42].

3. Results
3.1. Spatial and Temporal Patterns between Different Surgical Staff

Here, the ZPS was installed to observe and record the surgical processes in a real-time
manner and collect the associated surgical staff movement data with high frequency and
high resolution. In general, such space-time movement presents two types of information:
the activity space of an individual and time. Visualizing individual movements in space-
time can reveal peoples’ spatial and temporal availability [31,32,43–45].

Figure 1 depicts the movement patterns of the surgical staff, which is a two-dimensional
space, namely, location (X, Y). We can clearly see the spatial patterns and activity space for
all surgical roles during surgery. Significant differences in the activity space were found be-
tween the surgical roles and phases. Surgeons and assistant nurses have the largest activity
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space, both located in the center of the OR. The surgeons move nearly throughout the entire
room, while the assistant nurses move mainly around the bottom of the room. The activity
space for the anesthetists is at the upper-right corner of the OR. The scrub nurses have
the smallest moving space, at the center of the room, and they seldom appear in the OR
during the “Preparation”. In the surgical phase, a specific movement pattern is identified.
The entrance to the OR lies at the bottom of the room, at (4000, 0), and the surgical tool is
located at the upper left corner of the room, at (1000, 3000). During the “MRI”, surgeons
and anesthetists have notable horizontal movements. During the “TR”, “Craniotomy”, and
“Close”, surgeons undertake multiple sophisticated surgical operations, which require help
from assistant nurses, in tasks such as transferring surgical tools. Therefore, during these
phases, assistant nurses demonstrate considerable movement around the tool area.
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Figure 1. Spatial patterns of the surgical staff during surgery.

Figure 2 describes the temporal scale and time flexibility of the surgical staff during
surgery, for example, when an individual staff member works or how flexible their time
is. There are notable differences among surgical staff. Although each surgery has a
varied number of surgical staff, the surgeons, assistant nurses, and anesthetists generally
work throughout the surgery timespan, while scrub nurses have greater flexibility at the
beginning and end of the surgery. Evidently, such variances increase the uncertainty in
recognizing and predicting the surgical workflow.
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Figure 2. Temporal patterns of the surgical staff during surgery.

The probability distribution of the distance between two contiguous points per surgi-
cal role per surgical phase is shown in Figure 3. The peak represents the mean value. The
ZPS sampling is performed every second, therefore, the distance between two consecu-
tive points is interpreted as speed. In the phase-oriented probability distribution A, the
maximum probability is the largest for the “Preparation” and the lowest for the “MRI”,
which suggests that during “Preparation” the staff moves slower than during “MRI”. In the
role-based probability B, the distributions per role exhibit a similar trend. In the phase- and
role- based probability C, the anesthetist movement is the slowest during “Preparation”,
while the assistant nurse movement during “Craniotomy” is the fastest.
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3.2. Trajectories and Interactions between Different Surgical Staff

Figure 4 shows the movement trajectories of the surgical staff during surgery. It is
difficult to measure individual interactions in a small area [28–30]. Here, the selected OR is
a small, closed area, which raises a significant challenge in using point-based geographical
co-occurrence to measure individual interactions: “fake” co-occurrence is expected [25]. As
shown in Figure 4, the surgical staff, including the surgeons (green line), assistant nurses
(pink line), scrub nurses (orange line), and anesthetists (gray line), have varying trajectories
per case. During “Close”, the trajectories of surgeons in cases 3 and 7 are completely
different from other cases. Nevertheless, the trajectories of surgeons and scrub nurses still
overlap when they interact with each other. During “End”, the trajectories of anesthetists
vary largely, almost missing in cases 2 and 6, but overlap with the other staff. Here, such a
trajectory overlap is interpreted as the interaction between the surgical staff. In Figure 4,
the trajectories consist of both the location information and corresponding timestamp,
and the similarity between the trajectories of any two staff is computed to represent the
interaction among them.
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The results of the trajectory similarity computations are shown in Figure 5. Sixteen
kinds of interaction were measured, and we clearly identified who interacts with whom and
how the interaction varied per surgical phase. We also detected the interaction network for
each surgical role. The scrub nurses had a smaller interaction network than the anesthetists
and assistant nurses, while the surgeons ranked third. The scrub nurses did not interact
with the anesthetists and assistant nurses, and the surgeons had no connection to the
anesthetists. Furthermore, the interaction between the surgeons and scrub nurses had a
larger variation compared to that of the assistant nurses, which is probably due to the
intermittent participation of intern surgeons in surgeries. Finally, the interactions between
the anesthetists and scrub nurses, the anesthetists and surgeons, and the surgeons and
scrub nurses are similar during each surgical phase.
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3.3. Bayesian Network-Based Surgical Phase Classification

To segment the surgical phases using a BN, the interactions between the surgeons and
scrub nurses, the assistant nurses and surgeons, the anesthetists and assistant nurses, and
the assistant nurses and scrub nurses were selected to learn the structure. Figure 6 depicts
the learned structure and conditional probability tables (CPTs). Each node represents
one kind of interaction that has three states discretized from the continuous LCSS results:
“Low”, “Medium”, and “High”. The directed links represent the casual relationships
between the nodes, and the CPT represents the probability that one node is in a specific
state given the states of its parent nodes. In the CPT, the conditional probability for the
“phase” node, given the interaction between the surgeons and scrub nurses, is distributed
by six phases and three interaction levels. These conditional probabilities that are stored in
a CPT show the strength of the relationships between two connected nodes.

As shown in Figure 6, the interaction between the surgeons and scrub nurses directly
determines the surgical phases. The “Craniotomy” and “TR” are related to frequent
interactions of the surgeons and scrub nurses, while the “End” and “Prepare” are related
to less frequent interactions of the surgeons and scrub nurses. This result suggests that
the “Craniotomy” and “TR” experience high cooperation between the surgeons and scrub
nurses, whereas an opposite trend is observed in the “End” and “Prepare”. The interaction
between the surgeons and scrub nurses is also influenced by the interaction between the
assistant nurses and scrub nurses. When the surgeons and scrub nurses interact, the
assistant nurses and scrub nurses interact as well. During “Craniotomy” and “TR”, the
surgeons and scrub nurses interact, which still needs contribution from the assistant nurses,
such as transferring surgical tools. In these two phases, the surgeons, scrub nurses, and
assistant nurses work closely. Although the interactions between the assistant nurses
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and surgeons, and the anesthetists and assistant nurses, have little direct influence on the
surgical phases, they affect the interaction between the surgeons and scrub nurses, and
indirectly influence the surgery. When the scrub nurses interact with the assistant nurses,
it is generally during the “Craniotomy” or “TR” phase where the anesthetists work on the
patients. The interactions between the surgical roles and their relationship with surgical
phases can be explained semantically by the BN.
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The CPT describes the prior probability distribution of each interaction and surgical
phase and computes the posterior probability distribution of each phase using the new
evidence input, that is, the surgical phase classification, also called “probability updating”
The phase is predicted based on the parent variable and the interaction between the
surgeons and scrub nurses, followed by the calculation of its posterior probability.

To validate the classification results, we conducted cross-validation. The data were
randomly divided into training and validation datasets: 40 of the 83 data points were
used for training and the remaining 43 for validation. This validation was run 1000 times
to reduce the impact of the data assignment on training and validation. The results are
shown in Figure 7. The accuracy varies from 0.4 to 0.85, and the average accuracy is 0.7.
To validate the BN, we also performed a naive Bayes-based classification, and the result is
shown in Figure 8. As observed, the naive Bayes-based classification has a similar accuracy
of 0.68, but the naive structure cannot semantically explain the interaction between the
surgical roles and their relationship with surgical phases.
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4. Discussion

Here, we presented a reliable way to recognize the phases of a neurosurgical operation
using only surgical staff movement data. A series of movement features, such as individual
interactions, spatial and temporal patterns, movement trajectories, and probability distri-
butions of the distance between two consecutive points, are able to be extracted. We found
that these features are unique to each surgical phase, and therefore, are able to characterize
the surgical workflow as well as evaluate the surgical effectiveness. Movement trajectories
can also reveal the activity space of an individual. Visualizing the movement trajectories
of the surgical staff helps identifying the “available and empty” area and time in ORs. It
further improves the space utilization of the ORs, such as relocation of surgical instruments
and rearrangement of surgical staff. In the case study, the corners and left area of the OR
were found to be available during the surgery and relocating surgical instruments and
intern students in these areas helped improve the effectiveness of the surgery. We also
found that the interaction between the surgical staff has a large variance across the surgical
phases, which usually fails to be captured by visual and signal data. The identification of
this variance has a growing importance in evaluating the efficiency of surgical procedures
and resource usage.

The traditional method to measure individual interaction is based on geographical
co-occurrence: two individuals being in the same location at the same time, approximately.
However, the movement data used in this study were collected in an OR, which increases
the complexity and inaccuracy in determining the spatial and temporal thresholds to
identify the co-occurrence. A novel representation of individual interactions was proposed,
namely the trajectory-based interaction measurement. Here, the interaction between
two individuals is computed based on their movement trajectories, and the trajectory
similarity suggests the extent of their interaction and cooperation. We calculated 16 types
of interactions between the surgical staff and identified the interactions specific to each
surgical phase. The “Craniotomy” and “TR” are closely related to frequent interactions of
the surgeons and scrub nurses, while the “End” and “Prepare” are related to less frequent
interactions of the surgeons and scrub nurses. Compared to the “Craniotomy” and “TR”,
the “End” and “Prepare” experience less interaction and cooperation, which creates the
potential to reallocate labor resource, e.g., adjusting the minimum number of surgical staff
to perform a surgical task effectively.

Currently, surgical phase classification remains challenging and uncertain with regard
to the complex nature of ORs and surgical processes, initial states and biological differences
of patients, differences in surgical procedures, and varied experience and surgical skills
of surgical staff. Nevertheless, we proposed a BN-based surgical phase classification that
incorporated such uncertainty by inferring the surgical phases from probability reasoning.
To improve the performance of the learned BNs and the accuracy of the surgical phase
classification, additional movement features, such as movement trajectories and activity
space, must be included into the BNs, which will ultimately lead to the development of
interaction-based surgical phase classification with high dependability. In the validation,
compared to naive Bayes, our BN with an average accuracy of 70% shows a better clas-
sification performance. Most importantly, our BN provides a semantic explanation and
understanding of the interactions among surgical staff, as well as their relationship with
the surgical phases.

5. Conclusions

Segmenting and representing surgical workflow not only helps to evaluate hospital
and surgical efficiency, but also improves the surgical processes and resource usage. Two
types of data, visual and signal data, are typically used to perform this task. Inimitably, here,
we collected real-time movement data of the surgical staff in the TWMU ORs and explored
the causal relationships between the interactions of the surgical staff and neurosurgeries.
We found that such interactions can explain 70% of the surgeries and proposed that surgical
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staff movement data in addition to signals, videos, and/or images of surgeries can be used
segment and understand the surgical workflow.
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