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Abstract
Biodiversity elements with narrow niches and restricted distributions (i.e., ‘short range

endemics,’ SREs) are particularly vulnerable to climate change. The NewMexico Ridge-

nosed Rattlesnake (Crotalus willardi obscurus, CWO), an SRE listed under the U.S. Endan-

gered Species Act within three sky islands of southwestern North America, is constrained at

low elevation by drought and at high elevation by wildfire. We combined long-term recapture

and molecular data with demographic and niche modeling to gauge its climate-driven sta-

tus, distribution, and projected longevity. The largest population (Animas) is numerically

constricted (N = 151), with few breeding adults (Nb = 24) and an elevated inbreeding coeffi-

cient (ΔF = 0.77; 100 years). Mean home range (0.07km2) is significantly smaller compared

to other North American rattlesnakes, and movements are within, not among sky islands.

Demographic values, when gauged against those displayed by other endangered/Red-

Listed reptiles [e.g., Loggerhead Sea Turtle (Caretta caretta)], are either comparable or

markedly lower. Survival rate differs significantly between genders (female<male) and life

history stages (juvenile<adult) while a steadily declining population trajectory (r = -0.20±

0.03) underscores the shallow predicted-time-to-extinction (17.09±2.05 years). Core habitat

is receding upwards in elevation and will shift 750km NW under conservative climate esti-

mates. While survival is significantly impacted by wildfire at upper elevations, the extinction

vortex is driven by small population demographics, a situation comparable to that of the

European Adder (Vipera berus), a conservation icon in southern Sweden. Genetic rescue, a

management approach successfully employed in similar situations, is ill advised in this
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situation due to climate-driven habitat change in the sky islands. CWO is a rare organism in

a unique environment, with a conserved niche and a predisposition towards extinction. It is

a bellwether for the eventual climate-driven collapse of the Madrean pine-oak ecosystem,

one of Earth’s three recognized megadiversity centers.

Introduction
Earth’s climate is increasingly variable [1], as gauged across a variety of unique habitats. Cli-
mate-related metrics derived for southwestern North America present a confusing mix [2]. In
many cases they are either far above average (i.e., diurnal temperatures; premature snowmelt)
or far below (i.e., precipitation amounts, snowpack levels, reservoir capacities). This variability
has been broadened and extended by other climatological aspects as well. Loss of extremely
cold winter temperatures, for example, promotes survival of larval Pine Beetle (Dendrocnotus
sp.), and with cascading effects. Those more proximate relate to greater infestation rates that,
in turn, translate into amplified tree mortalities and fire intensities, whereas those more distal
promote bivoltine life histories [3] and the depletion of regional carbon sinks. The end result is
that ~18% of southwestern forests have now been lost, a value that will exceed 50% when two
droughts similar to the most recent are recorded [4].

Climate-driven forest depletions also impact biodiversity. Here, range shifts are of particular
concern, yet are often perceived as being transitory, particularly amongst generalist species
with broad tolerances and plastic responses [5]. Vulnerabilities of specialists, on the other
hand, are often overlooked, due largely to their conserved ecologies, restricted environmental
ranges, and limited trophic breadths [6]. Species most susceptible to habitat-induced range-
shifts are specialists with distributions easily contained within a 100x100 km grid (i.e.,<10,000
km2) and are thus deemed ‘short-range endemics’ (SREs) [7]. While climate change is most
often recognized at continental or global levels, its impacts are most severe on species that are
localized and relatively constrained, and whose demise often cues the disassembly of commu-
nity structure [8].

Short Range Endemics are often found within biodiversity ‘hotspots’ (i.e., exceptional con-
centrations of endemics within receding habitats; [9]), and many of those constituent SREs are
afforded some level of protection. Long-term persistence of SREs is particularly perilous in
montane environments where a shifting climate has manifold effects. For example, available
habitat in these regions inexorably shifts to higher elevations as climate warms [10], whereas
the remnant and remaining habitat is immediately susceptible to instantaneous wildfires [11].
This analogy aptly describes our short-range endemic study species, the federally threatened
NewMexico Ridge-nosed Rattlesnake, Crotalus willardi obscurus (= CWO, Fig 1) and its
restricted and specialized habitat within the elevated Madrean Pine-Oak ecosystem of south-
western North America. Here, conservation issues have rapidly escalated from those specific
and taxon-centric towards a larger environmental concern, the collapse of the Madrean wood-
lands, one of three global “megadiversity” centers [12].

Environmental, demographic, and genetic aspects act synergistically to drive extinction vor-
tices [13, 14], and herein we employed contemporary approaches to evaluate each of these with
regard to our SRE. In so doing, we expanded earlier research [15] by estimating the following
parameters for our sky island populations: 1) survivorship, fecundity, mortality, and popula-
tion size by gender and ontogeny; 2) home range and movement; 3) survivability following sto-
chastic wildfire; 4) intrinsic demographic aspects as reflected in population genetic parameters;
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Fig 1. Distribution of Crotalus willardi obscurus in North American (top picture), andmagnified into a
perspective of the three sky-islands in southwestern North America (bottom picture) that straddle
southeastern Arizona (AZ), southwestern NewMexio (NM), and north-central México (MX).
PEL = Peloncillos Mountains (AZ); ANM = Animas Mountains (NM); SSL = Sierra San Luis Mountains
(México). Numbers indicate specific locations of study sites, two of which are within Animas Mountains: (1) =
West Fork Canyon (ANM-W); (2) = Indian Creek (ANM-I); (3) = Peloncillos Mountain; (4) = Sierra San Luis
Mountain.

doi:10.1371/journal.pone.0131067.g001
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and 5) both current and future climate envelopes. To place our demographic results within a
global context, we also reported values for other North American rattlesnakes, as well as two
other listed reptiles for which data are available (i.e., Loggerhead Sea Turtle, Caretta caretta;
European Adder, Vipera berus, in southern Sweden). The recovery of the former species is seri-
ously impeded by anthropogenic activities that impact nesting and foraging habitats, as herein
[16, 17], whereas the latter provides a widely known and taxonomically congruent benchmark
[18] against which our study species can be contrasted. This is particularly appropriate given
well-documented attempts at genetic rescue for the Adder [19, 20] and its subsequent relapse
into population decline [21].

Materials and Methods

Crotalus willardi obscurus as a Sky Island Short Range Endemic
The Pleistocene fragmented the southern Rocky Mountains and northern Sierra Madre Occi-
dental creating ‘sky islands’ [22]–areas with vertically segregated life zones within Sonoran and
Chihuahuan deserts [23]. Each sustains an endemic and characteristic community straddling
two floristic (Neotropic/Holarctic) and two faunal (Neotropic/Nearctic) realms [12], all under
pressure from concomitant and conflicting anthropogenic demands and expectations. Scien-
tists and resource agencies work to conserve biological diversity whereas others seek commer-
cial and/or consumptive access.

Within this matrix, CWO (Fig 1) is constrained to montane woodlands between 1,475 m
and 2,800 m elevation in three sky-islands (i.e., Animas Mountain = AMN, Peloncillos
Mountains = PEL, Sierra San Luis Mountains = SSL) of southeastern Arizona, southwestern
NewMexico, and north-central México (Fig 2). The species’ unique natural history, including
extreme endemism, small population size, ancestral ecology, and acute over-specialization, not
only promoted listing under the U.S. Endangered Species Act (ESA), but also illegal collection
in the pet trade.

A complicating factor for its existence is the severity of wildfire that now predominates in
~30% of western U.S. forests, and integrates with low-severity fire in another ~45% [24], but
with largest impacts in lower elevation dry-pine forests such as the sky islands [25]. Contempo-
rary wildfire in western North America, as promoted by climate change, now extends over
larger areas, exhibits higher intensity, and is more difficult to contain [26]. Extreme drought,
high winds, and local topographies are exacerbating factors [27], as framed within a controver-
sial program of fire suppression at federal and state levels [28, 29]. The combination of climate
and disturbance is promoting a novel ecosystem in the sky islands, one with a pattern and pro-
cess that are unlike those conditions that existed pre-disturbance.

Demographic and Population Simulations
Demography and spatial ecology. Annual visual encounter surveys were conducted in

late summer through early fall of each year from 1990 through 2008, and conducted both
within and beyond the recognized distributions and habitats of the focal taxon. We estimated
capture probabilities, population size and survivorship values [30] in the most data rich sky
island population (i.e. ANM), using long-term (1990–2008) unpublished capture/recapture
data based on 193 individuals tagged with passive integrated transponders [31, 32]. Demo-
graphic parameters (as above) were estimated by analyzing the 193 individual capture/recap-
ture histories using the Cormack-Jolly-Seber [33, 34, 35] open population Maximum
Likelihood (ML) estimator in the R-capture package [36] in R [37].

Adults (12 females, 15 males) were also radio-tracked (Model SB-2 transmitters, Holohill
Systems Ltd) and located daily during 1994–1997 and 1999 (mean = 58±50 days; 1471 days
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total), using a Telonics radio-telemetry receiver (Model TR-4) and directional antenna [32].
Movements were recorded with a Trimble GPS Pathfinder system, or post-process corrected
using Trimble GPS Pathfinder Office. Individual locations were converted from shapefiles to
minimum convex polygons [38] with areas (in hectares) extracted, then tested for spatial differ-
ences among genders and life history stages using loglinear models in the R-capture package.
These were compared against home range size of six North American rattlesnakes using analy-
sis of covariance (ANCOVA), with gender and body size (snout-vent length, SVL) as covari-
ates. Pairwise differences were examined for significance using Tukey’s Honest Significant
Difference (HSD) test.

Population Viability Analysis. A prediction of population persistence is clearly an impor-
tant aspect of risk assessment for SREs. Population viability analysis (PVA) incorporates sys-
tematic and stochastic impacts so as to calculate the fate of a population as well as its risk of
extinction. It was applied to simulate the ANM population for 100 years across 10,000 itera-
tions and 36 scenarios [39] with the following as input: reproductive maturity of females = age
4 (60% reproducing); males = age 2; both genders survive to age 11; mean number of offspring
per brood = 5.4±1.6 individuals [40]. Population size = 151 individuals (derived from this
study, as above), and survival rates were obtained via the ML approach outlined above.

Wildfire and Matrix Models. Prior to 1900, low intensity fires occurred on average every
6–7 years, as judged from fire scars on trees at Animas Mountain, whereas high intensity crown
fires were less frequent [41]. We contrasted survival following low [42] and high intensity (2006)
fires and employed three scenarios for context: (A) no fire, (B) low intensity fire, and (C) high
intensity fire. Probability of each was determined using historical records [43], with survival esti-
mated frommark-recapture data. Stable stage structure and reproductive values were also derived.

Fig 2. Mean home range estimates for Crotalus willardi obscurus and six other rattlesnake species for which similar data were available.Horizontal
red bar = mean value. Cva = Crotalus viridis abyssus; Ca = Crotalus adamanteus; Scc = Sistrurus catenatus catenatus; Cc = Crotalus cerastes; Sce =
Sistrurus catenatus edwardsii; Ch = Crotalus horridus. See Table 1 for literature citations and test statistics.

doi:10.1371/journal.pone.0131067.g002
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Sensitivity (numerical changes) and elasticity (proportional changes) are expedient results
from which to predict impacts of small perturbations on vital rates of a population, with other
elements held constant. These were subsequently employed to gauge impacts of wildfire on
fecundity and survival. They are deemed influential when their summation is greater than one
(sensitivity) or equal to it (elasticity).

Genetic Impacts on Demography
While demographic parameters are essential for long-term persistence of populations, genetic
factors are also important drivers of demography in small populations. We gauged contempo-
rary population bottlenecks (i.e.,<five generations; [44]) by contrasting heterozygosity esti-
mates empirically derived from nine microsatellite (msat) DNA loci [15] against expectations
under Hardy–Weinberg mutation-drift equilibrium (HWE). Sample size varied among sky
islands: ANM (N = 54); SSL (N = 29); PEL (N = 18). Within ANM, samples were also subdi-
vided into two areas: Indian Creek Canyon (AMN-IC, N = 24) and West Fork Canyon
(AMN-WF, N = 30) [15].

A bottleneck is identified when the observed heterozygosity (HO) is significantly greater
than expected (HE) for a population under mutation-drift equilibrium. Several statistical
approaches are employed for adjudication, the most powerful being the Wilcoxon signed-rank
test [45]. Microsatellite data were used to test for demographic independence among three sky
island populations [15] and analyses were also conducted to evaluate the two ANM subpopula-
tions (i.e., AMN-IC and AMN-WF; Fig 2)], using program BAYESASS 3 [46].

We simulated the change in the inbreeding coefficient (ΔF) for the ANM sky island popula-
tion over 25, 50, 75 and 100-year spans, so as to evaluate if this parameter was potentially
impacted by small population size. When ΔF is exceedingly large, individual fecundity will be
markedly reduced and extinction risk concomitantly elevated, despite other mitigating pro-
cesses [47]. However, ΔF calculations do not include gene flow and this aspect must also be
evaluated as well, as done herein.

We also employed msat data to gauge the effective population size (Ne) of each sky island
population using two different ‘one-sample’ approaches: a linkage disequilibrium estimator
(LDNe: [48]), and a Bayesian estimator (ONeSAMP: [49]). We also calculated the ratio of Ne

to census population size (Nc) for the ANM population and contrasted it with similar values
taken from the literature and/or calculated for the European Adder (Vipera berus) [18]. We
also estimated breeding population size (Nb) using a two sex, no-sex-change model with a
15-year life span consisting of four non- and 11 reproductive years, with fecundity between
two and nine [40], and survival empirically derived from mark-recapture analyses (as above).
To account for the high variance of reproductive success, the Poisson factor was set at 2. We
also generated Nb/Nc and Nb/Ne ratios, in that these are important from a management per-
spective. Generally, Nc can be estimated from ecological data whereas Ne requires genetic data
not always (or rarely) available. However, Ne and Nb are more informative with regard to
demographic and genetic processes that determine future population size.

Modeling the Climate Envelope of an SRE
To predict the potential for habitat loss, 193 GPS capture coordinates were imported into Max-
Ent [50] and parsed among training (N = 145) and testing (N = 48) sets. Nineteen bioclimatic
variables were obtained from the WorldClim database [51] and a subset of eight biologically
meaningful variables were selected due to correlations among variables [52]. Specifically, the
climate envelope for CWO was derived using annual mean temperature, mean diurnal range,
maximum temperature in the warmest period, minimum temperature of the coldest period,

Global Change as It Impacts Short-Range Endemics

PLOS ONE | DOI:10.1371/journal.pone.0131067 June 26, 2015 6 / 20



annual temperature range, mean temperature of the warmest quarter, mean temperature of the
coldest quarter, and annual precipitation.

As CWO represents but one of five subspecies in the polytypic Crotalus willardi complex,
and given the inherent complexity of modeling intra-specific entities [53, 54, 55], we excluded
from calibration those areas where other C. willardi subspecies occurred. Thus, we do not
implicitly assume absence where perhaps conspecifics with similar habitat requirements indeed
exist. The extant niche for CWO was derived from 10,147 points, and averaged across 15 repli-
cates at 5000 iterations each. A predictive species envelope was developed for the year 2080,
based on a conservative climate projection of the Coupled Global Climate Model 2 (CGCM2)
[1], and by averaging 15 replicates of 5000 iterations each. BioClim variables were assessed for
relative contributions while information content was evaluated using the jackknife procedure.
To ensure veracity of the projected climate envelope model (per [56, 57, 58]), a suite of stan-
dard regularization multipliers were tested (i.e., values of 1–10, 15, and 20). Improvement in
model fit was determined using ENMTools [59, 60]. Mean distributional estimates for both
models were imported into ArcGIS 10 to derive climate envelopes and core habitat areas.

Ethics Statement
Collections were authorized via permits to Andrew T. Holycross by Arizona Game and Fish
Department (HLYCR000038, SP605602, SP648632, SP711300, SP779370, SP841338); New
Mexico Department of Game and Fish (2824); United States Fish andWildlife Service
(PRT676811, PRT814837). Specimens in México were collected under permit to J. Sigala-
Rodríguez (DOO 750–3792/98). Animal care/handling was approved by Arizona State Univer-
sity (93–280R). The Animas Foundation, J. Austin, and C. Varela generously granted access to
private lands.

Results

Demographic and Population Simulations
Demography and spatial ecology. A total of 96 adults and 97 juveniles were captured

over 18 years. Adult sex ratio was = 1:1. Survival rate was significantly higher for males, but did
not differ between females and juveniles. Capture probabilities were 0.21±0.06 for adults and
0.39±0.12 for juveniles, respectively (Table 1). Adult home ranges were small (mean = 0.07±
0.2 km2), overlapping, and not significantly different by sex, body size, or year, with non-signif-
icant interactions. Yet, home range estimate for CWO differs significantly from those recorded
for six rattlesnake species (Table 2; Fig 3), irrespective of gender or body size.

Table 1. Population demographic parameters forCrotalus willardi obscurus (= CWO) in the Animas Mountain sky island compiled by life history
stage and population.

Comparison df Survival Capture Pop. Size

Male vs Female 141 6.65** 5.81** 7.40**

Male vs Juvenile 121 11.46** 4.66** 1.91**

Female vs Juvenile 63 0.041 0.044 1.31

Adult vs Juvenile 190 13.77** 4.91** 0.78

Comparison = Life history stages evaluated; df = degrees of freedom; Survival = F-value for comparison of survival by life history stage; Capture = F-value

for comparison of capture probability by life history stage; Pop. Size = F-value for comparison of population size by life history stage.

** = Statistical significance at P < 0.05.

doi:10.1371/journal.pone.0131067.t001
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Population Viability Analysis. All 36 PVAs for the ANM sky island yielded markedly
negative mean population growth (r = -0.20±0.03) that continued to decrease as environmental
and demographic stochasticity were incorporated (r = -0.22±0.03). Probability of extinction
was 100% with mean time to extinction (TtE) = 17.09±2.05 years. Adults decreased in preva-
lence as body size increased, with larger snakes having greatest reproductive value (59.5%) yet
comprising only 3.6% of the population. Effects of inbreeding on population growth are severe,

Table 2. A Test of home range estimates forCrotalus willardi obscurus (= CWO) and six other rattlesnake species for which data are available,
using analysis of covariance (ANCOVA) with gender and body size as covariates.

Taxon N Home Range P Data Source

Crotalus adamanteus 10 31.5 ±23.40 0.001 [77]

C. cerastes 25 23.2 ±13.99 0.013 [76]

C. horridus 20 25.7 ±11.3 0.006 [80]

C. oreganus abyssus 7 11.3 ±10.74 0.014 [106]

C. willardi obscurus 27 7.1 ±19.76 N/A [This study]

Sistrurus c. catenatus 11 25.3 ±24.89 0.007 [78]

Sistrurus c. edwardsii 12 42.0 ±29.42 0.0001 [79]

Significant post-hoc pairwise differences are identified using Tukey’s Honest Significant Difference (HSD). Taxon = genus/species, where C. = Crotalus

and c. = catenatus; N = number of individuals per study; Home Range = hectares with variance; P = Statistical probability of a larger value; Data

Source = Literature citation.

doi:10.1371/journal.pone.0131067.t002

Fig 3. Bioclimatic variables (WorldClim database) incorporated with193 GPS capture coordinates forCrotalus willardi obscurus in the sky Islands
of southwestern North America provide climate envelopes and core habitat areas in ArcGIS 10. Color density = strong habitat preference, with black/
dark grey being most positive. Red circles = sampling locations. 2014 = current climate envelope; 2080 = a conservative climate envelope projected 66 years
in the future.

doi:10.1371/journal.pone.0131067.g003
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irrespective of deterministic or stochastic models (Table 3). Estimates of TtE also decreased
sharply as inbreeding depression increased.

Wildfire and Matrix Models. Adult and juvenile survivorship was 62% and 46%, respec-
tively, and declined significantly in years with wildfire. For the prescribed, low intensity fire of
1997, survivorship for adults decreased 13% vs 7% for juveniles, and 20% vs 23% during the
high intensity fire in 2006. Sensitivities and elasticities were relatively uniform for ‘no fire,’ low
intensity fire,’ and ‘high intensity fire’ categories (Total, Table 4), with adult survival more seri-
ously impacted. However, a disproportionally larger increase was found for juveniles regarding
sensitivity to high intensity fire.

Genetic Impacts on Demography
Standardized and Wilcoxon-Ranked tests detected significant and contemporary bottlenecks
in all sky island populations. Additionally, ΔF over 25, 50, 75 and 100 years increased steadily
from 0.31 (25 years) to 0.52, 0.66 and 0.77, respectively. Estimates of Ne using the LDNe model
were 65, 29, and 39 for ANM, PEL, and SSL sky islands, respectively, with similar values (i.e.,
70, 25, and 42) produced by the ONeSAMP procedure. The latter also yielded estimates for
Animas subpopulations: AMN-IC (= 36) and AMN-WF (= 43). The estimate for number of
breeding adults (Nb) in ANM is 24, while that for the Adder in Sweden is 17. Ratios of Nb/N,
Ne/N, and Nb/Ne for CWO fall below (two comparisons) or match (one comparison) those for
the Loggerhead Sea Turtle, whereas they match (one) or exceed (two values) for the Adder
(Table 5).

Table 3. Declines in population growth (= r) forCrotalus willardi obscurus in the Animas Mountain sky island under four levels of inbreeding
depression (i.e., None; Low; Moderate; High), as gauged using both deterministic and stochastic populationmodels.

Inbreeding Depression r (deterministic) r (stochastic) TtE

None -0.167 -0.185 (± 0.329) 19.6

Low -0.192 -0.206 (± 0.325) 17.8

Moderate -0.244 -0.244 (± 0.335) 14.7

High -0.29 -0.311 (±0.33) 11.3

TtE = Time to extinction, in years.

doi:10.1371/journal.pone.0131067.t003

Table 4. Sensitivity and elasticity estimates as derived from a population viability analysis (PVA) forCrotalus willardi obscurus (CWO) in the Ani-
mas Mountain sky island (NewMexico, U.S.A.).

Fire Regimes

No Fire Low Intensity High Intensity

Sensitivity

Fecundity 0.27 0.29 0.21

Juvenile Survival 0.53 0.55 0.71

Adult Survival 0.86 0.83 0.85

TOTAL 1.66 1.67 1.77

Elasticity

Fecundity 0.23 0.26 0.24

Juvenile Survival 0.23 0.26 0.24

Adult Survival 0.54 0.47 0.53

TOTAL 1 1 1

Fecundity and juvenile and adult survival are estimated over 100 years under three Fire Regimes (= No Fire; Low Intensity Fire; High Intensity Fire).

doi:10.1371/journal.pone.0131067.t004
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Mean migration rate was calculated as 2% among all sky island populations, substantiating
their demographic independence [61]. However, migration rate between the two ANM sub-
populations was surprisingly unidirectional, with those from Indian Creek (ANM-IC) to West
Fork Canyon (ANM-WF) at 75.0%, whereas movements from ANM-WF to ANM-IC were but
23.0%. These data suggest a source-sink dynamic in the ANM sky island, a situation similar to
that found for populations of an endangered venomous snake in Australia [62].

A Shifting Climate Envelope for an SRE
The climate envelope for CWO displayed an Area Under the Receiver Operating Characteristic
(AUC) value of 0.997 (±0.001), indicating an evaluation that was well supported and strongly
predictive. Mean diurnal range emerged as the most important variable (43% contribution),
whereas mean-temperature-of-coldest-quarter, minimum temperature of coldest month, and
annual precipitation were also strongly predictive (29.8%, 20.6, and 5.4% contribution, respec-
tively). Model selection that varied the regularization parameter (beta) among12 models
revealed that the best model (AICc = 1792.23, ΔAICc = 0.00) was that with beta value of 6. The
next best (AICc = 1802.23, ΔAICc = 10.00) had a beta value of 7. Thus, climate envelope maps
were derived from the average outputs of the beta = 6 regularization parameter models.

CWO has a relatively restricted climate envelope with predicted core areas juxtaposing well
with designated critical habitat (Fig 4). However, a scenario of moderate climate change over
some 67 years (i.e., to 2080) would shift the current distribution to the extreme periphery of
the climate envelope, with the core area migrating approximately 763km north to the San Fran-
cisco Peaks (on the Colorado Plateau, near Flagstaff, Arizona), a geographic extension consid-
erably beyond the historic range of CWO.

Discussion

Demographic Processes, Movement, and Comparative Studies
Reducing loss of biodiversity is a conservation challenge entailing fundamental biological as
well as applied management dimensions, and is constrained by finite resources and sparse
data. The problem is even more austere when its foci are small populations and SREs. One
potential solution, and a mechanism to more fully understand extinction vortices, is to approx-
imate population trends through the application of demographic models [63]. Here, four
sources of uncertainty are recognized: Low quality data; difficulties with parameter estimation;

Table 5. Estimates for census size (= N), number of breeders (= Nb), and effective population size
(= Ne) for the NewMexico Ridge-nosed Rattlesnake,Crotalus willardi obscurus (= CWO) in the Animas
Mountain sky island.

Parameter CWO CC VB

N 151 n/a 166

Nb 24 n/a 17

Ne 38 n/a 28

Nb/N 0.159 0.188 0.102

Ne/N 0.252 0.231 0.169

Nb/Ne 0.632 0.811 0.607

Metrics for Loggerhead Sea Turtle, Caretta caretta (= CC) from literature, and the Adder, Vipera berus
(= VB) from literature or estimated in this study. Ratios of the various parameters with census size (N) are

also provided.

doi:10.1371/journal.pone.0131067.t005
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issues with validation; and limited modeling alternatives [64]. The first two are particularly ger-
mane to this study, as few CWO remain in but three isolated sky islands. Yet model uncertainty
also hinges on the spatio-temporal scope of sampling, and can be mitigated by a careful design
[65]. In the present study, two different research teams extensively sampled all known CWO
populations over the span of two decades. Additionally, demographic parameters were esti-
mated via maximum likelihood (ML), an approach that minimizes sampling error in lieu of
process error [66]. Finally, multiple models were employed, with those individually based hav-
ing greatest utility in capturing small population fluctuations [67], and those results are
reported herein.

Long-term studies similar to ours in both taxonomy and scope reveal population dynamics
that are quite congruent with those found herein. A 10-year mark-recapture study on the feder-
ally threatened Eastern Indigo Snake (Drymarchon couperi) also found negative population
growth coupled with low annual survival and reproduction [68]. Likewise, a 20-year demo-
graphic study on the Mediterranean Dice Snake (Natrix tesselata) enumerated low mean

Fig 4. A conceptual diagram illustrating five key life history components that predispose short range endemics (= SREs) to extinction. All five must
be assesse to appropriately gauge long-term persistence of SREs in imperiled ecosystems.

doi:10.1371/journal.pone.0131067.g004
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annual survival (r = 0.73; [69]) that is comparable both to the above study as well as ours.
Given these results, we hypothesize that a survival rate approaching 0.70 for snakes, when com-
bined with relatively low fecundity, is a metric that can be utilized to validate a declining
population.

Developing generalized models of snake movement is difficult [70, 71, 72] due to myriad
intrinsic [73, 74, 75] and extrinsic [76, 77, 78, 79] factors and their manifold effects [80]. Yet
comparisons among taxa can be particularly valuable in assessing spatial pressures exerted
upon species particularly prone to extinction (e.g. endangered species, SREs, etc.) versus those
less restricted forms [81].

A qualitative comparison between the NewMexico Ridge Nosed Rattlesnake and the Twin
Spotted Rattlesnake (Crotalus pricei, home range = 0.031 ± 0.009 km2; [82], an Arizona state
protected Sky Island SRE allopatric with the NewMexico Ridge Nosed Rattlesnake, reveals
similarly diminuntive home range sizes and restricted movements. This suggests that Sky
Island rattlesnake SREs may share similar restrictions upon movement that preclude them
from successful long-range dispersal, or range expansion. Direct quantitative comparisons
with non-SRE North American rattlesnakes exhibiting substantially greater geographic distri-
butions reveals the NewMexico Ridge Nosed Rattlesnake displays significantly reduced move-
ment patterns.

Ultimately, these comparisons reveal that the New Mexico Ridge Nosed Rattlesnake is of
low vagility and with restricted dispersal capability. This places the form in a precarious posi-
tion, given predictions of a substantially shifting climate envelope depicted herein. Individuals
should continue to track conditions that shift into higher elevations on their respective moun-
tains, yet this represents an increasingly small area of suitable habitat. Therefore, this SRE will
likely sink into an extinction abyss as climate change and vicariant desertification proceed
unabated up these mountains.

Genetics and Demography
Tests for heterozygosity-excess are quite conservative and can often fail to detect the signal of a
bottleneck, despite recognized and historic declines [44]. However, our tests revealed strong
support for recent and severe population reductions across the sky islands, and sustain an argu-
ment that the small population paradigm [83] is preemptive in driving the extinction vortex
for our SRE. Additionally, ΔF-calculations reveal inbreeding values that elevate substantially as
temporal span lengthens, underscoring the considerable impact of inbreeding as it relates to fit-
ness over time.

Effective population size (Ne) is another parameter that strongly impacts threatened and
endangered populations, more so than selection, immigration and emigration [84]. Here, Ne

estimates are gauged against a hypothetical population with constant population size, equal sex
ratio, and with drift or inbreeding comparable to the study population, but without immigra-
tion, emigration, mutation, or selection. Conservative estimates for closed populations (as
herein) are represented by the ‘50/500 rule’ (i.e., Franklin’s Rule), with 50 as a basis for short-
term survival with minimal inbreeding, and 500 for long-term survival. This metric has been
extant for 3.5 decades and is now deemed inadequate, with more contemporary values being
>100 (lower bound) and>1000 (upper bound) [47]. Regardless, our Ne estimates were below
the legacy lower bound in all sky islands and consequently elicit concern as they imply an
immediate extinction risk. Similarly, Nb (the effective number of breeders per year, a value gen-
erally lower than Ne) is likewise diminished and thus elicits managerial apprehension for the
ANM population.
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Extrapolations of Ne with N as a measure of genetic drift have likewise evolved, and manage-
ment actions that can elevate Ne or the Ne/N ratio (and thus genetic variation) have grown in
importance. An earlier consensus that argued for a ratio averaging 0.10–0.14 has subsequently
been expanded to 0.20, but with the caveat that it should be juxtaposed with the life history of
the species in question [47]. In this sense, Ne/N can be arbitrarily large for species with pro-
longed juvenile and short adult lifespan, such as insects.

Ratios of Ne/N effectively link demographic and evolutionary processes across a wide range
of taxa, as reflected by the fact that half its variance is explained by only two life-history traits
(i.e., age-at-maturity and adult lifespan). The value for the ANM population (i.e., 0.252) is
lower than that recorded in five (of six) reptiles for which data have been recorded (Table S-2
in [84]). It approximates that for Loggerhead Sea Turtle [an endangered species under the ESA
and on the Red List of the International Union for Conservation of Nature (IUCN), but
exceeds the value recorded for the European Adder in Sweden (Table 3). The Nb/N value for
ANM (= 0.159) is also lower when compared with the six listed reptilian species [64], to include
the Loggerhead Sea Turtle (at 0.188), but again exceeds somewhat the value for the Adder.
Lastly, the Nb/Ne ratio (= 0.632) is again lower than those for the six listed reptiles [84], to
include the Loggerhead Sea Turtle at 0.811, and also comparable to that of the Adder (at
0.607). Overall, the same two life history traits (as above) explain 67% of the variance in Nb/Ne.

The comparisons we draw between CWO and the European Adder in southern Sweden
(above) are particularly germane, in that the Adder is a recognized conservation icon that epit-
omizes the impacts of reduced genetic variability on population demography (see texts by [85,
86, 87]). It was originally recognized [18] as a severely inbred and isolated population, and 20
males were translocated from a more distant population in an attempt at genetic rescue. This
significantly enhanced the genetic variability of the study population and prompted a dramatic
increase in offspring viability as well as a rapid growth in numbers. It had the effect, at least in
the short term, of halting the decline of the population towards extinction. Unfortunately, con-
tinued fragmentation has again condensed the population [21], and its recognition as an exem-
plar in the conservation literature could not stem the increasing urbanization of its habitat.

The situation in the sky islands is a reflection of that with the European Adder in southern
Sweden, but without the attempt at genetic rescue (but see below). The comparative relation-
ships among the various demographic ratios, as presented above, underscore the tenuous
genetic and demographic status of our Madrean SRE and, much like the Adder in southern
Sweden, offer scant promise for longevity. The demographic trajectory of CWO in the sky
islands will inexorably lead to extinction unless an adaptive management plan is rapidly
initiated.

DoesWildfire Significantly Influence Survival at Animas Mountain?
A policy of fire suppression in western North America, enacted by the U.S. Forest Service in
late 19th century [41], has largely eliminated wildfire as a natural process, consequently provok-
ing drastic alterations in structure, composition, and fuel load of western North American
woodlands [43]. Wildfire promotes vicariant desertification at lower levels in the sky islands,
yet the capability for movement to suitable habitat at higher elevation is curtailed in that topo-
graphically there is no ‘up’ remaining. From a latitudinal perspective, a predicted shift in the
climate envelope>700 km to the northwest (Fig 4) is also insurmountable, not only for persis-
tence of CWO but the entire Madrean Archipelago. Clearly, wildfire has a strong effect on sur-
vivorship at all life history stages, with fires of high intensity significantly impacting juveniles
(Table 4).
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Yet, catastrophic fire is not a predominant component in the extinction rate for CWO
(Table 4). Point estimates gathered from low and high intensity wildfire (i.e., 1997, 2006) are
indeed statistically significant, yet infrequent and of little consequence over longer temporal
spans, but with one important caveat: for this to ring true, the core structural elements of the
Madrean Pine-Oak ecosystem must remain intact. Within such an historic system, small popu-
lation processes are instead more manifest for long-term survival [88]. Furthermore, our data
suggest that once a population is propelled by demography into an extinction vortex [89], its
dice are effectively cast and the decline cannot be countered, only promoted. Here, one such
influential propellant is rapid climate change [90] that, in turn, elicits wildfire as an instanta-
neous response [91]. This is indeed an unfortunate juxtaposition in that the role of fire in the
Madrean ecosystem is currently transitioning from an historic ‘rejuvenator’ of the ecosystem to
one more contemporary and abrupt, i.e., that of ecosystem ‘converter.’ Its end points are a new
species composition and a strong resistance to historic relapse, both cued by climate change
with severe wildfire as its handmaiden [92]. These aspects are immensely important for both
CWO and the Madrean Archipelago, and will have clear impacts in the near term.

Are SREs Predisposed to Extinction?
One argument to the affirmative is the recognition that distributions of SREs are relictual,
restricted, and easily perturbed by anthropogenic fragmentation and stochastic events (e.g. wild-
fire, flood, drought most often associated with climate change) ([17]; see above, but also [93]).
These events easily dissociate SREs from their contemporary climate envelopes (per Fig 4) and
promote strong, negative selection on those elements more specialized in their life histories [94].
Thus an understanding of the life history characteristics that define SREs, and which predispose
them for extinction, not only elevate concerns (as herein), but can also promote management
scenarios that may enhance long-term persistence. With regard to CWO, the promotion—even
reintroduction—of fire within a dramatically altered Madrean Pine-Oak ecosystem can indeed
be such a selective pressure that accelerates decline.

Implications for Conservation
One approach to alleviate the adverse effects of inbreeding and genetic isolation in CWO
would be to re-establish gene flow among impacted sky island populations (as was done with
the European Adder in southern Sweden). Yet, in spite of potential success, there have been
only 19 global instances where this has been implemented in a threatened and near-threatened
species [95]. One obvious concern is the potential for outbreeding depression (OD), defined as
a reduction (rather than augmentation) of reproductive fitness during the first (or subsequent
generations) post-supplementation, and stemming from an admixture of ill-adapted genotype
complexes. The occurrence of OD has been documented in some 35 species [96], with risks,
particularly in the second generation, recorded as on par with those of inbreeding. However,
others have argued that the topic is not only overemphasized in the literature, but also over-
stated by conservation managers as an element of concern [95].

The re-establishment of natural or artificial gene flow via introductions now has a contem-
porary designation (i.e., ‘genetic rescue’) although this interpretation has become further dis-
sected in the literature [97]. Many managers view the approach as positive, due largely to its
acknowledged success in relatively dire situations: Florida Panther [98], Bighorn Sheep [99],
Greater Prairie Chicken [100], as well as the aforementioned European Adder. It has also been
substantiated experimentally in the laboratory, where crosses among severely bottlenecked
strains of Drosophila reversed the effects of inbreeding and promoted reproductive success.
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These conditions persisted into the second generation of hybrid offspring, whereas those
crosses within (rather than across) strains showed little benefit [101].

However, genetic rescue does have limitations, and these pertain specifically to the present
study. For example, results were limited when supplementation for genetic rescue has occurred,
largely due to a severely degraded habitat such that isolation and subsequent inbreeding were
instead promoted [102]. Indeed, this is the situation within the sky islands, where fragmenta-
tion has been furthered both by desertification at lower elevations and wildfire at higher eleva-
tion. Each process has curtailed available habitat and, in so doing, promoted the onset of small
population effects, a situation analogous to the European Adder in southern Sweden.

Biodiversity hotspots clearly sustain SREs, and their management is a global mandate. Yet a
serious conservation challenge is the manner by which habitats and species can be not only
protected but also augmented. CWO underscores the seriousness of this issue. It is listed as
‘threatened’ by the U.S. Fish and Wildlife Service [103] and indeed this confers protection. It is
the only venomous reptile (and one of but 12 snakes) that has received such designation. Yet
despite ~40 years of ‘protection,’ its evolutionary trajectory continues to diminish. Does this
represent an inability of the ESA to indeed protect listed species? And if so, is such a conclusion
realistic?

We suggest the argument should instead be posited as: “How can this ecosystem and its
unique biodiversity be more appropriately conserved?”Here, we offer three recommendations:
First, CWO should be immediately elevated to ‘endangered’ status, as this will leverage
increased ecosystem management for the sky islands in their entirety [104]. Second, CWO
should be promulgated as an exemplar of climate change impacts, and thus as a component of
risk analysis under the ESA [105]. Finally, other uniquely endemic SREs in the sky islands
should also be identified as flagship species, so as to promote public awareness as well as shape
stakeholder perceptions regarding ecosystem conservation. We recognize these actions may
not save but merely prolong its existence, but this in itself would be positive in that it would
buy time so that more substantive ecosystem-level initiatives can be developed in the context of
region-specific mandates [92, 2].
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