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Abstract

Folate metabolism, also known as one-carbon metabolism, is required for several cellular processes including DNA
synthesis, repair and methylation. Impairments of this pathway have been often linked to Alzheimer’s disease (AD).
In addition, increasing evidence from large scale case-control studies, genome-wide association studies, and meta-
analyses of the literature suggest that polymorphisms of genes involved in one-carbon metabolism influence the
levels of folate, homocysteine and vitamin B12, and might be among AD risk factors. We analyzed a dataset of 30
genetic and biochemical variables (folate, homocysteine, vitamin B12, and 27 genotypes generated by nine common
biallelic polymorphisms of genes involved in folate metabolism) obtained from 40 late-onset AD patients and 40
matched controls to assess the predictive capacity of Artificial Neural Networks (ANNs) in distinguish consistently
these two different conditions and to identify the variables expressing the maximal amount of relevant information to
the condition of being affected by dementia of Alzheimer’s type. Moreover, we constructed a semantic connectivity
map to offer some insight regarding the complex biological connections among the studied variables and the two
conditions (being AD or control). TWIST system, an evolutionary algorithm able to remove redundant and noisy
information from complex data sets, selected 16 variables that allowed specialized ANNs to discriminate between AD
and control subjects with over 90% accuracy. The semantic connectivity map provided important information on the
complex biological connections among one-carbon metabolic variables highlighting those most closely linked to the
AD condition.
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Introduction

Folate metabolism, also known as one-carbon metabolism,
plays a fundamental role in DNA synthesis and integrity, in
chromosome stability, in DNA and protein methylation, as well
as in antioxidant defence mechanisms, and impairments of this
pathway have been often linked to Alzheimer’s disease (AD)
risk [1–4]. In 1990, Regland and colleagues first reported
elevated homocysteine (hcy) levels in patients with primary
degenerative dementia [5]. Since then, several researchers
have investigated the levels of hcy, folate, and other B group
vitamins involved in one-carbon reactions, such as vitamin
B12, in mild cognitive impairment and AD [6–8]. Most of the
retrospective studies focusing on the comparison between
plasma hcy levels in AD patients and healthy controls revealed
increased hcy values in AD subjects [3,9]. Also evidence from

prospective studies suggests that a moderate elevation in hcy
levels is a potential AD risk factor [3,9]. However, results are
often conflicting, and it remains controversial whether
hyperhomocysteinemia (hhcy) is really an AD risk factor or
rather a consequence of the disease [4,9,10]. Several
retrospective studies observed significantly decreased serum
folate levels in AD subjects with respect to controls, and an
inverse correlation between plasma hcy and serum folate
[1,11]. There is also indication that low serum vitamin B12
levels are associated with neurodegenerative diseases and
cognitive impairment [12], and several clinical investigations
have demonstrated that folate and related B-vitamins
administration is able to reduce hcy levels and antagonize
some mechanisms favouring neurodegenerative impairments,
as mild cognitive impairment and dementia [13]. In addition,
increasing evidence from large scale case-control studies,
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genome-wide association studies (GWAS), and meta-analyses
of the literature suggest that polymorphisms of genes involved
in one-carbon metabolism influence the levels of folate, hcy
and vitamin B12, and might be among AD risk factors
[8,14–17]. Unfortunately, the overall results of the literature are
sometimes conflicting and often insufficient to disclose the
effective relationship among studied variables [2]. This is
partially due to the complexity of the one-carbon metabolic
pathway (Figure 1) and to the number of genes and
environmental factors involved [2], as well as to the fact that
traditional statistical algorithms are both unsuitable and
underpowered to dissect the relationship between high number
of markers due to the non-linearity and complexity of the folate
metabolic pathway [18].

We performed the present study using Artificial Neural
Networks (ANNs) to identify key factors linking folate
metabolism to AD. The method used by ANNs aims to
understand natural processes and recreate those processes
using automated models. These networks allow a method of
forecasting with understanding of the relationship among
variables, and in particular nonlinear relationships [19–21].
ANNs function by initially learning a known set of data from a
given problem with a known solution (training) and then the
networks, inspired by the analytical processes of the human
brain, are able to reconstruct the imprecise rules which may be
underlying a complex set of data (testing). In recent years
ANNs have been used successfully in medicine, for example
they have been used to investigate the predictive values of risk
factors on the conversion of amnestic mild cognitive
impairment to AD [22], to identify genetic variants essential to
differentiate sporadic amyotrophic lateral sclerosis cases from
controls [23,24], to understand the relationship among
polymorphisms of genes involved in one-carbon metabolism,
chromosome damage, and maternal risk for having a birth with
Down syndrome [18], to detect multiple genes of smaller
effects in predisposing individuals to Barrett’s esophagus [25],
and to differentiate fronto-temporal dementia from AD [26],
among others.

In this pilot study we applied ANNs to investigate
biochemical and genetic markers related to one-carbon
metabolism in 40 late onset AD patients and 40 matched
controls selected from a previously described database [8,27]
in order to assess the predictive capacity of ANNs in
distinguish consistently these two different conditions and to
identify the variables expressing the maximal amount of
relevant information. Moreover, we used the Auto Contractive
Map-Auto-CM algorithm (Auto-CM), a special kind of Artificial
Neural Network able to define the strength of the associations
of each variable with all the others and to visually show the
map of the main connections of the variables and the basic
semantic of their ensemble [28,29]. Auto-CM was previously
applied by us to a dataset of genetic and cytogenetic data
collected from mothers of Down syndrome individuals and
matched control mothers [18] and successfully disclosed
previously unknown connections among polymorphisms of
genes involved in folate metabolism and chromosome damage
and malsegregation events in those women.

At best of our knowledge no previous study has investigated
the relationship among biochemical markers of one-carbon
metabolism (folate, hcy, vitamin B12) and genetic
polymorphisms of major enzymes involved in this pathway
(methylenetetrahydrofolate reductase: MTHFR; methionine
synthase: MTR; methionine synthase reductase: MTRR;
thymidylate synthase: TYMS; reduced folate carrier: RFC1;
DNA methyltransferases: DNMTs) by means of ANNs in AD.
The aim of this study was to investigate whether this
revolutionary mathematical approach can increase our
knowledge on the connections among those variables in AD
and matched control individuals and to identify key variables to
discriminate among these two conditions.

Materials and Methods

Study Population
We aimed to re-analyze from a completely new perspective

some of the data obtained from our previous studies [8,27].
From a previously described dataset [8,27] containing data
from AD patients and healthy matched controls, we have
selected 40 late onset AD (15 males and 25 females, mean
age at sampling 78.1 ± 6.3 years) and 40 age and sex matched
control subjects (17 males and 23 females, mean age at
sampling 76.5 ± 6.7 years) for whom all the following
information on one-carbon metabolism was available: 1)
plasma hcy levels, 2) serum folate levels, 3) serum vitamin B12
levels, 4) genotype for the MTHFR 677C>T (CC, CT or TT)
polymorphism (rs1801133), 5) genotype for the MTHFR
1298A>C (AA, AC or CC) polymorphism (rs1801131), 6)
genotype for the MTRR (AA, AG or GG) 66A>G polymorphism
(rs1801394), 7) genotype for the MTR 2756A>G (AA, AG or
GG) polymorphism (rs1805087), 8) genotype for the SLC19A1
(RFC1) 80G>A (AA, AG, GG) polymorphism (rs1051266), 9)
genotype for TYMS 28-bp repeats (2R2R,2R3R,3R3R)
polymorphism (rs34743033), 10) genotype for TYMS 1494 6-
bp ins/del (+/+, +/-, -/-) polymorphism (rs34489327), 11)
genotype for DNMT3B -149C>T (CC, CT, TT) polymorphism
(rs2424913), and 12) genotype for DNMT3B -579G>T (GG,
GT, TT) polymorphism (rs1569686). As detailed elsewhere
[8,27] all subjects included in our dataset were Caucasians of
Italian origin (North-West Tuscany and neighboring areas) and
diagnosis of probable AD was performed according to DSM-IV
and NINCDS-ADRDA criteria at the time of patients recruitment
[8,27]. The 40 AD subjects included in the present study also
met the revised core criteria for probable AD [30]. A
progressive cognitive decline on subsequent evaluations was
observed. All the subjects included in the present study were
sporadic cases, and none of them was a carrier of a causative
genetic mutation in APP, PSEN1, or PSEN2 [30]. Control
subjects consist of healthy volunteer subjects having no
individual or family history of dementia or cognitive decline
[8,27]. Table 1 shows the distribution of the studied variables
among AD subjects and controls. All the samples were coded
and data were processed in blind by operators. Figure 2
explains how genotypes were coded in the database. All
individuals gave written informed consent for inclusion in the
database, whose creation was performed in accordance with
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the Helsinki Declaration and approved by the Ethics Committee
of the Pisa University Hospital (Project Reference N°
3618/2012).

Genotyping and biochemical data collection.
The database data concerning folate, hcy and vitamin B12

values and the genotypes for all the studied polymorphisms
have been previously obtained by means of standard
diagnostic protocols and validated PCR/RFLP techniques as
described elsewhere [8,27].

Figure 1.  Overview of the folate metabolic pathway, adapted from [18].  Folates require several transport systems to enter the
cells, the best characterized being the reduced folate carrier (RFC1). Methylenetetrahydrofolate reductase (MTHFR) reduces 5,10-
methylenetetrahydrofolate (5,10-MTHF) to 5-methyltetrahydrofolate (5-MTHF). Subsequently, methionine synthase (MTR) transfers
a methyl group from 5-MTHF to homocysteine (Hcy) forming methionine (Met) and tetrahydrofolate (THF). Methionine is then
converted to S-adenosylmethionine (SAM) in a reaction catalyzed by methionine adenosyltransferase (MAT). Most of the SAM
generated is used in transmethylation reactions, whereby SAM is converted to S-adenosylhomocysteine (SAH) by DNA
methyltransferases (DNMTs) that transfer the methyl group to the DNA. Vitamin B12 is a cofactor of MTR, and methionine synthase
reductase (MTRR) is required for the maintenance of MTR in its active state. If not converted into methionine, Hcy can be used for
the synthesis of glutathione (GSH) in a reaction catalyzed by cystathionine b-synthase (CBS) and other enzymes. Another important
function of folate derivatives (THF and dihydrofolate: DHF) is in the de novo synthesis of DNA and RNA precursors (dUMP, dTMP,
etc). This pathway is mediated by thymidylate synthase (TYMS), methylenetetrahydrofolate dehydrogenase (MTHFD), and
phosphoribosylglycinamide transformylase (GART) enzymes.
doi: 10.1371/journal.pone.0074012.g001
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Mathematical methods
To evaluate a possible correlation between the studied

variables (Table 1) and AD we have trained different learning
machines [31–45] (listed in Table 2) using two validation
protocols: the Training and Testing with random split and the K-
Fold Cross Validation (K=10). Most of the used learning
machines [31–43] are available on the WEKA data mining
software [46], developed at the University of Waikato, New
Zealand, while two ANNs (Self Momentum Back Propagation
and Sine Net) [44,45] were implemented in “Supervised ANNs
Software”, developed at the Semeion Research Center in
Rome, Italy (Buscema M (1999-2010) Supervised ANNs.
Semeion software #12, version 16.0). However, there is a lot of
scientific literature about the pruning algorithms as necessary
pre-processing tools able to eliminate noisy variables before

Table 1. Distribution of selected variables among cases
and controls.

 Alzheimer Controls 
P-
value

Parameter Mean
95%
C.I.

Mean
95%
C.I.

 

Folates (ng/ml) 6.2 1.8 6.8 1.2 N.S.
Homocysteine (μmol/l) 22.3 4.7 16.2 1.7 <0.01
Vitamin B12 (pg/ml) 401.3 78.2 404.9 73.5 N.S
MTHFR_C677T_wild_type (CC) 28% 14% 38% 16% N.S
MTHFR_C677T_heterozygous (CT) 40% 16% 47% 16% N.S
MTHFR_C677T_mutant (TT) 32% 15% 15% 12% N.S
MTHFR_A1298C_wild_type (AA) 45% 16% 60% 16% N.S
MTHFR_A1298C_heterozygous
(AC)

55% 16% 40% 16% N.S

MTHFR_A1298C_mutant (CC) 0% 0% 0% 0% N.S
TYMS_28bp_wild_type (2R2R) 32% 15% 20% 13% N.S
TYMS_28bp_heterozygous (2R3R) 45% 16% 57% 16% N.S
TYMS_28bp_mutant (3R3R) 23% 14% 23% 14% N.S
TYMS_6bp_wild_type (+/+) 15% 12% 35% 15% N.S
TYMS_6bp_heterozygous (+/-) 57% 16% 53% 16% N.S
TYMS_6bp_mutant (-/-) 28% 14% 13% 11% N.S
MTRR_A66G_wild_type (AA) 23% 14% 25% 14% N.S
MTRR_A66G_heterozygous (AG) 43% 16% 52% 16% N.S
MTRR_A66G_mutant (GG) 35% 15% 23% 14% N.S
MTR_A2756G_wild_type (AA) 82% 12% 87% 11% N.S
MTR_A2756G_heterozygous (AG) 15% 12% 13% 11% N.S
MTR_A2756G_mutant (GG) 3% 5% 0% 0% N.S
RFC1_A80G_wild_type (AA) 22% 14% 10% 10% N.S
RFC1_A80G_heterozygous (AG) 60% 16% 62% 16% N.S
RFC1_A80G_mutant (GG) 18% 12% 28% 14% N.S
DNMT3B-149C>T_wild_type (CC) 45% 16% 50% 16% N.S
DNMT3B-149C>T_heterozygous
(CT)

47% 16% 40% 16% N.S

DNMT3B-149C>T_mutant (TT) 8% 9% 10% 10% N.S
DNMT3B-5799G>T_wild_type (GG) 48% 16% 62% 16% N.S
DNMT3B-579G>T_heterozygous
(GT)

47% 16% 28% 14% N.S

DNMT3B-5799C>T_mutant (TT) 5% 7% 10% 10% N.S

the main test of pattern recognition [47–50]. Noisy input
attributes sometime can hide the small meaningful information
embedded in other attributes. To verify this possibility we used
a special and a powerful input selection algorithm, named
TWIST (Training With Input Selection and Testing), recently
published [51], and developed in a special research software at
the Semeion Research Center in Rome, Italy (Buscema M
(2006-2012) TWIST Input Search, Semeion software #39,
version 3.2).

TWIST algorithm
TWIST algorithm is a complex evolutionary algorithm able to

look for the best distribution of the global dataset divided in two
optimally balanced subsets containing a minimum number of
input features useful for optimal pattern recognition. TWIST is
an evolutionary algorithm based on a seminal paper about
Genetic Doping Systems [52], already applied to medical data
with very promising results [18,19,21,53–59]. Usually TWIST
evolutionary system is constituted by a population of Multilayer
Perceptrons. Each ANN has to learn a subset of the global
dataset and has to be tested in a blind way with another
subset. In this application we re-program the fitness function of
TWIST: we exchange the population of Multilayer Perceptrons
with a population of simple K Nearest Neighbour (KNN), based
on Euclidean metric. This change makes TWIST faster and
more oriented to discover explicit similarities between input
attributes and classes (AD and Controls). And that is exactly
what we were looking for. Indeed, TWIST selected 16 of the 30
original attributes (see Table 3) and generated a global dataset
of 16 attributes, and two optimal subsets for training and
testing. We then applied the K-Fold protocol to the global
dataset to verify if the 16 attributes selected by TWIST may
improve the performances of the learning machines already
applied to the original dataset. Moreover, since the K-fold
protocol is not always a trustable strategy [51], as a second
step we have applied the same learning machines (Table 2) to
the two subsets generated directly by TWIST.

Semantic connectivity map
An existing mapping method [28,29] was used to highlight

through a graph the most important links among variables,
using a mathematical approach based on an artificial adaptive
system called Auto Contractive Map-Auto-CM algorithm. The
Auto Contractive Map (Auto-CM) is a special kind of Artificial
Neural Network able to find, by a specific data mining learning
algorithm, the consistent patterns and/or systematic
relationships and hidden trends and associations among
variables. After the training phase the weights developed by
Auto-CM are proportional to the strength of associations of all
variables each-other. The weights are then transformed in
physical distances. Variables couples whose connection
weights are higher become nearer and vice versa. A simple
mathematical filter represented by minimum spanning tree is
applied to the distances matrix and a graph is generated. This
allows seeing connection schemes among variables and
detecting variables acting as “hubs”, being highly connected.
This matrix of connections preserves non linear associations
among variables and captures connection schemes among
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clusters. After the training phase, the weights matrix of the
Auto-CM represents the warped landscape of the dataset.
Subsequently, a simple filter to the weights matrix of the Auto-
CM system was applied to obtain a map of the main
connections between the variables of the dataset and the basic
semantic of their similarities, defined connectivity map as
detailed elsewhere [28,29]. The dataset data were coded as
shown if Figure 2 for genotypes. We transformed the three
biochemical variables (folates, hcy, and vitamin B12) in six
input variables constructing for each of the variable, scaled
from zero to 1, its complement, as detailed elsewhere [60].
AutoCM ANN was designed by M Buscema at the Semeion
Research Center in Rome, and developed in specific research
softwares (AutoCM - Auto Contractive Map, Semeion software
#46, version 6.0; Modular Auto-Associative ANN, Semeion
software #51, version 18.1).

Results

Classification performances with ANNs
Tables 4 and 5 show the results in the two selected

strategies of validation (K-Fold and Training and Testing with
random Split, respectively) and using all the 30 variables in the
dataset as input vectors. Generally speaking the classification
capabilities of all the algorithms are poor (from 50% to 65% in
general accuracy) and sometimes similar, except the Sine Net
(71% of general accuracy). The conclusion could be: there is
no evidence of correlation between these variables and AD, at
least in this dataset. However, the application of TWIST
algorithm to eliminate noisy variables before the main test of
pattern recognition allowed the selection of 16 attributes (listed
in Table 3). First, we have applied the K-Fold protocol to the
global dataset to verify if the 16 attributes selected by TWIST
may improve the performances of the learning machines
already applied to the original dataset. Table 6 shows the
results. The most of learning machines improve dramatically
their performances (up to 70% and more of global accuracy)
and both the Semeion ANNs reach up the 77% of global
accuracy. Consequently, two of the tested algorithms were able

to find a good correlation between some variables and AD,
once noisy attributes were removed.

But K-Fold protocol is not a trustable strategy as shown in
[51]. TWIST, in fact, generates also two new subsets (with the
selected variables) with a similar density of probability
distribution [51]. That means that the two subsets are
statistically equivalent and each of them is also equivalent to
the global dataset. The K-Fold protocol has not this capability,
and for this reason its results are an average whose variance
could be very high. For this reason as a second step we have
applied the same learning machines to the two subsets
generated directly by TWIST. The results are shown in Table 7.
In this case the performances of all the learning machines are
still improved and some of them (Sine Net, IBk and Back Prop)
show to be able to be used as optimal predictors of AD (Table
7).

Table 2. Learning Machine used in this application.

Learning Machine Nick Name ReferencesSoftware Package
AdaBoostM1 AdaBoost [30] WEKA
Bagging Bagging [31] WEKA
BayesNet BayesNet [33] WEKA
KNN IBk [35] WEKA
C4.5 J48 [36] WEKA
KStar KStar [37] WEKA
Logistic Logistic [38] WEKA
LogitBoost LogitBoost [39] WEKA
MultiLayer Perceptron MLP [40] WEKA
NaivBayes NaivBayes [34] WEKA
RandomForest RandomForest [32] WEKA
RotationForest RotationForest [41] WEKA
Sequential Minimal Optimization SMO [42] WEKA
Self Momentum
BackPropagation

FF_BP [43] Semeion

Sine Net FF_SN [44] Semeion

Figure 2.  Method of coding the polymorphisms in the database.  The code assigned to the polymorphisms transformed each
polymorphism in three genotype classes: wild type (major homozygous), heterozygous and mutants (minor homozygous). For each
class a binary coding was applied: 0 if variable absent; 1 if variable present. So for example considering the polymorphism MTRR
66A>G which can exist in three variants: AA (major homozygous), AG (heterozygous) and GG (minor homozygous). Supposing that
three records are AA, GG and AG, the coding has been applied as shown in the figure.
doi: 10.1371/journal.pone.0074012.g002
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Table 3. The 16 variables selected by TWIST algorithm.

Original Input = 30 Input Seletced by TWIST = 16
Folates Folates
Homocysteine Homocysteine
Vit_B12_pg/Ml  
MTHFR_C677T_wild_type MTHFR_C677T_wild_type
MTHFR_C677T_heterozygous  
MTHFR_C677T_mutant MTHFR_C677T_mutant
MTHFR_1298_wild_type  
MTHFR_1298_heterozygous  
MTHFR_1298_mutant MTHFR_1298_mutant
TYMS_28bp_wild_type  
TYMS_28bp_heterozygous TYMS_28bp_heterozygous
TYMS_28bp_mutant  
TYMS_6bp_wild_type TYMS_6bp_wild_type
TYMS_6bp_heterozygous TYMS_6bp_heterozygous
TYMS_6bp_mutant  
MTRR_A66G_wild_type  
MTRR_A66G_heterozygous MTRR_A66G_heterozygous
MTRR_A66G_mutant  
MTR_A2756G_wild_type  
MTR_A2756G_heterozygous  
MTR_A2756G_mutant MTR_A2756G_mutant
RFC1_A80G_wild_type  
RFC1_A80G_heterozygous RFC1_A80G_heterozygous
RFC1_A80G_mutant  
DNMT3B-149C>T_wild_type  
DNMT3B-149C>T_heterozygous DNMT3B-149C>T_heterozygous
DNMT3B-149C>T_mutant DNMT3B-149C>T_mutant
DNMT3B-579G>T_wild_type DNMT3B-579G>T_wild_type
DNMT3B-579G>T_heterozygous DNMT3B-579G>T_heterozygous
DNMT3B-579G>T_mutant DNMT3B-579G>T_mutant

Table 4. Results of K-Fold protocol using all the 30
variables.

30x2 K-Fold=10 Control Alzheimer A. Mean W. Mean Error
FF_Bpa 65.00% 65.00% 65.00% 65.00% 28
FF_Sna 60.00% 65.00% 62.50% 62.50% 30
Logistic 65.00% 57.50% 61.25% 61.25% 31
RotationForest 60.00% 60.00% 60.00% 60.00% 32
SMO 60.00% 57.50% 58.75% 58.75% 33
J48 62.50% 52.50% 57.50% 57.50% 34
MLP 60.00% 55.00% 57.50% 57.50% 34
NaiveBayes 77.50% 35.00% 56.25% 56.25% 35
RandomForest 62.50% 50.00% 56.25% 56.25% 35
IBk 60.00% 50.00% 55.00% 55.00% 36
AdaBoostM1 65.00% 40.00% 52.50% 52.50% 38
KStar 60.00% 45.00% 52.50% 52.50% 38
Bagging 55.00% 45.00% 50.00% 50.00% 40
LogitBoost 50.00% 47.50% 48.75% 48.75% 41
BayesNet 87.50% 7.50% 47.50% 47.50% 42

a. Semeion ANNs are in bold

Semantic connectivity map
Figure 3 shows the semantic connectivity map obtained with

the application of the Auto-CM system. Variables which have
the maximal amount of connections with other variables are
called “hubs” of the system. In order to better understand the
meaning of the connections a numerical value is applied to
each edge of the graph. This value, deriving from the original
weight developed by Auto-CM during the training phase scaled
from 0 to 1, is proportional to the strength of the connections
among two variables. Results clearly indicated that AD cases
can be visually separated from the controls, and particularly it
was possible to visualize an AD area characterized by low
folates, low vitamin B12, high hcy and several risk genotypes,

Table 5. Results of random split protocol using all the 30
variables.

30x2 Tr-Ts Control Alzheimer A. Mean W. Mean Error
FF_Sna 72.50% 70.00% 71.25% 71.25% 23
Logistic 70.00% 57.50% 63.75% 63.75% 29
LogitBoost 57.50% 70.00% 63.75% 63.75% 29

FF_Bpa 72.50% 52.50% 62.50% 62.50% 30
NaivBayes 67.50% 45.00% 56.25% 56.25% 35
AdaBoost 52.50% 55.00% 53.75% 53.75% 37
MLP 65.00% 37.50% 51.25% 51.25% 39
RandomForest 72.50% 30.00% 51.25% 51.25% 39
BayesNet 100.00% 0.00% 50.00% 50.00% 40
J48 62.50% 37.50% 50.00% 50.00% 40
SMO 62.50% 37.50% 50.00% 50.00% 40
IBk 65.00% 32.50% 48.75% 48.75% 41
KStar 57.50% 37.50% 47.50% 47.50% 42
Bagging 45.00% 45.00% 45.00% 45.00% 44
RotationForest 60.00% 30.00% 45.00% 45.00% 44

a. Semeion ANNs are in bold

Table 6. Results with the K-Fold protocol using the 16
variables selected by TWIST algorithm.

Twist 16x2 K-Fold=10 Control Alzheimer A. Mean W. Mean Error
FF_Bpa 80.00% 75.00% 77.50% 77.50% 18
FF_Sna 82.50% 72.50% 77.50% 77.50% 18
IBk 77.50% 65.00% 71.25% 71.25% 23
MLP 67.50% 72.50% 70.00% 70.00% 24
RotationForest 70.00% 70.00% 70.00% 70.00% 24
J48 57.50% 70.00% 63.75% 63.75% 29
Logistic 62.50% 60.00% 61.25% 61.25% 31
SMO 57.50% 65.00% 61.25% 61.25% 31
KStar 67.50% 52.50% 60.00% 60.00% 32
LogitBoost 62.50% 52.50% 57.50% 57.50% 34
NaiveBayes 70.00% 45.00% 57.50% 57.50% 34
RandomForest 70.00% 45.00% 57.50% 57.50% 34
AdaBoostM1 57.50% 52.50% 55.00% 55.00% 36
Bagging 60.00% 42.50% 51.25% 51.25% 39
BayesNet 87.50% 7.50% 47.50% 47.50% 42

a. Semeion ANNs are in bold
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and a control area characterized by low hcy, high folates, high
vitamin B12, and several protective genotypes (Figure 3).

Table 7. Results with the two subsets generated by TWIST
using the 16 variables.

Twsit 16x2 (Tr-Ts) Control Alzheimer A. Mean W. Mean Errorb

FF_Sna 92.67% 94.99% 93.83% 93.80% 5
IBk 96.00% 89.72% 92.86% 92.33% 6

FF_Bpa 86.67% 82.58% 84.62% 84.34% 13
MLP 78.00% 75.19% 76.59% 76.66% 19
J48 74.67% 74.94% 74.80% 74.81% 20
RotationForest 75.33% 72.06% 73.69% 72.63% 22
Logisitc 70.67% 69.92% 70.30% 70.08% 24
KStar 68.00% 69.67% 68.84% 67.90% 26
RandomForest 86.67% 42.23% 64.45% 63.49% 29
AdaBoost 72.67% 46.74% 59.70% 58.70% 32
Bagging 66.67% 56.27% 61.47% 58.76% 33
LogitBoost 68.67% 49.62% 59.15% 58.38% 33
NaiveBayes 71.33% 49.62% 60.48% 59.14% 33
SMO 56.00% 63.03% 59.52% 59.91% 33
BayesNet 50.00% 50.00% 50.00% 44.88% 44

a. Semeion ANNs are in bold,
b. The number of errors is the summation of the error performed in testing phase
using both the subsets.

Moreover, by means of Auto-CM, it is possible to obtain not
only the direction of the association as provided by standard
statistical analyses, but importantly also the strength of this
association (link strength = ls). For example, reduced folates
were strongly (ls=0.98) related to AD as it was the MTHFR 677
mutant (TT) genotype (ls=0.90) and the TYMS 1494 6bp
mutant (-/-) genotype (ls=0.88). Reduced folates were also
closely linked to low levels of vitamin B12 (ls=0.99), and this
condition was linked to increased hcy levels (ls=0.82). Several
genotypes were also connected to low vitamin B12 levels
(Figure 3). Concerning control subjects they resulted strongly
connected with the TYMS 1494 6bp wild-type (+/+) genotype
(ls=0.92) and with reduced hcy levels (ls=0.98) which in turn
were connected with high vitamin B12 and folate levels, as well
as with several genotypes (Figure 3).

Discussion

Both prospective and retrospective studies have suggested a
possible link among folate, hcy, and vitamin B12 levels and AD
risk [3–13]. Moreover, there is indication from genetic
association studies, GWAS, and meta-analyses of the
literature, suggesting that polymorphisms of genes involved in
one-carbon metabolism might represent AD genetic
susceptibility factors [14–17]. In the present study we selected
40 late-onset AD subjects and 40 age and sex matched
controls to see if ANNs were able to discriminate between

Figure 3.  Semantic connectivity map obtained with Auto-Cm System.  The figures on the arches of the graph refer to the
strength of the association between two adjacent nodes. The range of this value is from 0 to 1.
doi: 10.1371/journal.pone.0074012.g003
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those two conditions using a set of data that included the
circulating values of folate, hcy and vitamin B12 and 27
different genotypes generated by nine biallelic polymorphisms
of genes involved in one-carbon metabolism.

Through TWIST system, we established a consistent
possibility to predict the status of being an AD or a control
subject on the basis of 16 selected variables (Table 3) that
allowed to reach up to 90% global accuracy to some of the
used learning machines (Table 7), this meaning that the
selected variables contained specific information to
discriminate between the two conditions. In particular, folate
and hcy values, as well as MTHFR 677CC, MTHFR 677TT,
MTHFR 1298CC, TYMS 28bp 2R/3R, TYMS 1494 6bp +/+,
TYMS 1494 6bp +/-, MTRR 66AG, MTR 2756GG, RFC1 80GA,
DNMT3B -149CT, DNMT3B -149TT, DNMT3B -579GG,
DNMT3B-579GT, and DNMT3B -579TT genotypes resulted the
most important variables for discriminating between AD and
control subjects (Table 3). Most of these variables, such as
folate, hcy, MTHFR, MTRR, and RFC1 genotypes, had been
previously associated with AD risk (reviewed in 2), but others,
including TYMS and DNMT3B genotypes, were not associated
with disease risk when considered independently from the
others [8,27]. The present study represents the first attempt to
use ANNs to understand the complex relationship between
one-carbon metabolism and AD, and at best of our knowledge
also the first attempt to evaluate the combined effect of 30
different variables in this pathway to AD pathogenesis. ANNs
provided a valuable tool to evaluate the whole pathway and to
unravel the links among studied variables as shown in the
semantic connectivity map (Figure 3). Particularly, the semantic
connectivity map obtained by means of the Auto-CM system
revealed already known connections as well as novel ones
(Figure 3). It is not surprising that reduced folates resulted the
most related variable linked to AD (ls=0.98), since several
literature papers observed reduced blood folate levels in AD
patients with respect to controls [2,6,8,11,13]. Moreover, the
MTHFR 677TT genotype was closely linked to AD (ls=0.90),
and this is also known from the literature [8,15], as it is known
that the effect of this mutant genotype is exacerbated under
conditions of reduced folates that impair protein stability and
activity [2]. The observed strong link between reduced folates
and reduced vitamin B12 levels (ls=0.99) is also known [1,8],
and this condition is likely to foster an increase in hcy levels
(ls=0.82) that is often seen in AD individuals [1–10], likely
because of vitamin B12 is a cofactor required by the MTR/
MTRR complex during the conversion of hcy to methionine
(Figure 1). Indeed, several genotypes such as those generated
by MTHFR, MTR, and MTRR polymorphisms are likely to
contribute to vitamin B12 levels, but also those in TYMS and
DNMT3B genes for the existence of feedback inhibitory loops
in the pathway [2]. Very interesting and unexpected is the link
between the TYMS 1494 6bp -/- genotype and AD (ls=0.88),
that was paralleled by a strong link between the the TYMS
1494 6bp +/+ genotype and the condition of being a healthy
control (ls=0.92) (Figure 3). At best of our knowledge the
present is the first report of a possible contribution of this
polymorphism to AD risk. The TYMS 1494 6bp ins/del
polymorphism impairs the TYMS mRNA stability and is often

studied in conjunction with the 28bp repeat polymorphism in
the promoter of the gene that affects gene expression levels
[2]. Previous reports by us revealed a borderline significant
difference (P =0.08) in the distribution of TYMS 28bp 2R and
3R alleles and related genotypes between late onset AD
subjects and healthy matched controls [8]. Taken overall,
present and previous data by us suggest that TYMS might be
another candidate gene of the one-carbon metabolic pathway
deserving further investigation in AD genetic association
studies. Indeed, impairments of TYMS might shift the metabolic
pathway toward DNA methylation (Figure 1), and favour
epigenetic processes that are increasingly linked to AD
pathogenesis [2].

Among factors tightly linked to controls there is low hcy (ls=
0.98), which is linked to high folates and high vitamin B12. This
is not surprising since several authors previously observed
reduced hcy and increased folate and vitamin B12 levels in
controls with respect to AD subjects [1–13]. Several gene
polymorphisms are linked to those conditions. For example,
MTHFR 1298 homozygous genotypes are in the control area of
the map. This is not surprising because of the effect of this
polymorphism is often reported to be opposite to that of the
MTHFR 677C>T one in AD risk, and has been often suggested
to be a protective factor for AD [61,62].

None of the genotypes generated by DNMT3B
polymorphisms have been directly linked to AD or control
conditions (Figure 3), and this partially confirms the results of a
previous genetic association study by us [27]. However, those
genotypes seem to interact with others and play a role in
determining folate and vitamin B12 levels (Figure 3),
suggesting that their contribution to AD risk might be
completely different when evaluated in combination with other
variables of the pathway.

Several factors, and particularly medicaments and dietary
supplements, may alter significantly the one-carbon
metabolism. One example is that of metformin, an antidiabetic
and gerosuppressant drug that has been suggested to work
against AD, even if with conflicting results [63,64]. Indeed,
metformin was shown to impair one-carbon metabolism in a
manner similar to the antifolate class of chemotherapy drugs
[65,66]. Other factors that could affect folate metabolism in
aged individuals are dietary supplements containing folate, B-
vitamins, or similar [67]. In order to minimize the effect of
polymedication in our cohort of subjects, biochemical
measurements of folate, hcy, and vitamin B12 were performed
during the first visit and most of the subjects were not regularly
taking supplements known to interfere with this pathway. In the
case of individuals taking medicaments or supplements known
or suspected to interfere with one-carbon metabolism, they
were interrupted for one month before blood drawings. If this
was not possible, the subject was not enrolled for the study.

Present results are indicative of a possible contribution of
one-carbon metabolism variables as an additional tool to help
during AD diagnosis. At this regard, a recent report from the
Vienna Transdanube aging study suggests that high cortisol
and low folate levels are the only routine blood tests predicting
probable AD after age 75-years, thereby stressing on the utility
of a deeper understanding of folate metabolism in AD
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pathogenesis [68]. Indeed, authors followed 493 persons who
were cognitively healthy at baseline for a period of 90 months,
and observed that a serum folate increment of 10 ng/mL
reduced the risk of switching to probable AD to one-third [68].
Present data revealing that reduced folates are the most
related variable linked to AD in our cohort are in strong
agreement with that study, but we must stress that biochemical
markers alone can be useful, but not sufficient to fully
discriminate between AD and control subjects. However, their
combination with neural correlates and imaging data, as well as
with other markers of the disease such as cerebrospinal fluid
markers, might be really useful within this context.

Conclusions

The present study represents the first attempt to use ANNs
the understand folate metabolism in AD and healthy matched
control subjects, and reveals the importance to evaluate this
pathway as a whole rather than to take into consideration its
components one at once. Among 30 initial variables of the
pathway, 16 of them seem to contain significant information to
discriminate between AD and control subjects in our cohort,
and the semantic connectivity map here generated reveals
both already known and novel connections among variables
and disease risk (Figure 3). Of particular interest are variables,
such as TYMS and DNMT3B genotypes, that albeit not
previously detected in genetic association studies might play a
significant contribution when considering the complexity of
interactions with other variables of this pathway. Though we
achieved good results using ANNs for our small dataset,
results are not necessarily generalizable to other populations

but need to be validated independently in future studies.
Differences might arise from a population to another one, due
to different dietary habits or to a different distribution of the
studied polymorphisms and other geographic factors. However,
our system is able to understand the connections among
studied variables and those of relevance in a particular dataset.
The addiction of other variables, such as brain volume, DNA
methylation content, DNA damage, and so on, coupled with the
possibility to graphically visualize the strengths of connections
among all the studied variables, could be a helpful and timely
tool to unravel the link between folate metabolism and AD,
particularly in a period when nutritional supplementation has
been often suggested as a preventative strategy to delay
epigenetic modifications linked to the onset of age-related
disease such as AD [69].
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