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Agents for sequential learning 
using multiple‑fidelity data
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Sequential learning for materials discovery is a paradigm where a computational agent solicits 
new data to simultaneously update a model in service of exploration (finding the largest number of 
materials that meet some criteria) or exploitation (finding materials with an ideal figure of merit). 
In real‑world discovery campaigns, new data acquisition may be costly and an optimal strategy may 
involve using and acquiring data with different levels of fidelity, such as first‑principles calculation 
to supplement an experiment. In this work, we introduce agents which can operate on multiple data 
fidelities, and benchmark their performance on an emulated discovery campaign to find materials 
with desired band gap values. The fidelities of data come from the results of DFT calculations as 
low fidelity and experimental results as high fidelity. We demonstrate performance gains of agents 
which incorporate multi‑fidelity data in two contexts: either using a large body of low fidelity data 
as a prior knowledge base or acquiring low fidelity data in‑tandem with experimental data. This 
advance provides a tool that enables materials scientists to test various acquisition and model 
hyperparameters to maximize the discovery rate of their own multi‑fidelity sequential learning 
campaigns for materials discovery. This may also serve as a reference point for those who are 
interested in practical strategies that can be used when multiple data sources are available for active 
or sequential learning campaigns.

A central concern of the materials discovery and optimization process is a simple, practical question: given lim-
ited researcher time and resources, what is the next experiment that should be performed? The urgent need for 
new energy technologies to mitigate fossil fuel use makes this question especially relevant. Widespread adoption 
of novel fuel cell catalysts, batteries, thermoelectrics, and other energy technologies requires optimization on 
many different fronts: materials discovery campaigns may target compounds with improved cost, safety, stability, 
efficacy, or some combination of these and other goals. The use of artificial intelligence tools to accelerate the 
discovery and optimization process, hand-in-hand with developments in high-throughput experimentation and 
analysis, may help us to meet timely goals for decarbonization of the global energy economy.

This work is a step towards bridging three relatively recent advances in the materials science research com-
munity, which are still realizing their individual and combined potential: (1) the advent of large-scale and freely 
available databases of computational  simulations1–4, particularly from density functional theory (DFT)5,6, (2) the 
mainstream accessibility of machine learning  tools7, and (3) development of high-throughput experimentation 
hardware and  software8–11. DFT has shown its applicability in complementing and even guiding the experimental 
discovery of  materials12–14. Machine learning exploits the widespread availability of DFT results to allow accu-
rate and interpretable surrogate models to estimate a desired materials property before either experiment or 
 simulation12,15–23. By increasing the efficiency of theoretical property prediction, the combination of large-scale 
DFT and machine learning makes it easier for researchers to obtain theoretical predictions for a wider variety 
of materials, which can then guide the high-throughput experimental process. The paradigm of sequential (or 
active) learning (henceforth SL), in which a model solicits new training data and updates its performance in 
response to this data, is useful both to  computational24–28 and experimental high throughput studies for both opti-
mization and  analysis29. Some examples of sequential learning include: systems that learn how to perform only 
the most valuable or relevant DFT simulations using previous  iterations25,30,31, improve force fields more rapidly 
for molecular dynamics  simulations24,32, and synthesize carbon nanotubes at new conditions that promote higher 
yields and higher qualities of  product33. The sequential learning paradigm thus can provide a conceptual link 
between materials optimization and discovery workflows across computational and experimental methodologies.

This work also considers a complication in the reality of the scientific discovery process, where there are 
many sources of data with different costs to obtain them. We use “multi-fidelity” to describe these diverse data 
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sources, assuming a tradeoff between data accuracy and cost to obtain. High-fidelity data is considered expen-
sive to obtain but more accurate, whereas low fidelity data is considered cheaper to obtain but less accurate. A 
promising approach to utilize data with various fidelity is through multi-fidelity models. These models provide 
a clear conceptual advantage: they can combine large quantities of cheaply acquired, less accurate data with 
data acquired via more expensive but accurate methods. Multi-fidelity models mitigate resource limitations of 
building models from high fidelity data and can be significantly more accurate in their predictions than similar 
models trained on single-fidelity  datasets34–38. For example, multi-fidelity models can combine theoretical calcula-
tions (such as DFT data) with experimental observations, or compare DFT calculations with a computationally 
efficient functional like PBE with a more costly but accurate functional like  HSE39,40 or  SCAN41,42. Currently, 
multi-fidelity modeling methods are typically used and investigated independently from sequential learning 
in the scientific literature, i.e. the relationship between the acquisition strategy and the modeling strategy is 
chosen on an ad-hoc basis. This work explores and attempts to show how scientists can use sequential learning 
and multi-fidelity methods together.

In this work, we introduce a multi-fidelity sequential learning framework for materials discovery based on 
agents which minimize the number of high fidelity acquisitions while simultaneously optimizing for a figure 
of merit. These agents are open-source and new additions to the existing software framework  CAMD31. We 
demonstrate the agents’ capability using electronic band gap data of inorganic compounds at two fidelities: 
experimental measurements as high fidelity and GGA-level DFT simulations as low fidelity. We choose the 
band gap as it is a fundamental electronic property relevant for a wide range of technological  applications14,43,44. 
Hence, materials with targeted bandgaps have been the subject of several combinatorial high-throughput efforts 
including searches for photocatalytic materials with the capability of absorbing  sunlight45–47. Thus, there is a large 
body of experimental and theoretical bandgap data covering a wide range of chemical  systems35,36,48. Using our 
framework and this previously-existing data, we performed several iterative sequential learning campaigns to 
‘simulate’ the discovery of inorganic materials with a target electronic band gap window. The scope of this study 
is thus to benchmark the process of integrating multiple fidelities in a discovery campaign. This study serves 
as “wargames” for multi-fidelity sequential learning campaigns so that in applying these tools to a real-world 
campaign (with its associated costs on researcher time and resources), the agents can be well-chosen for the task 
with a greater degree of confidence and user knowledge.

We benchmark discovery campaigns in two settings: one where all the low-fidelity or “cheap” data is available 
from the start, and one where low-fidelity data is acquired in parallel to high-fidelity data. In other words, in 
the first setting, DFT data is considered prior knowledge, and in the second setting, DFT and experimental data 
are acquired together in sequential iterations. These sequential learning procedures benchmark how different 
ML models and acquisition strategies influence the overall rate of discovery of materials per experiment, which 
was scored using several previously used figures of  merit49. Our results show that consideration of lower fidelity 
DFT data in conjunction with experimental data increases the rate of discovery of materials suitable for solar 
photoabsorption, which suggests that this may be a useful strategy for high-throughput campaigns involving 
variable data fidelity to use to accelerate their work. We further demonstrate that the type of machine learning 
model used in the sequential learning procedure controls the extent of an increase in the number of discoveries 
in the multi-fidelity setting compared to the single-fidelity baseline.

Methods
Below, we will detail how we compiled and encoded the band gap database in “Dataset collection and representa-
tion”, how we designed a sequential learning procedure that can use and request data in “Multi-fidelity sequential 
learning procedure”, how we developed agents which can account for this additional complexity in  “Agent design 
for materials discovery”, how we evaluated the agents in  “Performance metrics for sequential learning”, and what 
our objective for our benchmarking campaigns is in “Sequential learning objective”.

Dataset collection and representation. The band gap dataset was collected from two sources: (1) 
experimentally reported band gaps of inorganic semiconductors aggregated by Zhuo et al.34 and disseminated 
via the  Matminer50 package, and (2) GGA-level DFT-computed band gaps generated and disseminated via the 
Materials Project  database1,51. We first pulled the experimentally reported compositions and their corresponding 
band gaps. For each experimental composition, we attempted to obtain the band gap corresponding to the most 
phase-stable (i.e. lowest computed energy per atom) crystal structure from the Materials Project. Here, the DFT-
computed band gaps using the Perdew–Burke–Ernzerhof (PBE)  functional52 were considered low fidelity data, 
as GGA has well-known systematic errors that underestimate experimentally measured band gaps by ∼ 0.9  eV53. 
Overall, 3960 unique compositions had both experimental and theory data. Out of the 3960 compositions, 375 
contained multiple experimental band gap measurements. For each composition with multiple experimental 
measurements, the respective minimum band gap value was used. Figure 1 describes the dataset by outlining 
the element occurrence, which shows abundant oxides, sulfides, and selenides, as well as copper and lithium-
containing compositions.

We processed the collected data by using a fixed-length vector to encode both the compositions of each mate-
rial and the level of fidelity. More specifically, stoichiometric compositions were featurized with the matminer 
ElementProperty  featurizer50. This featurizer offers flexibility to compare experimental and theoretical data when 
experimental structure information is not available. The levels of fidelity were represented with one-hot encoding, 
where a binary variable was added for each fidelity level (i.e. for experimental data, a “1” was placed under the 
“experiment” feature and a “0” under the “theory” feature and vice versa). To improve numerics, the final overall 
features were scaled such that their distribution had a mean of 0 and a standard deviation of 1.
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Multi‑fidelity sequential learning procedure. The multi-fidelity sequential learning framework is built 
on the recently introduced system for Computational Autonomy for Materials Discovery (CAMD)31. CAMD is 
a framework that abstracts decision-making in sequential learning studies into “agents”. Agents perform tasks 
like training and applying machine learning models or choosing which experiment should be done next based 
on user-specified criteria. CAMD is open-source and users can add new agents according to their needs (such 
an agent is one of the contributions of this manuscript). The CAMD framework enables convenient design and 
testing of acquisition strategies from candidate data points in SL-based optimization.

Figure 2 outlines the CAMD framework and highlights the newly constructed multi-fidelity acquisition fea-
ture. In a given series of iterations, termed a campaign, the (multi-fidelity) seed data and candidate data (search 
space) go into an agent. A preprocessing step in the agent featurizes each data point in the seed data and candidate 
data using the point’s composition and fidelity as described in the previous section. The featurized seed data is 
used to train a machine learning model, which makes predictions on the candidate data for the target property. 
Using the predictions, the agent then selects candidates at different fidelities. In the CAMD framework, candi-
dates selected by the agent are sent to an experiment API, which collects the experimental data corresponding to 
the candidate and augments the dataset, allowing candidate data to be moved into the seed data for new active 
learning iterations. For the sake of active learning simulation, the CAMD experiment is an “after-the-fact” (ATF) 
API that emulates DFT simulation and experimental measurement, respectively, and returns the results from the 
known dataset which the agent and CAMD campaign are not aware of prior to the acquisition. This after-the-fact 
protocol reflects the scope of our study: to benchmark multi-fidelity agent performance in how efficiently they 
explore a known dataset, demonstrating the gains of multi-fidelity agents with various exploration strategies. 
The ATF experiment API can be exchanged for one that collects data from and monitors a real experiment, per-
forming new experiments or DFT simulations with the agent that has been designed using ATF  simulations31. 
Another CAMD object, the analyzer, monitors the campaign results and provides an analysis of the experiments 
in the context of the previously collected data (i.e. the seed data) and the progress of the campaign. In our case, 
the analyzer monitors and reports the cumulative number of materials suitable for solar photoabsorption. Upon 
the completion of the agent selection, experimental acquisition, and analysis phases of a campaign iteration, 
newly obtained experimental results are appended to the seed data and removed from the candidate data, and 
campaign begins in a new iteration with agent selection.

Agent design for materials discovery. Designing the agent for a multi-fidelity sequential learning pro-
cedure required two steps: (1) selecting appropriate machine learning models and (2) generalizing a CAMD-
compatible31 data acquisition decision-making process to allow for multiple levels of data fidelity. For model 
selection, we implemented and compared several well-known regression methods, including support vector 
regression (SVR), k-nearest neighbors (KNN), random forest regression (RFR), and Gaussian process regression 
(GPR). For each model, we optimized hyperparameters and did comparative performance analysis (detailed 
results can be found in Supplementary document S1). Based on the results, support vector regression, random 
forest regression, and Gaussian process regression had qualitatively similar performances and were used for 

Figure 1.  The periodic table outlining frequencies of the elements occurring in our band gap dataset. The color 
represents the frequency of occurrence. This frequency is also labeled under each element symbol.
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framework construction and demonstration. Our implementation is sufficiently general to allow users to choose 
any scikit-learn-compatible ML model and their choice of hyperparameters.

A primary design concern in developing a multi-fidelity agent is mathematically framing the problem of when 
to draw from low-cost, low-fidelity data vs. high-cost, high-fidelity data. To this end, we designed two agents, an 
epsilon-greedy multi-fidelity agent (henceforth ǫ-greedy-MF) and a Gaussian process lower confidence  bound54 
derived multi-fidelity agent (GPRLCB-MF). The latter exploits the fact that Gaussian Process regression allows 
for a principled uncertainty estimate “out-of-the-box”, whereas the former works for regression algorithms 
lacking this feature.

The salient features of the ǫ-greedy agent are that it takes as input a budget of high-fidelity datapoints n 
which controls the balance between low-fidelity and high-fidelity data. The agent will only call for high-fidelity 
measurements in domains that have been previously covered by low-fidelity data (see details in Algorithm S1). 
The ǫ-greedy-MF agent works using any supervised machine learning regressor from scikit-learn7 as input. 
Meanwhile, the GPRLCB-MF agent operates under a total acquisition budget and calls for low- or high-fidelity 
data in a more sophisticated way. It acquires candidates factoring in Gaussian process regression predicted 
uncertainties in the LCB setting and hallucination of information gain from low fidelity acquisitions analogous 
to work of Desautels et al. in batch mode  LCB55 (see full details in Algorithm S2). Hallucination works as such: 
for a high fidelity candidate, the GPRLCB-MF agent adds the lower fidelity predicted posterior mean into the seed 
data. As a consequence, the higher fidelity candidate prediction gets updated. Essentially, hallucination refers to 
the ability of the agent to predict ahead of time how low-fidelity data will impact the uncertainty estimate of the 
model. Hallucination allows the agent to use low-fidelity candidates to explore potentially promising parts of the 
domain, while using high-fidelity candidates to exploit promising regions of parameter space, offloading explora-
tory (higher risk) acquisitions first to lower-fidelity computations. In our formulation, three hyperparameters 
that must be empirically optimized govern the tradeoff between data fidelities: α , β , and γ . α is the uncertainty 
multiplier in GPRLCB as shown below:

where ŷi is the posterior mean and σi is the uncertainty given a candidate i. α here sets the weight of uncertainty 
in the LCB setting. Next, β is a threshold for uncertainty. For a given observation, if its σi is less than β , the 
observation is considered to have low uncertainty. A small β makes the agent “risk-averse” around high-fidelity 
measurements in unexplored regions of space. In the small β regime, unless the uncertainty on a given prediction 
is very low, it will acquire lower fidelity data first. Inversely, if β is large, the agent is tolerant to high uncertainty 
for experiments and will more readily add experimental data. In practical applications, β could be set with respect 

(1)ŷi ,LCB = ŷi − α ∗ σi

Figure 2.  A schematic outlining the distinguishing features of our new multi-fidelity sequential learning 
framework. (a) Previous work established in  Ref31. The major components of the framework include an agent, 
which maintains a model which is iteratively updated in response to new data selected and solicited by the agent. 
The agent passes the instruction to an “experiment” (a generic term for some kind of data generation, and could 
alternately be a theoretical calculation). (b) Our work is distinguished by making available two different sources 
of data with differing degrees of fidelity (here, we use experimental and theoretical data). The agent makes 
predictions using both sources of data and makes the decision to select new data from one pool or the other.
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to the cost of acquiring high-fidelity data. Lastly, γ is a threshold for the influence of hallucination (denote �r ) 
as shown below:

Here, ri is the ranking of an observation ŷi ,LCB in the candidate space based on its distance to the target 
value. r∗i  is the new ranking of the observation after hallucination.The agents acquire a high fidelity candidate if 
�r ≤ γ . If γ is 0, then the prospect of the lower fidelity data has to increase the chances of the experiment being 
successful. Otherwise, lower fidelity data will be acquired first. Because in this case, r ∗i  has to be a smaller value 
than r i  (i.e. a better ranking). If γ is very large, then the agent does not care about how much low fidelity data 
affects the potential experiment. Because in this case, r ∗i  can be any value, including a value that is higher than 
r i  (i.e. a worse ranking). The overall influence of these hyperparameters is summed up in a broad overview way 
in Fig. 3. We simulated various scenarios of these three hyperparameters to optimize the agents. The details and 
results are in Supplementary document section S3. The Gaussian processes were implemented using the  GPy56 
package. Details of agents are also made explicit in the code available via the open-source CAMD repository at 
https:// github. com/ TRI- AMDD/ CAMD.

(2)�r = r∗i − ri

Figure 3.  Overview of how uncertainty is used to balance the use of low and high fidelity data in the 
implementation of Algorithm 2 of Section S2. When a data point x is called for as an experimental candidate, 
the above flowchart describes the decision-making process for which data source to use. After a data point x 
is selected for measurement, two conditions are checked: (1) if the corresponding (e.g. with the same formula) 
low-fidelity measurement has already been made or (2) if the uncertainty associated with the high fidelity 
measurement is low enough (below a threshold β ). If either is true, the high-fidelity measurement is taken. If 
neither are true, then the agent must consider the trade-off between low-fidelity and high-fidelity data. The 
agent thus considers how a low fidelity data point would affect the current ordering of the predicted figure of 
merit associated with all candidates. If it would alter the ranking by more than γ , the low-fidelity measurement 
is taken. If not, the high-fidelity measurement is taken. Note that β and γ are user-defined hyperparameters 
explained in detail in Section S2.

https://github.com/TRI-AMDD/CAMD
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Performance metrics for sequential learning. To quantitatively compare the efficacy (the ability to 
call for data points that optimize a figure of merit) and efficiency (the number of experiments required to do so) 
between active learning campaigns, we used previously established active learning metrics (ALM) described by 
Rohr et al.49. These metrics are ALM, acceleration factor (AF), and enhancement factor (EF), defined as follows 
and explicated further below:

where x and y are agents, Nexp is the number of experiments performed (i.e. in our case, the high fidelity data 
acquired). The function Nexp conditioned on ALM (i.e. N exp(x|ALM) and N exp(y|ALM)) refers to the number of 
experiments in the sequential learning campaigns that attained an ALM. Because our emulated discovery cam-
paigns are trying to find materials with a visible-spectrum band-gap, our discovery process can be scored in a 
binary way: any new data point’s band gap is either inside or outside of the target range. Thus, we can compute 
the fraction of ideal materials which were correctly identified at an iteration given a sequential learning run and 
so ALM lies within [0, 1]. This metric is defined for a single sequential learning campaign and is most useful for 
after-the-fact workflows, as the denominator requires some knowledge of the total number of materials which 
lie within the target range (For a ‘real-world’ case where the materials are not known ahead of time, the final 
number of target materials discovered by the campaign can be used in scoring sequential learning, as ALM is a 
‘time-dependent’ property that can change at each iteration step. Also, note that this study focuses on materials 
that are scored in a binary way as having the band gap property within a target range. For cases where a quantity 
is optimized around some target, this could be defined using the distance of the best-known material thus far to 
the current best-known global maximum/minimum target property). Next, acceleration factor and enhancement 
factor are metrics that compare two sequential learning runs to one another using the ALM. The acceleration 
factor is the reduction of required budget (e.g. in time, iterations, or some other consumed resource) between 
an agent and a benchmark case (e.g. random selection, an alternate model, single-fidelity, or manual human 
selection) to reach a particular fraction of ideal candidates (AF = N budget,benchmark - N budget,agent ). In other words, 
given ALM vs. Nexp , the acceleration factor is the “horizontal-line” distance between two models at an ALM at 
different “times”. A positive value of acceleration factor between a multi-fidelity campaign and a single-fidelity 
campaign means the former outperformed the latter because it reduced the required budget needed to achieve 
a certain amount of discovery. Similarly, the enhancement factor is the “vertical-line” distance between two 
campaigns’ ALM score at a given “time”, which shows the performance enhancement at the same consumed 
experiment budget. More specifically, at the same number of iterations, amount of elapsed time, or some other 
metric of expended resources, enhancement factor quantifies the improvement of materials discovery by a given 
sequential learning method versus a benchmark method (EF = Ndiscovery,agent

Ndiscovery,benchmark
 ). In the case of comparing a multi-

fidelity campaign to a single-fidelity campaign, when the enhancement factor is greater than one, it indicates 
that the multi-fidelity campaign outperforms its corresponding single-fidelity campaign at a given budget.

Sequential learning objective. For multi-fidelity sequential learning campaign simulations and subse-
quent performance evaluations of the agents, we attempted to model a discovery campaign for photoabsorbers 
by targeting materials with experimentally measured band gap ⊆ [1.6, 2.0]  eV57, i.e. those with reasonable solar 
photoabsorption, were considered ideal and set as the targets. 207 of our 3960 candidate experimental materi-
als are considered ideal based on the target band gap window defined above. In other words, only about one in 
twenty or 5% of the candidate materials lie within the target window of the discovery campaign.

Results
Figure 4 highlights the campaigns that we performed to benchmark the sequential learning models. In “Boundary 
cases: all or no DFT data available” (corresponds to campaign A), we demonstrate the performance gains which 
come from an agent with full a priori knowledge of DFT calculations soliciting experimental data versus an agent 
which never uses DFT data exploring the same space of experiments. Next, in  “In-tandem acquisitions: both 
DFT and experiment data are acquired” (corresponds to campaign B), we compare the performance of agents 
seeded with first 500 experimentally discovered compositions in a multi-fidelity versus single-fidelity context, 
where either both DFT and experimental data are solicited in-tandem (with some DFT data supplied a priori) or 
exclusively experimental data seeded and solicited. In both cases, we find that the performance of multi-fidelity 
agents are improved by the inclusion of low-fidelity DFT data.

Boundary cases: all or no DFT data available. We first tested the acquisition performance of multi-
fidelity agents in the limiting case where the full suite of DFT calculations was considered as a priori knowledge. 
The objective here was to determine how an automated experimental sequential learning procedure would be 
enhanced by a priori knowledge of a large theoretical dataset. This type of acquisition is for a use case where 
low-fidelity experimental data is much cheaper to acquire than high-fidelity data that full domain coverage is 
available at the outset of a high-fidelity experimental campaign. Because no new low-fidelity data is solicited, 

(3)ALM(x,Nexp) =
Target Materials Discovered after Nexp

Total Target Materials

(4)AF(x, y,ALM) = Nexp(x|ALM)− Nexp(y|ALM)

(5)EF(x, y,Nexp) = ALM(x,Nexp)− ALM(y,Nexp)
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gains in campaign performance are entirely due to the transfer of knowledge from the large, low-fidelity dataset 
in making predictions and subsequent acquisitions under the high-fidelity, expensive setting.

We performed after-the-fact discovery runs with three agents: ǫ-greedy agents that used support vector 
regression and random forest regression, and a GPRLCB agent. As mentioned previously, ǫ-greedy agents works 
for regression models lack principled uncertainty estimate, and GPR agent acquire candidates based on both 
the predicted posterior mean and uncertainty from Gaussian process regression. For each agent, we considered 
two cases: (1) no low-fidelity seed data at any point in the campaign and (2) all available DFT data as seed data 
at the outset. Note that both (1) and (2) are thus only acquiring high-fidelity data, and this set of six campaigns 
benchmarks in the most extreme case if and how much a priori low fidelity knowledge can assist in the discov-
ery campaign. For convenience, we designate SVR-SFboundary , RFR-SFboundary , and GPRLCB-SFboundary , SVR-
MFboundary , RFR-MFboundary , and GPRLCB-MFboundary (SF denotes single-fidelity, MF denotes multi-fidelity). We 
gave all the agents a budget of 20 experiment requests in each iteration and simulated each campaign for 100 
iterations. In addition, several campaigns have additional stochasticity that requires some thought. More specifi-
cally, single-fidelity campaigns with no seed data (i.e. SVR-SFboundary , RFR-SFboundary , GPRLCB-SFboundary ) create 
initial seeds data randomly, and random forests also have randomness during the bootstrapping of the samples 
used in building trees. Even though this stochasticity does not change the candidate acquisition strategy of the 
agents, it could result in varied campaign performance depending on the inputted random seeds. To account 
for this, we performed ten trials of campaigns that used those four agents (i.e. all three single-fidelity agents and 
RFR-SFboundary ). This helps us look at the overall campaign performance of those agents more objectively because 
we have better information about the “average” and “variance” in the performance.

Lastly, we bound the performance of our agents above and below by two limiting cases: (1) a perfect agent, 
where every acquisition is an ideal candidate and the full target space is explored in exactly 202 steps and (2) a 
naive agent that chooses the next data point from the candidate space at random.

Figure 5 shows the results of the simulated discovery campaigns. Where the fraction of the target materials 
found is plotted against the number of experiments (i.e. high fidelity candidate acquired). The shaded region 
is the standard deviation of materials found for campaigns with multiple trials. For our initial benchmark, we 
primarily compare the performance between models. In the single-fidelity case with no access to low-fidelity 
DFT data, looking at the average target materials found (colored dash lines) in each campaign, random forests 
agent outperformed support vector regression and Gaussian process regression agents until ∼ 850 experiment 
requests, at which point close to 60% of the ideal candidates had been discovered. Support vector regression agent 
started outperforming the other two from ∼ 850 experiment requests. In the multi-fidelity case where all low-
fidelity (DFT) data was made available (colored solid lines), all agents performed similarly (with random forests 
slightly ahead) until ∼550 experiment requests. Afterward, the support vector regression and Gaussian process 
regression agent outperformed the rest until the end. More importantly, we observed that multi-fidelity agents 
outperformed their single-fidelity counterparts, demonstrating that these regression algorithms can transfer the 
knowledge available from the lower-fidelity dataset in making predictions for the high-fidelity target. All of our 
sequential learning agents consistently outperformed random acquisitions.

To compare the performance of single and multi-fidelity agents in more detail, we tabulated acceleration 
factors at 50% and 80% of the total discovery of target candidates in Table 1. To achieve the discovery of 50% 
of the candidates designed as ideal, multi-fidelity agents reduce the experiments requested by 160, 80, and 180 
for support vector regression, random forests, and Gaussian process regression, respectively. At 80% discovery, 
the acceleration factors are 160, 60, and 220 for support vector regression, random forests, and Gaussian pro-
cess regression agents, respectively. The enhancement factors shown in Fig. 6 provided a clearer picture of the 
comparative performance throughout the campaign. We observe that support vector regression multi-fidelity 

Figure 4.  Campaigns performed for single-fidelity acquisition and multi-fidelity acquisition. In campaign A, we 
compare the results of including all or no DFT data in the seed data set and only acquire experimental data. This 
campaign effectively compares an “a priori” agents to a single-fidelity agents. In campaign B, the multi-fidelity 
agents are seeded with first 500 experimentally discovered compositions (based on  ICSD58 timeline of their 
first  publication59) and their corresponding DFT data. Both DFT and experimental data are acquired here. The 
single-fidelity agents are exclusively seeded with and acquire experimental data.
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Figure 5.  Simulated performance of various campaigns with and without supplying the lower fidelity 
(DFT) data in the seed. The x-axis corresponds to the high-fidelity (experiments) acquisition budget. The 
y-axis corresponds to the fraction of ideal materials discovered from the search space. SVR, RF, and GPRLCB 
correspond to agents using support vector regression, random forests, and Gaussian process regression lower 
confidence bound, respectively. The shaded colored regions are the standard deviation of materials found for 
campaigns with multiple trials. The random acquisition and ideal acquisition baselines are also labeled in the 
figure, representing the lower and upper bounds of agent performance.

Table 1.  Acceleration factor (AF) of multi-fidelity agents in simple acquisitions. The AFs are the reduction in 
number of experiments performed by multi-fidelity agents to achieve a certain amount of discoveries. For each 
row, we highlighted the agents used, the experiments performed by single-fidelity agents to achieve 50% and 
80% discovery, and the acceleration factor of the multi-fidelity agents at those discoveries.

Agents
Single-fidelity experiments performed for 50% 
discovery Multi-fidelity AF50%

Single-fidelity experiments performed for 90% 
discovery Multi-fidelity AF90%

Support vector regression 800 160 1380 160

Random forest regression 740 80 1360 60

GPRLCB 820 180 1360 220

Figure 6.  The enhancement factor for quantifying the added value of DFT in the campaigns. The enhancement 
factors are the ratio of the fraction of discovered materials between the DFT a priori and single-fidelity models 
at any given budget.
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agents briefly underperformed their single-fidelity counterparts in the early stages of campaigns (until ∼ 100 
experiments). After this point, SVR-MFboundary outperformed SVR-SFboundary by a notable margin to achieve 
enhancement of a factor of ∼ 1.2 to 1.4 until ∼ 1000 experiments. This factor diminished slowly as candidates 
were exhausted for the remainder of the campaign. GPRLCB-MFboundary and RFR-MFboundary consistently outper-
formed their single-fidelity counterpart, with GPRLCB-MFboundary having larger enhancement factors. We also 
notice a similar diminishing trend of their enhancement factors as candidates were exhausted. In summary, all 
multi-fidelity agents outperformed their single-fidelity counterparts at all points in the process until most target 
candidates have been acquired. Between the three agents used, support vector regression and Gaussian process 
regression agents benefited more from a priori data based on the metrics computed.

In‑tandem acquisitions: both DFT and experiment data are acquired. Having investigated two 
boundary scenarios in the previous section, with all-or-no low fidelity data, we now turn to our next main 
question: when and how should we decide to acquire low-fidelity data to support and minimize the number 
of high-fidelity measurements during a sequential, closed-loop data acquisition procedure? To answer this, we 
simulated another set of campaigns benchmarking single-fidelity versus multi-fidelity. First, to mimic a more 
true-to-life discovery process, we split the compositions into seed data and candidate data based on their year of 
discovery according to the  ICSD58 timeline of their first  publication59 (Fig.  4). In other words, this rationale for 
selecting the seed data makes the initial data used for the runs and the successive choice of data by the models 
entirely deterministic. For single-fidelity campaigns, the data of the first 500 experimentally discovered com-
positions, up to the discovery year of 1965, were included in the seed data, the remaining (3460 compositions) 
were included in the candidate data. For multi-fidelity campaigns, the data split was identical, with the addition 
of corresponding DFT data in each set. Next, we set up the campaigns with a ǫ-greedy agent that used support 
vectors and a Gaussian processes regression agent (since these two agents had better gains in “Boundary cases: 
all or no DFT data available”). Therefore, a total of four campaigns were set up: SVR-SFtandem , GPRLCB-SFtandem , 
SVR-MFtandem , and GPRLCB-MFtandem (SF denotes single-fidelity, MF denotes multi-fidelity). As before, we 
also included the two limiting cases of (1) random acquisition and (2) ‘perfect’ acquisition. For the acquisition 
budget, both SVR-SFtandem , GPRLCB-SFtandem , along with the two limiting cases, had a budget of 5 experiment 
requests. SVR-MFtandem had a fix-ratio budget of 5 experiments and 5 DFT. GPRLCB-MFtandem had a budget 
of 5 acquisitions, each acquisition can be either experiments or DFT, depending on the uncertainties and hal-
lucination of information gained from DFT. Based on optimization results in Supplementary document section 
S3, α=0.08, β = 5, and γ=10 were used for GPRLCB-MFtandem to compare against the other sequential learning 
campaigns. All campaigns were run until 2000 experiments have been acquired, unless it is stopped due to no 
discovery after 30 iterations (a setting in the campaign hyperparameter).

Figure 7 shows the qualitative results of the simulated campaigns using in-tandem acquisition. Here, SVR-
MFtandem agent outperformed its single-fidelity counterpart early in the campaigns (when N experiments reached 
∼ 100). It then stayed ahead until ∼ 1200 experiments were acquired, at which point 90% of the ideal materials 
had been discovered. GPRLCB-MFtandem agent also outperformed its single-fidelity counterpart until 90% of the 
ideal materials have been discovered (at ∼ 1200 experiments). Compared among all four agents, SVR-MFtandem 
agent’s performance was the best. Furthermore, GPRLCB-MFtandem agent’s performance was similar to that of 
SVR-SFtandem’s.

Figure 7.  Simulated performance of various campaigns when both DFT and experiment data were acquired 
during runs. The results of all campaigns are combined in one figure. N experiment on the x-axis corresponds to 
the experimental acquisition budget. Discoveries on the y-axis correspond to the fraction of ideal materials 
discovered from the search space. The random acquisition and ideal acquisition baselines are also labeled in the 
figures.
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The acceleration factor (Table 2) of multi-fidelity acquisitions at 50% discovery were 175 and 85 for in-
tandem support vector machines and Gaussian processes respectively. At 80% discovery, they were 250 and 159, 
respectively. The enhancement factors (Fig.  8) of in-tandem multi-fidelity support vector regression is very noisy 
at first (until N experiments reached ∼ 150), which agrees with Fig.  7. Then they stayed above 1 until N experiments 
reached ∼ 1250. The enhancement of GPRLCB-MFtandem cannot be calculated at first because its single-fidelity 
counterpart did not have any discovery. After N experiments reached ∼ 100 and its single-fidelity counterpart made 
some discoveries, the enhancement factors were high but decreased as the acquisition continued and converged 
to 1 at ∼ 1250 experiments.

Conclusion
In this work, we develop, implement, and benchmark sequential learning agents that allow for the differentiation 
of data points of different fidelities. Using our implementation in the CAMD sequential learning framework, we 
simulated a materials discovery process on previously existing experimental and theoretical electronic band-gap 
data to inform the selection of these models and suggest hyperparameters that could be used to accompany a 
‘real-life’ data acquisition campaign. We found that when all low-fidelity data were provided as a priori knowl-
edge, all multi-fidelity agents outperformed their single-fidelity counterparts and sustained a materials discovery 
acceleration of 20–60% early on in the campaigns. As the number of experiments acquired in the seed data 
increased, we saw a decline in additional gain for those multi-fidelity agents. When acquiring low and high-
fidelity data in-tandem with support vector regression and Gaussian process regression multi-fidelity agents, both 
of them still outperformed their single-fidelity counterparts, suggesting strategic acquisitions of lower fidelity data 
provides a transfer of knowledge and augment higher fidelity target material discovery. We note that, Gaussian 
process regression multi-fidelity agent here barely outperformed support vector regression single fidelity agent 
with the settings we provided, which suggests further investigations of the agent.

In summary, we observed a clear trend of multi-fidelity sequential learning agents outperforming those 
which may only sample at a single-fidelity. The results demonstrate that for studies where low-fidelity data 
is extremely cheap relative to high-fidelity data, the inclusion of separately labeled data either “up-front” or 
acquired in-tandem with high-fidelity experiments can increase the rate at which valuable experiments are 
performed. However, the relative performance of multi-fidelity acquisition is sensitive to the dataset size, ML 
model selection, and acquisition strategy. Furthermore, the multi-fidelity agents can be extended to have data 
inputs beyond two fidelities. As mentioned in “Dataset collection and representation”, since the level of fidelity 
is represented with one-hot encoding, additional fidelity can be passed as an additional column in the feature. 
Subsequently, acquisition strategies are easily adaptable for multiple levels of fidelity for both of our proposed 

Table 2.  Acceleration factor of multi-fidelity agents in in-tandem acquisitions. For each row, we highlighted 
the agents used, the experiments performed by single-fidelity agents to achieve 50% and 80% discovery, and 
the acceleration factor (AF) of the multi-fidelity agents. The AF’s are the reduction in number of experiments 
performed.

Agents
Single-fidelity experiments performed for 50% 
discovery Multi-fidelity AF50%

Single-fidelity experiments performed for 80% 
discovery Multi-fidelity AF80%

Support vector regression 655 175 1080 250

GPRLCB 705 85 1210 159

Figure 8.  The enhancement factors of in-tandem acquisitions as the campaign progresses.
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algorithms by replicating the logic in a nested fashion. For example, for three levels of fidelity, one may acquire 
the lowest level of fidelity in order to reduce the uncertainty on a median level of fidelity, and acquire a median 
level of fidelity to reduce the uncertainty of the highest level of fidelity until the experimental budget threshold 
for new experiments is reached.

Given these dependencies, our framework offers a critical capability that frames automated discovery process 
itself as an object of study. Our study on multi-fidelity sequential learning campaigns lays a foundation for future 
research in which both simulations and experiments can be conducted in-tandem with strategies optimized for 
their relative cost and accuracy.

Code availability
The full details of the code are provided in an open-source repository at https:// github. com/ TRI- AMDD/ CAMD.
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