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Abstract

Background: Antiretroviral therapy for HIV-2 infection is hampered by intrinsic resistance to many of the drugs used to treat
HIV-1. Limited studies suggest that the integrase inhibitors (INIs) raltegravir and elvitegravir have potent activity against HIV-
2 in culture and in infected patients. There is a paucity of data on genotypic variation in HIV-2 integrase that might confer
intrinsic or transmitted INI resistance.

Methods: We PCR amplified and analyzed 122 HIV-2 integrase consensus sequences from 39 HIV-2–infected, INI-naive
adults in Senegal, West Africa. We assessed genetic variation and canonical mutations known to confer INI-resistance in
HIV-1.

Results: No amino acid-altering mutations were detected at sites known to be pivotal for INI resistance in HIV-1 (integrase
positions 143, 148 and 155). Polymorphisms at several other HIV-1 INI resistance-associated sites were detected at positions
72, 95, 125, 154, 165, 201, 203, and 263 of the HIV-2 integrase protein.

Conclusion: Emerging genotypic and phenotypic data suggest that HIV-2 is susceptible to the new class of HIV integrase
inhibitors. We hypothesize that intrinsic HIV-2 integrase variation at ‘‘secondary’’ HIV-1 INI-resistance sites may affect the
genetic barrier to HIV-2 INI resistance. Further studies will be needed to assess INI efficacy as part of combination
antiretroviral therapy in HIV-2–infected patients.
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Introduction

HIV-2 is endemic in West Africa and has limited spread to a

number of other locales worldwide [1]. Compared to HIV-1,

HIV-2 infection is characterized by a much longer asymptomatic

stage, lower plasma viral loads, slower decline in CD4 counts,

decreased mortality rate due to AIDS, and lower rates of genital

tract shedding, mother to child transmission, and sexual

transmission [1,2,3,4,5,6,7]. Nonetheless, a significant proportion

of HIV-2–infected individuals eventually progress to AIDS and

may benefit from antiretroviral therapy (ART) [3,8]. Treatment of

HIV-2 infection is complicated by the intrinsic resistance of the

virus to non-nucleoside reverse transcriptase inhibitors (NNRTIs)

and the fusion inhibitor T-20 (enfuvirtide) [9,10]. In addition,

HIV-2 exhibits a low genetic barrier to nucleoside reverse

transcriptase inhibitor (NRTI) resistance and is partially resistant

to several protease inhibitors (PIs) [9,10,11,12,13].

In preliminary studies, the integrase inhibitors (INIs) raltegravir,

elvitegravir and S/GSK1349572 have shown in vitro activity against a

limited number of wild-type HIV-2 strains [14,15,16] and genotypic

surveys from Europe suggest that primary mutations leading to INI

resistance in HIV-1 are rare in HIV-2 sequences from INI-naı̈ve

individuals [15,17,18]. Anecdotal clinical reports suggest that

raltegravir-containing regimens can initially suppress HIV-2 plasma

RNA loads and may therefore be useful for treating HIV-2 infection

[19,20,21,22,23,24,25]. However, the long-term therapeutic benefits

of raltegravir and other INIs will likely be compromised by emergent

drug resistance, as evidenced by the appearance of resistance-

associated mutations in sequences from raltegravir-treated HIV-2

patients [19,20,21,22,23,24,25]. Although a small sampling of
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patient-derived and in vitro-selected HIV-2 variants have been

characterized, the effects of specific amino acid changes in HIV-2

integrase on INI susceptibility are largely unknown and may

potentially be modulated by other naturally-occurring amino acids

in the HIV-2 integrase protein.

With these issues in mind, we examined the prevalence of INI

resistance-associated mutations in HIV-2 sequences from INI-

naı̈ve patients in Senegal, West Africa. To our knowledge this is

the first such genotypic survey of potential INI-resistance from

HIV-2 endemic West Africa. Our results suggest that intrinsic INI

resistance is infrequent in West-African HIV-2 isolates, but that

background variation in HIV-2 integrase may accelerate the

development of INI resistance in this patient population.

Methods

Subjects and specimen collection
Patient samples were collected as part of an NIH-sponsored,

ongoing prospective longitudinal cohort study of ART for HIV-2

infection in Senegal, West Africa; enrollment began in October

2005 [26]. HIV-2 infected individuals with clinical AIDS, CD4

counts ,200/mm3, or ,350/mm3 with clinical symptoms were

treated with antiretrovirals as part of the Senegalese Government

Antiretroviral program (ISAARV) at the Clinique des Maladies

Infectieuses Ibrahima DIOP Mar, Centre Hospitalier Universi-

taire de Fann, Universite Cheikh Anta Diop de Dakar, Dakar,

Senegal. HIV-2–infected subjects initiating ART (and those

already on ART) in the ISAARV program were referred to

participate in this study.

Subjects were screened for HIV-1 and HIV-2 by serologic

testing. Serum samples were tested for HIV seropositivity using a

microwell plate HIV-1/HIV-2 enzyme immunoassay (Genetic

Systems) or Genscreen HIV-1/2 (BioRad) or by a rapid HIV test

(Determine; Inverness Medical). HIV-2 seropositivity was con-

firmed using a rapid synthetic peptide-based membrane immu-

noassay (Multispot; Sanofi Pasteur) or the ImmunoComb II HIV-

1 & 2 BiSpot assay (Orgenics), both of which distinguish HIV-1,

HIV-2 and dual HIV-1/HIV-2 seropositivity. At enrollment and

subsequent follow-up visits (at 1 month and then every 4 months),

subjects underwent a physical examination and completed an

interview with questions concerning demographic characteristics

and sexual and other behaviors. A routine medical history and

exam was performed and recorded on a standardized form by

study clinicians. Peripheral blood was collected into tubes

containing ethylenediaminetetraacetic acid (EDTA) and analyzed

using a FACSCount analyzer (Becton Dickinson Biosciences, San

Jose, CA) to determine the number of CD4, CD8 and CD3 cells/

mm3. Samples were also subjected to HIV-2 quantitative RNA

viral load assays as previously described [27].

HIV-2 Integrase genotyping
Purified PBMC DNA was extracted from each patient sample

using the QIAamp DNA Blood Mini Kit (Qiagen Inc., Valencia,

CA) and quantified by spectrophometry (Nanodrop, Wilmington,

DE). HIV-2–specific nested PCR [26,27] was used to amplify

the integrase-encoding region of pol (nucleotides 4738 to 5777,

numbered as per HIV-2ROD, GenBank accession # M15390).

Briefly, PCR was performed using 0.1–0.25 micrograms of PBMC

DNA per reaction. Nested primers for PCR amplification were as

follows: first round forward, H2AB_INT F1 (AAR GAA GCA

RTM TAT GTW GSA TGG GTS CCA GC); first round reverse,

H2AB_INT R1 (GGA CAA TAW CTT TTC YCC YCT GAT

GGC TCT YCT TAC TTC); second round forward, H2AB_INT

F2 (CAG GAA GTA GAY CAY TTA GTR AGT CAR GG);

second round reverse, H2AB_INT R2 (GGG AAT ATT ACY

CTR CTG CAA GTC CAC C). Reaction conditions and thermal

cycling parameters were as previously described [26,27].

All PCR amplifications were performed using procedural

safeguards to prevent contamination including aliquoting of all

reagents and physical separation of sample processing and post-PCR

handling steps. In addition, negative control reactions that lacked

template DNA were included in every PCR experiment, and

reactions containing 10 genome equivalents of HIV-2 DNA

(pROD10) were used to monitor PCR amplification efficiency. Bulk

PCR products were agarose gel-purified (S.N.A.P. UV-Free Gel

Purification Kit, Invitrogen) and sequenced via standard dideoxy-

chain termination methods using primers H2AB_INT_seqR

(AAATTCATGCAATGAACTGCC), H2AB_INT_seqF (TAGTA-

GAAGCAATGAATCACC), H2AB_INT F2 and H2AB_INT R2

(see above). Genbank Accession numbers of the HIV-2 sequences

from this study: JF811132-JF811253.

Phylogenetic analyses and resistance-associated
genotyping

All patient-derived sequences were assessed for potential sample

mix-up and contamination as recommended by the Division of

AIDS, National Institute of Allergy and Infectious Diseases,

National Institutes of Health (http://www.hiv.lanl.gov/content/

sequence/TUTORIALS/CONTAM/contam_main.html). HIV-

2 patient sequences were aligned with reference sequences from

the Los Alamos National Laboratory HIV Database (http://hiv-

web.lanl.gov) using Muscle (http://www.ebi.ac.uk/Tools/msa/

muscle) followed by manual adjustment using MacClade (version

4.08). Neighbor-joining and maximum likelihood methods were

used to estimate phylogenetic trees with PAUP* (v4.0 b10)

and DIVEIN (http://indra.mullins.microbiol.washington.edu/

DIVEIN). HIV-2 sequences were assigned to groups (‘‘subtypes’’)

based on these phylogenetic analyses. In addition, the integrase-

encoding region of each patient sequence was translated in

MacClade (version 4.08), and amino acid variation was assessed at

sites associated with INI resistance in HIV-1. The list of integrase

sites analyzed in our study was compiled from the Stanford HIV

Drug Resistance Database (http://hivdb.stanford.edu/cgi-bin/

INIResiNote.cgi) and the International AIDS Society-USA

Update of Drug Resistance Mutations in HIV-1 (December

2010; http://www.iasusa.org/resistance_mutations/mutations_

figures.pdf).

Ethics Statement
This study was conducted according to procedures approved by

the Institutional Review Boards of the Universities of Washington

and Dakar, and the Senegalese National AIDS Committee-

Ministry of Health. All subjects provided written informed consent

for study participation.

Results

We analyzed HIV-2 integrase sequences from 39 Senegalese

adults whose baseline characteristics are shown in Table 1. All

individuals were INI-naı̈ve; 6 were ART-naı̈ve, and 33 patients

were receiving NRTI+PI–based regimens at the time of integrase

genotyping (median time on ART: 711 days, range: 90–2642

days). Median HIV-2 plasma viral loads and CD4 counts at time

of sampling were 2.76 log10 copies/ml and 225 cells/mm3,

respectively. A total of 122 HIV-2 patient-derived consensus

(‘‘bulk’’) sequences were obtained, with longitudinal sequences

from 24 (62%) individuals. Of the 39 patients in our study, 37 were

infected with group A HIV-2, and two were infected with group B

HIV-2 Integrase Genotypes
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virus; no intra-group HIV-2 recombinants or dual infections

(intra- or inter-group) were detected (Figure 1).

To assess the potential for intrinsic INI resistance in our HIV-2

cohort, we determined the amino acid sequence encoded by each

patient-derived PCR product and examined the specific residues

present at each of 35 individual INI resistance-associated sites in the

integrase protein (Figure 2). Importantly, at the three positions

known to be pivotal for INI resistance in HIV-1 (143, 148 and 155),

all of the Senegalese HIV-2 sequences were identical to the

consensus HIV-1 genotype (i.e., no amino acid differences relative to

the HIV-1 consensus sequence were observed at these sites).

However, we observed a large number of differences between HIV-

1 and HIV-2 at other sites implicated in INI resistance. Amino acids

corresponding to resistance-associated changes in HIV-1 were

detected at positions 72I, 95K, 125K, 154I, 165I, 201I, 203M, and

263K of the HIV-2 integrase protein (Figure 2, yellow boxes). The

most common resistance-assocated residues were 72I, 165I, 201I

and 203M (Figure 2, bottom). Taken together, these findings

demonstrate that HIV-2 sequences from INI-naı̈ve patients in

Senegal frequently encode amino acids that correspond to

‘‘secondary’’ resistance-associated changes in HIV-1.

Discussion

In our current study of HIV-2 integrase-encoding sequences

from INI-naı̈ve patients in Senegal, we found no evidence of the

primary mutations responsible for raltegravir or elvitegravir

resistance in HIV-1. Although we cannot rule out the possibility

that Y143R/C, Q148H/R/K or N155H variants exist at low

frequencies in HIV-2 patients, our data indicate that such mutants

are rarely present as the majority genotype in INI-naı̈ve

individuals from the Senegal cohort. In contrast, we identified

several naturally-occurring amino acids in HIV-2 integrase that

are equivalent to secondary raltegravir or elvitegravir resistance-

associated replacements in HIV-1. These data raise the possibility

that HIV-2 variants containing primary INI resistance mutations

Figure 1. Phylogenetic tree of HIV-2 integrase nucleotide sequences (N = 122, black taxa) from 39 INI-naı̈ve Senegalese adults and
HIV-2 reference sequences (gray taxa) from the Los Alamos HIV Database (http://www.hiv.lanl.gov). HIV-2 Group A (N = 37 subjects) and
Group B (N = 2 subjects) clades are shown.
doi:10.1371/journal.pone.0022204.g001

Table 1. Baseline characteristics of HIV-2 infected Patients.

N == 39

Females (%) 28 (72%)

Age (median, range) 48 (22, 61)

WHO Stage

1 6 (15%)

2 8 (21%)

3 18 (46%)

4 7 (18%)

Baseline CD4 count (cells/mm3; Median, Range) 225 (6, 819)

Baseline HIV-2 Plasma RNA
Median (log10 copies/mL)
(Range, % undetectable (,25 copies/mL))

2.76 (1.63, 4.12, 38%)

doi:10.1371/journal.pone.0022204.t001

HIV-2 Integrase Genotypes
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may exhibit higher levels of INI resistance and/or improved

replication fitness relative to their HIV-1 counterparts. Accord-

ingly, the genetic barrier to raltegravir or elvitegravir resistance

may be lower in HIV-2 relative to HIV-1, as shown in recent

studies of NRTI-resistant viruses [13,28]. Additional culture-based

studies of patient-derived strains and site-directed mutants of HIV-

2 integrase are required to address this issue.

Our analysis of West African patients, together with previous

studies of HIV-2–infected individuals residing in Europe [15,17,18],

provides encouraging information suggesting that intrinsic or

transmitted INI-resistance in HIV-2 is rare at the present time.

However, studies of a limited number of raltegravir-treated patients

suggest that INI resistance is likely to be a growing clinical problem

in HIV-2, and that the canonical INI-resistance pathways defined

by replacements Y143R/C, Q148H/R/K and N155H in HIV-1

integrase may play similar roles in HIV-2 [19,20,21,22,23,25]. In

this regard, the recent development of novel strand transfer

inhibitors with improved activity against INI-resistant mutants of

HIV-1 [29,30] may lead to favorable treatment options for HIV-2

patients harboring raltegravir- or elvitegravir-resistant viruses.

Because HIV-2 is intrinsically resistant to many of the

antiretroviral drugs used to treat HIV-1, the emerging data on

HIV-2 integrase variation and INI sensitivity potentially provide a

new avenue for effective HIV-2 treatment. Ultimately, however,

only appropriately designed randomized trials of specific antiret-

roviral regimens will provide the information patients and

clinicians need to improve HIV-2 treatment [31,32].
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