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Abstract

There is a long-standing debate on the extent of vicariance and long-distance dispersal events to explain the current
distribution of organisms, especially in those with small diaspores potentially prone to long-distance dispersal. Age
estimates of clades play a crucial role in evaluating the impact of these processes. The aim of this study is to understand the
evolutionary history of the largest clade of macrolichens, the parmelioid lichens (Parmeliaceae, Lecanoromycetes,
Ascomycota) by dating the origin of the group and its major lineages. They have a worldwide distribution with centers of
distribution in the Neo- and Paleotropics, and semi-arid subtropical regions of the Southern Hemisphere. Phylogenetic
analyses were performed using DNA sequences of nuLSU and mtSSU rDNA, and the protein-coding RPB1 gene. The three
DNA regions had different evolutionary rates: RPB1 gave a rate two to four times higher than nuLSU and mtSSU. Divergence
times of the major clades were estimated with partitioned BEAST analyses allowing different rates for each DNA region and
using a relaxed clock model. Three calibrations points were used to date the tree: an inferred age at the stem of
Lecanoromycetes, and two dated fossils: Parmelia in the parmelioid group, and Alectoria. Palaeoclimatic conditions and the
palaeogeological area cladogram were compared to the dated phylogeny of parmelioid. The parmelioid group diversified
around the K/T boundary, and the major clades diverged during the Eocene and Oligocene. The radiation of the genera
occurred through globally changing climatic condition of the early Oligocene, Miocene and early Pliocene. The estimated
divergence times are consistent with long-distance dispersal events being the major factor to explain the biogeographical
distribution patterns of Southern Hemisphere parmelioids, especially for Africa-Australia disjunctions, because the
sequential break-up of Gondwana started much earlier than the origin of these clades. However, our data cannot reject

vicariance to explain South America-Australia disjunctions.
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Introduction

In traditional, morphology-based concepts, lichenized fungi
often have wide distributions spanning over several continents with
a number of species being cosmopolitan. This has led to a
widespread notion that the distribution of these fungi is primarily
shaped by ecological conditions rather than explained by historical
events. In contrast, a few authors have invoked plate tectonics and
emphasized vicariance to explain distribution patterns of lichens,
especially for species occurring in the Southern Hemisphere [1-6].
However, within the last decade, molecular data have helped to
revolutionize the species delimitation of lichenized fungi and
demonstrated that morphology-based concepts largely underesti-
mate the diversity of lichens [7-16]. As a result of these studies, it
became clear that — although the number of widely distributed
species in lichenized fungi is generally higher than in plants or
animals — lichens have more restricted distribution areas than
previously assumed. For example, supposedly cosmopolitan
species in Parmeliaceae and Physciaceae were found to represent
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distinct lineages in different continents [11,13]. Further, recent
progress in our knowledge of the phylogeny of some clades of
lichenized fungi revealed the presence of clades at generic rank
that originated and diversified in the Southern Hemisphere [17—
21]. Hence, we have turned our attention to address the issue of
the extent of vicariance and long-distance dispersal to understand
the current distribution of lichenized fungi anew using molecular
phylogenies.

For this purpose a dated phylogeny with the estimated ages of
origin and diversification of the parmelioid group is required. A
main problem for building dated phylogenies in fungi is the poor
fossil record. While our understanding of the divergence time of
angiosperms 1s well established [22-25],. time estimates for fungi
were long disputed based on uncertainties in the interpretation of
the few known fossils [26]. Consequently, published dating
estimates ranged from 660 million to 2.15 billion years ago for
the origin of Fungi and from 390 million to 1.5 billion years for the
split of the two crown groups of fungi, Ascomycota and
Basidiomycota [27-31]. Re-examination of the morphology of
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the fossils and re-evaluation of the published dating studies,
however, suggested more consistent results with the origin of the
Fungi dating back to between 760 million and 1.06 billion years,
and the split of Ascomycota and Basidiomycota for about 500—
650 Ma [26,32]. This suggests that terrestrial fungi evolved and
diversified more or less simultaneously with the evolution of land
plants.

Given that the phylogeny of parmelioid lichens is well resolved
[18] and the recent advantages in our understanding of the timing
of major events in the evolution of fungi, we feel confident that the
times of main nodes differentiation can be estimated. Moreover,
this dating approach can be applied to address the issue of the
extent of vicariance on distribution patterns in lichens and use
parmelioids as an example.

The family Parmeliaceae is widely distributed throughout the
world from polar to tropical regions and is one of the largest
families of lichenized Ascomycota [18,33-36]. Most species form
foliose or fruticose thalli, but some also have subcrustose,
umbilicate, peltate thalli, and even lichenicolous fungi were found
to belong here [18,35,37]. The family includes about 2500 species
classified in 84 genera and is characterized by cup-shaped
apothecia with cupulate exciple, Lecanora-type asci, often with
hyaline ascospores [35]. Within the family, six strongly supported
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major monophyletic groups can be distinguished [35], which are:
alectorioid, cetrarioid, hypogymnioid, letharioid, parmelioid and
psiloparmelioid. By far, the largest of these groups is the
parmelioid group with about 1500 species [38,39] classified in
27 accepted genera [18]. Phenotypically, the parmelioid lichens
are characterized by having mostly foliose thalli with thread-like
rhizines on the lower surface, cup-shaped apothecia on the thallus
upper surface and Lecanora-type asci with hyaline ascospores
(Fig. 1). Within the parmelioid lichens, eight major monophyletic
clades can be distinguished, which are Cetrelia-, Hypotrachyna-,
Melanohalea-, Parmelia-, Parmelina-, Parmeliopsis-, Parmotrema- and
Xanthoparmelia-groups [18]. During the last decades, phylogenetic
studies based on DNA sequence data have greatly advanced our
understanding of the evolution of the family including the
phylogenetic relationships among major clades [18,34-35,40—
46], phenotypical evolution [35,45,47], disparity in substitution
rates among clades [48], and the geographic origin of certain
clades [17,19]. However, so far none of these have aimed at dating
major cladogenesis events in Parmeliaceae. Besides the issues
discussed above, this is probably also due to the poor fossil record
of Parmeliaceae. Only very few fossils have been recorded of
Parmeliaceae and the known ones are all preserved in amber. An
Alectoria species was described from Baltic amber (35-40 Ma) [49].

Figure 1. Selected examples of different genera and species of parmelioid lichens. A. Parmelina tiliacea, one of the most common lichens
in the Mediterranean basin. B. Parmotrema hypoleucinum, endemic of the southwestern Mediterranean Region, occurring in warm and humid areas.
C. Melanelixia glabra occurs from southwestern Europe to eastern Russia. D. Parmelia sulcata, a common species from cold to temperate regions of
both Hemispheres. E. Flavoparmelia soredians occurs in warm and humid areas of temperate regions of both Hemispheres. F. Xanthoparmelia
conspersa, one of the most widespread species of macrolichens growing on acid rocks in temperate areas of both Hemipheres, excluding Australia
and South Africa. The distribution areas after Nimis [105]. All photographs were taken in the field. Scale=1 cm.

doi:10.1371/journal.pone.0028161.g001
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Two fossil species of Parmelia were described from Dominican
amber (1545 Ma) [50] and two specimens of Anzia have been
found from European amber (3540 Ma) [51].

The aims of this study are 1) to put a time-scale on the
phylogenetic tree of parmelioid lichens and thus identify when the
main nodes differentiated, employing calibration points from a
recent dating estimate of fungi [26] and available fossil reference-
points, and 2) to address the impact of vicariance and long-
distance dispersal processes in the distribution patterns in
parmelioid lichens. Specifically we address the question whether
plate tectonics can be invoked to explain distribution areas of
species groups or species occurring in the Southern Hemisphere.

Results

Data and substitution patterns

For the analyses a dataset of three loci of 225 OTUs was used.
The matrix included 1849 unambiguously aligned nucleotide
characters, with 599 positions in the RPBIgene, 655 positions in
the nuLLSU and 595 positions in the mtSSU. The number of
constant characters was 643. The likelihood value of the ML tree
obtained with Garli was InLL=—59525.412. The constrained
position of Chaethothyriomycetidae as sister group of Lecanor-
omycetes 1s not significantly worse than the unconstrained
topology (p-SH = 0.444, ¢-ELW =0.441).

The substitution rates of the three loci (nulLSU, mtSSU and
RPBI) are shown for each lineage of the parmelioid lichens in
Fig. 2 and Table 1. The different lineages have similar range of
variation in each gene but there are clear differences in mean rates
between the three genes, the rate of RPBI being two to four times
higher than mtSSU and nuL.SU, respectively.

Estimating divergence times

A chronogram based on the analysis of the combined matrix of
three loci is shown in Fig. 3, showing the relationships of
Lecanoromycetes and Parmeliaceae (highlighted in dark grey
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color). The detailed chronogram for Parmeliaceae is depicted in
Fig. 4. This analysis used as calibration points the age of the split of
Lecanoromycetes-Chaethothyriomycetidae (Cl); the age of the
fossil (P. ambra) assigned to the Parmelia s.s. crown node (C2), and
the age of the fossil 4. succini assigned to the Alectoria crown (C3).
The node ages, 95% highest posterior density intervals (HPD) of
ages, substitution rates and 95% HPD of substitution rates for the
main clades, divergence points and diversification point of the
genera are shown in Table 2.

The alternative analyses gave similar results (Table 3). The
small differences are as follows:1) using two calibration points (C1
and C2) and excluding the Alectoria fossil, node ages and 95% HPD
intervals are slightly younger for some of the parmelioid clades; 2)
using C1 and C3 and excluding Parmelia, the node ages and 95%
HPD intervals had a small decrease in older clades; and 3) using
Cl, G2 and the Alectoria fossil constraining the age of the
alectorioid clade (Alectoria, Bryoria and Pseudephebe; C3*) the node
ages are similar with very small fluctuations. The 95% HPD
intervals for all the clades largely agree and are similar to those
obtained in the first analysis using the calibration points C1, C2
and C3.

The split of the Parmeliaceae core was estimated to be around
109 Ma (85.52-136.55 Ma) when the crustose genus Protoparmelia
separated from the rest of the Parmeliaceae (Fig. 4, Table 2). The
basal radiation of Parmeliaceae core took place between 60 and
74 Ma, when the main lineages of the family originated. The
radiation of the large group of Parmelioid lichens was estimated to
have begun in the Paleocene, around 60 Ma (49.81-73.55 Ma).
The morphologically close but phylogenetically distant cetrarioid
group, mostly distributed in temperate to alpine regions, was
estimated to radiate in the Eocene (27 Ma, 18.81-37.90 Ma,
Fig. 4) while the alectorioid clade radiated about 47 Ma (40.88—
54.97 Ma).

Our analyses suggest seven separate major divergence events
that led to the evolution of the main clades of parmelioid lichens
(Fig. 4, marked with dots and numbers). The earliest divergence,

RPB1 mitSSU

8x10™

6x10™

4x10 ®

Substitutions rate (s/s/y)

2%10

sl 1

0,00 A

I8

nuLSuU

T T T T T T T T T T T T T T T T T T T T T
N!th'\!‘IFleththeleth‘ MJIPalMlell FrlCclHyvatRllF’l |Ce|Pm|

| Pa My Xt Pr Cc Hy Fv Rt Pt Ce Pm Mh M

Parmelioid clades

Pa My Xt Pr Cc

Figure 2. Substitution rates for the three loci (mtSSU, nuLSU, RPB7) of the main clades in Parmelioid. Dots represent mean rates and
bars cover the 95% highest posterior density (HPD). Units: substitution/site/year. Abbreviations for the Parmelioid clades are listed in Table 1.

doi:10.1371/journal.pone.0028161.9g002
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estimated around 48 Ma, separated the Xanthoparmelia-clade from
the Parmotrema-clade (including the genera Austroparmelina, Canopar-
melia, Flavoparmelia, Punctelia, Flavopunctelia, Nesolechia and Parmo-
trema). In subsequent divergence events during EFocene time
Melanohalea split from Melanelixia (about 42 Ma), Parmelina
separated from Mpyelochroa (37 Ma), Remototrachyna from Bulbothrix
(about 37 Ma) and Austroparmelina differentiated from the most
recent common ancestor (MRCA) of Parmotrema, Flavoparmelia and
Canoparmelia crozalsiana-clade (about 34 Ma). During the early
Oligocene Cetrariastrum (about 32 Ma) differentiated from the rest
of the complex Hypotrachyna-clade (including FEverniastrum, Hypo-
trachyna s.1., and Parmelinopsis), and. Flavoparmelia separated from
Parmotrema and Canoparmelia crozalsiana-clade (30 Ma).

Our data indicate that diversification of the recent genera of
parmelioid lichens occurred during Oligocene and Miocene. The
diversification of the Melanelixia was estimated to be around
(34 Ma), and in a second radiation event (22-25 Ma) diversified
Melanohalea, Parmelia, Remototrachyna, Flavoparmelia and Xanthoparme-
lia.  Mpyelochroa, Punctelia and  Parmotrema radiated during the
Miocene (between 14 and 18 Ma), and Cetrelia, Parmelina and
Canoparmelia crozalsiana-clade was estimated to radiated by late
Miocene and early Pliocene (4-9 Ma).

The estimated ages of diversification of the main clades of
parmelioid lichens compared to the geological area cladogram
representing the relationships among the Southern Hemisphere
landmasses are shown in Figure 5. The break-up of the main
landmasses of the South Hemisphere predate the ages of
diversification of the parmelioid clades and the splits of the main
lineages (Fig. 5). The presence of several genera (e.g. Xanthoparme-
lia, Parmotrema, Bulbothrix, Austroparmelina, Flavoparmelia, Melanelixia,
Mpyelochroa, Hypotrachyna, Punctelia) in different continents of the
Southern Hemisphere (A and B, Fig. 5) cannot be explained by

@ PLoS ONE | www.plosone.org

Table 1. Substitution rates of the main clades of parmelioid lichens obtained in the independent BEAST analyses for each locus.
RPB1 mtSSU nuLsuU
Node MRCA Rate Rate 95% HPD Rate Rate 95% HPD Rate Rate 95% HPD
Lecanoromycetes 2.01 0.37-4.89 0.67 0.01-1.80 0.28 0.02-0.77
Lecanoromycetidae 1.68 0.25-3.75 0.51 0.02-1.31 = =
Lecanorales 1.65 0.39-3.26 0.84 0.09-1.89 0.71 0.06-1.84
Parmeliaceae (Protoparmelia included) 1.85 0.49-3.83 - - 1.12 0.23-2.20
Parmeliaceae (Protoparmelia excluded) 257 1.13-4.63 0.69 0.08-1.66 0.70 0.13-1.70
parmelioid group 2.58 0.43-5.01 - - - -
Melanohalea (Mh) 1.69 0.53-3.12 - - - -
Hypotrachyna-clade (Hy) 1.88 0.79-3.23 1.28 0.37-2.33 0.90 0.06-2.15
Melanelixia (MI) 1.73 0.37-3.81 - - 0.39 0.02-1.15
Flavoparmelia (Fv) 1.84 0.05-3.70 0.37 0.02-1.14 0.34 0.05-0.85
Parmelia (Pa) 1.40 0.58-2.52 0.31 0.01-1.01 0.43 0.03-1.17
Remototrachyna (Rt) 2.18 0.66-4.38 3.85 0.85-7.14 - -
Myelochroa (My) 431 1.72-7.85 0.42 0.04-1.24 0.73 0.07-2.17
Punctelia (Pt) 1.76 0.35-3.50 0.15 0.01-0.41 0.44 0.03-1.17
Xanthoparmelia (Xt) 1.51 0.53-3.02 - - - -
Cetrelia (Ce) 0.57 0.27-0.93 1.67 0.26-3.95 = =
Parmotrema (Pr) 2.29 0.67-4.42 0.46 0.03-1.44 - -
Parmelina (Pm) 0.95 0.24-1.80 0.82 0.08-1.80 = =
Canoparmelia crozalsiana-clade (Cc) 3.04 1.72-4.75 1.38 0.15-3.40 0.56 0.07-1.41
Units: substitution/site/year x107°, HPD: highest posterior density interval.
doi:10.1371/journal.pone.0028161.t001

continental drift and vicariance because when the parmelioid
lineages started to diverge (60 Ma) Africa had already separated
from South America, India, New Zealand and Australia.

Discussion

In this study we put a time-scale on the phylogenetic tree of
parmelioid lichens using three DNA regions with different
evolutionary rates. The estimated ages allow addressing how
vicariance and long-distance dispersal shaped the current
distribution patterns of parmelioid lichens, specially the disjunct
distributions of species groups in the Southern Hemisphere.
Moreover the dated phylogeny provides a general picture of the
palaeoclimatic conditions prevalent on Earth when the main
lineages differentiated.

The three DNA regions used in this study to build the
phylogenetic trees have different evolutionary rates. We found
higher substitution rates in the protein coding gene RPBI than in
the nullSU and mtSSU ribosomal DNA (Fig. 2, Table 2).
Ribosomal DNA has been frequently used in molecular studies of
Parmeliaceae and other lichenized fungi [34,41-42,44-47,52-54]
but so far few molecular studies have used protein-coding genes to
infer phylogenetic relationships in Parmeliaceae [18,35,43,55-56].
In our analysis the RPBI gene (with high substitution rates)
provided better resolution of the terminal lineages of the tree while
the more conserved genes with lower substitution rate (nuL.SU,
mtSSU) better supported the backbone of the tree topology.

Substitution rates have been used to estimate divergence times
due to the lack of fossil records. Takamatsu & Matsuda [57]
calculated a substitution rates for Erysiphales (2.52x10™7 s/s/y
for nuLLSU). Our estimation of the substitution rate for the nuLL.SU
of the Parmeliaceae (1.12x1077 s/s/y; Table 2) is in the same
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Figure 3. Lecanoromycetes tree indicating the position of the detailed chronogram of Parmeliaceae shown in Figure 4. The
chronogram was estimated from a partitioned data set of three loci (mtSSU, nuLSU, RPBT) using BEAST. The calibration point (C1) was set at the

divergence node of Lecanoromycetes and Chaethothyriomycetidae.
doi:10.1371/journal.pone.0028161.g003

order of magnitude but slower than in the phytopathogenous fungi
of Erysiphales. This indicates that caution should be used when
applying substitution rates of a group of fungi to estimate
divergence times of an unrelated group [58-59].

The scarcity and uncertainty of the fossil record was a major
obstacle for estimation of dates of radiation in most groups of
fungi. We have estimated divergence times of the major lineages of
Parmeliaceae and times of the main radiations of the genera using
a comprehensive phylogenetic hypothesis of the family, calibrated
with the available fossil evidence, a root time inferred from [26],
and allowing a relaxed-clock model for the rates of evolution of the
main clades.

Berbee & Taylor [32] estimated the age of the parmeliaceae
crown node at about 60 Ma based on substitution rates, and a
minimum age of the family was given at about 40 Ma according to
fossil records [50-51]. However, the age estimates obtained herein
suggested that Parmeliaceae evolved much earlier. Our analyses
indicate that the Parmeliaceae core originated rather recently with
a stem node age estimate of 108 Ma (Fig. 3, 4, Table 2) and a
crown node age estimate of 74 Ma (Fig. 4, Table 2). For other
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major families of lichenized ascomycetes much older crown node
ages have been estimated (Rivas Plata & Lumbsch, pers. com.),
including Graphidaceae (156 Ma), Physciaceae (153 Ma), and
Ramalinaceae (126 Ma). The parmelioid clade is the largest and
most strongly supported monophyletic group of the family. Within
the parmelioid crown a total of seven major divergence events at
different times have been found (Fig. 4), ranging from early
Eocene (separation of Xanthoparmelia from the Parmotrema-clade) to
Oligocene (separation of Flavoparmelia from  Parmotrema and
Canoparmelia crozalsiana-clade). The radiations of parmelioid genera
were estimated to start at the end of Eocene (Melanelixia) and
occurred during the Oligocene-Miocene for most of the genera.
Major clades of parmelioid lichens either show distinct
distribution patterns of the clade or include numerous species
with disjunct distributions, as in the genera Xanthoparmelia,
Austroparmelina, ~ Melanohalea, — Parmelina, and  Remototrachyna
[11,17,19,41,60-64]. Examples of disjunct distributions include
Xanthoparmelia and  Austroparmelina. Xanthoparmelia with ca. 800
species, the most speciose clade of Parmeliaceae, occurs world-
wide, although in some cases the species delimitation has recently
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Figure 4. Divergence time chronogram focusing on Parmeliaceae. The chronogram was estimated as described in the legend for figure 3.
Two calibration points based on fossil assignation are marked as C2 (crown node of Parmelia) and C3 (crown node of Alectoria). C3* is the alternative
calibration with the Alectoria fossil assigned to the alectorioid crown. The Parmelioid group is highlighted by the grey box. Numbers inside circles
refer to divergence nodes between the main clades. Grey bars show the 95% highest posterior density intervals (HPD). Detailed ages are given in

Table 2.
doi:10.1371/journal.pone.0028161.9g004

been challenged [65], and in other cases they have been shown
much more restricted than previously known [61-64]. Despite
being cosmopolitan, Xanthoparmelia has two main areas of
distribution in arid regions of the Southern Hemisphere (Australia
and Africa). A distribution pattern spanning over Australia and
Africa cannot be explained by vicariance since these landmasses
separated much earlier (Fig. 5; 110-135 Ma) than the split of the
Xanthoparmelia lineage from the Parmotrema-clade (37-58 Ma). The
data, however, cannot reject vicariance as the reason for
distribution ranges of species occurring in South America and
Australia. The separation of these continents (35-52 Ma) hap-
pened at a similar time as the origin of this lineage.
Austroparmelina includes 13 species that occur in southern and
castern Australia, Tasmania and New Zealand. Two species have
wider distribution areas, occurring also in South Africa (4. labrosa,
A. pseudorelicina; [18]); and one species also is known from South
America (4. labrosa, Chile; [66]). According to our estimates the

genus separated from its sister lineages in the late Eocene. Thus
the presence of Austroparmelina in South Africa is most plausibly
explained as a result of long distance dispersal because separation
of Africa took place much earlier (Fig. 5). As in the case of
Xanthoparmelia, our data cannot reject vicariance events as an
explanation for the presence of A. labrosa in South America and
Australia.

In general the estimated ages of diversification events found in
our analyses indicate that disjunct distribution patterns of
Southern Hemisphere lineages cannot be explained by vicariance.
Transoceanic long distance dispersal is the most plausible cause to
explain these distribution patterns. This is especially true for taxa
occurring in Africa and Australia. This is consistent with recent
studies employing molecular clock approaches interpreting
distribution patterns in other groups of fungi and plants [58-
59,67-76], suggesting that long-distance dispersal is an important
factor to explain the current distribution patterns of plants and

@ PLoS ONE | www.plosone.org

Table 2. Estimated ages and substitution rates of the most recent common ancestors (MRCA) for the main clades obtained with
partitioned BEAST analyses using three calibration points.
Period (Epoch) Age Node MRCA Age Height 95% HPD Rate Rate 95% HPD
Carboniferous 360-300 Lecanoromycetes 305.53 275.46-327.36 264  0.19-6.85
Permian 300-250 Ostropomycetidae 259.33 221.98-293.64 1.31 0.19-3.28
Lecanoromycetidae 251. 68 211.58-284.79 145  0.27-3.17
Jurassic 205-135 Lecanorales 160.65 129.66-192.63 1.40 0.18-2.98
Cretaceous 135-65 Parmeliaceae (Protoparmelia included) 108.96 85.52-136.55 207  0.52-4.21
Parmeliaceae core (Protoparmelia excluded) 7417 57.59-92.56 292 1.29-4.60
Paleogene (Paleocene) 65-53 Parmelioid group 60.28 49.81-73.55 2.87 0.71-5.78
Paleogene (Eocene) 53-34 Split 1. Xanthoparmelia - Parmotrema-clade 47.87 37.28-58.49 1.64  0.24-3.51
Split 2. Melanelixia - Melanohalea 41.55 31.25-51.94 1.60  0.27-3.54
Split 3. Parmelina - Myelochroa 37.13 24.97-48.65 1.80  0.17-4.71
Split 4. Remototrachyna - Bulbotrix 36.78 27.66-45.72 3.81 1.49-6.58
Split 5. Austroparmelina— Parmotrema, Flavoparmelia, ... 34.60 26.67-42.69 141 0.13-3.08
Paleogene (Oligocene) 34-23.5 Melanelixia 33.82 23.66-43.86 150  0.28-3.26
Split 6. Cetrariastrum - Hypotrachyna-clade p.p. 3248 22.70-43.70 210  0.94-3.61
Split 7. Flavoparmelia - Parmotrema 29.73 22.30-36.18 278  0.66-6.64
Melanohalea 25.38 16.58-36.73 1.78 0.61-3.53
Parmelia 23.59 18.03-31.31 1.56 0.49-3.10
Remototrachyna 23.54 16.69-30.68 1.50 0.38-2.78
Neogene (Miocene) 23.5-5.3 Flavoparmelia 22.61 15.71-30.09 225  0.66-4.48
Xanthoparmelia 21.55 13.64-32.74 1.27 0.41-2.35
Myelochroa 17.55 10.00-26.23 3.36 1.45-6.35
Punctelia 13.82 9.17-20.35 1.96 0.30-3.55
Parmotrema 13.80 10.08-17.82 264 0.76-5.30
Cetrelia 9.04 3.32-15.62 0.53 0.24-0.89
Parmelina 8.45 2.24-19.49 0.68 0.22-1.25
Neogene (Pliocene) 5.3-1.8 Canoparmelia crozalsiana-clade 3.91 1.68-7.09 3.36 1.77-5.36
Units. Ages: Ma. Rates: (s/s/y) x10—9. HPD: highest posterior density interval.
doi:10.1371/journal.pone.0028161.t002
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fungi. In the case of lineages distributed at present in South
America, Antarctica and Australia the estimated ages do not
discard that vicariance could have resulted from the break-up of
continents that had occurred 35-52 Ma.

For genera with more restricted distribution ranges and species
groups occurring mainly in the Holarctic, additional phylogeo-
graphical data are necessary to test biogeographical hypotheses.
This is the case e.g., for Parmelina, a genus that occurs in areas with
a Mediterranean climate in the Northern Hemisphere [11]. Its
separation from Mpyelochroa, a genus with center of distribution in
eastern Asia [77] but extends further into temperate regions, was
estimated as having happened in the late Eocene. Similarly the
recently described genus Remototrachyna, a Southeast Asian element
with only one pantropical species [19], diverged from its sister-
lineage Bulbothrix also in the late Eocene.

Our analyses suggest a complex relationship of diversification
events and palaeoclimatic conditions. The origin of Parmeliaceae
was estimated in the late Cretaceous when the climate was warmer
than today, and when subtropical to temperate fauna and flora
extended well into polar latitudes [78-79]. The first radiation of
the parmelioid group (60 Ma) occurred just before the Early
Eocene Climatic Optimum (52 Ma) (Fig. 6) when temperature and
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Table 3. Estimated ages of the most recent common ancestor (MRCA) of the main clades obtained in the alternative BEAST
analyses.

Only C1 + C2 Only C1 +C3 C1+C2+C3*
Node MRCA Age Height 95% HPD Age Height 95% HPD Age Height 95% HPD
Lecanoromycetes 282.74 243.97-323.49 298.72 264.94-327.29 297.23 263.04-325.17
Ostropomycetidae 229.14 189.55-268.83 249.46 216.10-280.61 250.70 216.87-282.32
Lecanoromycetidae 22543 182.87-266.59 240.92 196.18-278.16 239.00 199.59-275.59
Lecanorales 125.74 95.55-157.78 134.20 103.23-107.77 142.62 110.27-172.06
Parmeliaceae (Protoparmelia included) 88.03 64.84-114.27 91.88 67.9-118.82 111.24 83.53-137.09
Parmeliaceae (Protoparmelia excluded) 58.49 46.05-72.06 61.08 49.41-74.53 74.10 59.11-89.74
Parmelioid group 48.13 39.33-62.63 51.06 40.71-61.64 59.66 49.94-71.67
Split 1. Xanthoparmelia — Parmotrema-clade 38.77 29.41-49.12 41.86 30.78-52.92 48.27 38.52-59.90
Split 2. Melanelixia - Melanohalea 32.68 22.59-43.43 35.78 25.65-46.41 41.28 31.45-52.33
Split 3. Parmelina — Myelochroa 29.35 17.59-41.00 31.50 20.84-40.76 37.03 24.50-48.71
Split 4. Remototrachyna - Bulbothrix 27.29 20.11-37.92 27.56 20.59-36.92 3291 23.80-42.46
Split 5. Austroparmelina - Parmotrema and Flavoparmelia 28.45 20.81-36.38 30.72 22.37-39.69 35.60 26.90-45.42
Melanelixia 26.67 18.49-35.80 29.49 19.90-39.12 33.56 24.14-44.57
Split 6. Cetrariastrum- Hypotrachyna-clade p.p. 26.34 19.07-35.42 27.14 20.79-35.27 31.31 22.72-40.53
Split 7. Flavoparmelia - Parmotrema 31.38 23.46-39.95 26.33 18.33-33.90 30.52 23.48-39.49
Melanohalea 19.62 11.10-29.61 21.23 13.64-31.13 2541 16.94-37.06
Parmelia 21.98 17.01-28.37 11.59 5.42-20.11 23.63 17.53-31.92
Remototrachyna 19.42 13.21-29.44 19.74 13.46-28.16 23.52 16.67-32.68
Flavoparmelia 18.39 12.21-25.41 19.77 12.41-26.68 22.79 16.25-30.77
Xanthoparmelia 17.76 10.00-27.89 19.75 12.88-29.62 21.99 13.03-34.65
Myelochroa 13.04 7.66-19.72 14.25 8.15-21.12 15.69 9.39-23.09
Punctelia 11.00 6.82-15.87 12.15 10.62-24.19 14.18 9.89-21.29
Parmotrema 11.44 7.57-16.04 1245 7.55-16.79 14.38 10.26-19.46
Cetrelia 7.68 3.38-14.17 8.19 3.23-15.00 9.28 4.34-18.38
Parmelina 6.08 1.89-12.77 6.96 2.18-14.96 7.90 3.20-16.03
Canoparmelia crozalsiana-clade 3.25 1.42-5.45 3.31 1.47-5.94 3.95 1.69-7.38
Using the following calibration points: (1) C1 and C2 only; (2) C1 and C3 only; and (3) C1, C2 and C3* (with Alectoria fossil assigned to the alectorioid crown).Units: Ma.
HPD: highest posterior density interval.
doi:10.1371/journal.pone.0028161.t003

atmospheric GOy reached maximum levels [80]. During this time
period, the general climate was warm and humid, associated with
tectonic changes and volcanism [81-82]. Most of the parmelioid
lineages, however originated during the Eocene cooling and
Oligocene glaciation (Fig. 6). During the Eocene-Oligocene
transition (33.5 Ma) a profound global climate shift took place
changing the Cretaceous/early Palacogene “Green House”
conditions to “Ice House” conditions, with the growth of Antarctic
ice sheets to approximately their modern size, and the appearance
of Northern Hemisphere glacial ice [80]. The radiation of the
genera took place at different times from the early Oligocene to
the Pliocene. Melanelixia started to radiate during the early
Oligocene. During this time, the general climate was characterized
for cold conditions of the Oligocene glaciation (B, Fig. 6). However
Melanohalea, Parmelia, Remototrachyna, Flavoparmelia, Xanthoparmelia
and Myelochroa started to radiate between the Late Oligocene
Warming. and the Mid-Miocene Climatic Optimum (C-D, Fig. 6).
The radiation of other genera (Punctelia, Parmotrema, Cetrelia,
Parmelina, Canoparmelia crozalsiana-clade) is estimated as having
occurred at the transition from the middle Miocene to the Early
Pliocene, before the climate became cooler, drier and seasonal at
the end of Pliocene [80].
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Conclusions

Using three calibration points (one at the split of Lecanor-
omycetes and Eurotiomycetes, and the ages of two fossil lichens)
we obtained the first dated phylogeny of parmelioid lichens and
estimated the ages of divergence of the well-resolved lineages and
main genera. The radiation of the Parmelioid occurred near the
Cretaceous-Tertiary (K/T) boundary, before the climatic optima.
These age estimates indicate that long-distance dispersal has
played a major role in shaping the current distribution of the
Southern Hemisphere parmelioid lichens and that continental
drift of Gondwana landmasses and vicariance cannot explain the
Africa-Australia disjunct patterns. The major genera originated
during Eocene and Oligocene, and radiated during cooling
periods at different times from the late Oligocene to early Pliocene.

Materials and Methods

Taxon sampling, sequence alignment and selection of
substitution model

A dataset of 225 specimens of Lecanoromycetes with complete
sequences of nuLSU rDNA, mtSSU rDNA and the protein coding
RPBI gene, generated in previous studies [18,83-84], was
compiled for this study. GenBank accession numbers are listed
in Table S1. The parmelioid lineages (the main focus of this work)
were represented by 96 OTUs including 24 genera. The major
lineages of Lecanoromycetes [85-86] and  outgroups
(Chaethothyriomycetidae and Dothideomycetes), represented by
129 OTUs were included in the analyses to prevent that uneven
sampling across the tree could distort the apparent trend in
speciation through time [87]. The sequences of each locus were

@ PLoS ONE | www.plosone.org

aligned separately using Muscle 3.6 [88] and the ambiguous
positions removed using Gblocks with default settings [89-90].
The general time reversible model including estimation of
invariant sites (GTR+I+G) was selected by jModelTest v 0.1.1
[91-92] as the most appropriate nucleotide substitution model for
the three separated loci.

Calibration of nodes and dating analysis

The divergence time analyses were performed using BEAST
v.1.6.1 [93]. For the dating analysis it is recommended to use a
user starting tree instead of the random starting tree built by
BEAST. The latter is very likely to violate the temporal and/or
topological constraints specified to calibrate divergence times, and
cause an error when attempting to initiate the MCMC. For
building this tree we checked the phylogenetic signal of our matrix
running preliminary ML and Bayesian analyses using Garli 0.96
[94] and MrBayes 3.1.1 [95]. ML analyses were carried out with
the default settings and Bayesian analyses were performed
assuming a GTR+I+G model, run for 5 million of generations
with 4 chains and every 100" trec sampled. The first 5000
generations were burned in and a majority rule consensus tree was
calculated with the sumt option. The topologies generated
separately for each locus by ML and Bayesian analyses were
congruent with the topology of the three loci concatenated, and
with the general phylogeny obtained by Crespo et al. [18].

Three points of calibration were used for this study. The
principal calibration point (C1) was the divergence time of 280—
330 Ma for the stem of Lecanoromycetes following [26]. In
addition we used the ages of two fossil lichens: the diversification
node (C2) of Parmelia was calibrated with fossils from the
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Dominican amber (Parmelia ambra, 15-45 Ma, [50]), and the crown
node (C3) of Alectoria with a fossil from the Baltic amber (35—
40 Ma, [49]). The assignation of fossils to extant groups is a crucial
matter in dating analyses, and in the case of the lichens the fossil
record i3 so sparse that this becomes particularly important.
Parmelia ambra is a fossil from the Dominican amber resembling
Parmelia saxatilis and similar species [50]. It presents unclear
terminal pseudocyphellae, elongate isidia, plane to concave upper
surface, and simple to dichotomously branched rhizines. All these
features are characteristic of the Parmelia s. 5. clade, and thus the
fossil could also be related to the phylogenetically close genus
Relicina (sister group of the Parmelia s.s.), the ‘Parmela signifera’
group, or to the morphologically close Nipponoparmelia [18]. Relicina
was discarded because P. ambra does not have cilia, a feature
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present on the Relicina species. The species of the ‘Parmelia signifera’
group have subsquarrose rhizines different from the simple to
dichotomously branched rhizines of the fossil. On the other hand,
Nipponoparmelia presents lobes rolled upwards [96] different from
the flat lobes of the fossil. Moreover, only N. wsidioclada has isidia
but the rhizines are much branched, not simple or bifurcate, than
those of the fossil. Thus, the Parmelia ambra fossil was used to
calibrate the Parmelia s. s. crown node in the starting tree.

The Alectoria fossil from the Baltic amber [49] is morphologically
related to the alectorioid clade (Bryoria, Pseudophebe and Alectoria;
[33]). The fossil has abundant apothecia, a character that it shares
with Alectoria, while the related Bryoria and Pseudephebe genera rarely
have apothecia. Thus this fossil was used to constrain the crown
node of Alectoria. Nevertheless, due to the inevitable uncertainty in
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placement of fossil taxa we assessed the impact of individual fossil
calibration on divergence time estimates using alternative analysis:
1) using a single fossil for calibration, either Parmelia (C2 node) or
Alectoria (C3 node); and 2) using the Alectoria fossil to calibrate the
whole alectorioid clade, including Alectoria, Bryoria and Pseudephebe
(C3%).

The divergence time analyses were performed using BEAST
v.1.6.1 [93]. We used as starting tree the ML tree obtained with
Garli 0.96 [94], made ultrametric using nonparametric rate
smoothing (NPRS) implemented in TreeEdit v.10a10 [97] with
the divergence between Lecanoromycetes and Chaethothyriomy-
cetidae set at 305 Ma. We constrained the position of
Chaethothyriomycetidae as sister clade of Lecanoromycetes based
on Schoch et al. [98]. Previously to the analysis, we test that this
constraint is not significantly worse than the unconstrained
topology, using the Shimodaira-Hasegawa test (SH) [99] and
Expected Likelihood Weights test (ELW) [100]. Both tests were
run on Tree-Puzzle 5.2 [101].

The final dating analysis was performed with a partitioned
BEAST analysis with unlinked substitutions models (GTR+I+G)
across the loci, a Birth-Death process tree prior, and a relaxed
clock model (uncorrelated lognormal) for each partition. Calibra-
tion points were defined as prior distributions: 1) the split of
Lecanoromycetes and Chaethothyriomycetidae (C1) was calibrat-
ed with a uniform distribution (280-330 Ma). 2) The calibrations
points with fossils were considered as minimal ages and calibrated
with a lognormal distribution [102]. The Parmelia crown node (C2)
at log-normal mean=2.77, offset=14, lognormal standard
deviation =0.5. The Alectoria crown node (C3) at lognormal
mean = 3.61, offset=34, lognormal standard deviation=0.75.
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The final analysis was run for 10 million generations, with
parameter values sampled every 1000 generation. We checked the
stationary plateau with Tracer v. 1.4.1 [103]. We discarded 10%
of the initial trees as burn in and the consensus tree was calculated
using Tree Annotator v 1.6.1 [96]. The results were visualized
with FigTree v. 1.3.1 [104]. The substitution rates for each locus
were obtained running independent BEAST analyses for each
dataset using the same parameters as in the partitioned analysis.
Ages and rates were estimated for all the nodes with more than
0.95 of posterior probability both in the BEAST runs and in the
previous Bayesian analysis.
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