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ABSTRACT Recent studies of somatic and germline mutations have led to the identification of a number of factors that influence point
mutation rates, including CpG methylation, expression levels, replication timing, and GC content. Intriguingly, some of the effects
appear to differ between soma and germline: in particular, whereas mutation rates have been reported to decrease with expression
levels in tumors, no clear effect has been detected in the germline. Distinct approaches were taken to analyze the data, however, so it
is hard to know whether these apparent differences are real. To enable a cleaner comparison, we considered a statistical model in
which the mutation rate of a coding region is predicted by GC content, expression levels, replication timing, and two histone repressive
marks. We applied this model to both a set of germline mutations identified in exomes and to exonic somatic mutations in four types of
tumors. Most determinants of mutations are shared: notably, we detected an effect of expression levels on both germline and somatic
mutation rates. Moreover, in all tissues considered, higher expression levels are associated with greater strand asymmetry of mutations.
However, mutation rates increase with expression levels in testis (and, more tentatively, in ovary), whereas they decrease with
expression levels in somatic tissues. This contrast points to differences in damage or repair rates during transcription in soma and
germline.
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GERMLINE mutations are the source of all heritable var-
iation, including in disease susceptibility, and it is in-

creasingly clear that somatic mutations also play important
roles in human diseases, notably cancers (Muller 1927;
Stratton et al. 2009). Understanding the rate and mecha-
nisms by which mutations occur is therefore of interest to
both evolutionary biologists and to human geneticists aiming
to identify the underlying causes of genetic diseases
(Shendure and Akey 2015; Gao et al. 2016). In particular,
an accurate estimate of the local mutation rate is key to

testing for an excess of disease mutations in specific genes
among cases (Lawrence et al. 2013; Samocha et al. 2014).
Characterization of the variation in mutation rate along the
genome can also yield important insights into DNA damage
and repair mechanisms (Stratton 2011; Ségurel et al. 2014).

Until recently, our understanding of germline point muta-
tions camemainly fromanalysis of diversity along the genome
or divergence among species (Green et al. 2003;Webster et al.
2004; Polak and Arndt 2008; Hodgkinson and Eyre-Walker
2011; Park et al. 2012). In the past several years, analyses
have also been based on resequencing exomes or whole ge-
nomes from blood samples of human pedigrees and calling
germline variants as those present in the offspring but absent
in the child (reviewed in Campbell and Eichler 2013; Ségurel
et al. 2014; Shendure and Akey 2015). This approach is more
direct than analyzing divergence data, and presents the
advantage of being almost unaffected by selection, but the
analysis is technically challenging and, with current study
designs, some mutations may be missed, notably those that
occur in the early postzygotic divisions (Harland et al. 2016;
Moorjani et al. 2016; Rahbari et al. 2016).
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Our knowledge of somatic point mutations, in turn, relies
primarilyonresequencing tumors. In theseanalyses,mutation
calls are made by sequencing tumor and noncancerous tissue
pairs from the same individual, and then excluding the var-
iants shared between the two tissues (as the sharedmutations
are likely to be germline). Because, in this approach, a large
population of cells is sequenced, themutations identified tend
to predate the tumorigenesis, and thus are mostly somatic
mutations thatoccurred innormal tissues (see, e.g., Alexandrov
et al. 2015; Martincorena et al. 2015).

Studies of both germline and soma reveal that the point
mutation rate varies across the genome, from the scale of a
single base pair to much larger scales (Hodgkinson and Eyre-
Walker 2011; Hodgkinson et al. 2012; Ségurel et al. 2014). At
the single base pair level, the largest source of variation in
germline mutation rate is the identity of the adjacent base
pairs (Hwang and Green 2004; Hodgkinson and Eyre-Walker
2011). Notably, the mutation rate of CpG transitions (hence-
forth CpG Ti) is an order of magnitude higher than other
mutation types (e.g., Kong et al. 2012). Most CpG dinucleo-
tides are methylated in the human genome; when the meth-
ylated cytosine undergoes spontaneous deamination to
thymine and is not corrected by the time of replication, the
damage leads to amutation. Among other types of sites, rates
of mutation vary by two- to threefold (Kong et al. 2012). In
the soma, the mutation rate at CpG sites is also elevated,
although the extent of the increase differs across tumor types
(Lee et al. 2010; Pleasance et al. 2010a,b). More generally,
tumors vary in their mutation spectrum: analyses of muta-
tions and their two neighboring base pairs (i.e., considering
96mutation types) point to enrichment of distinct mutational
signatures for different types of cancers, a subset of which
have been shown to reflect particular mutagens or differ-
ences in the efficiency of repair (Alexandrov et al. 2013).

Over a larger scale of megabases, germline mutation rates
have been associated with a number of additional factors,
including transcription level (in testis), replication timing
(in lymphoblastoid cell lines), chromatin states (both in
lymphoblastoid cells and in ovary), meiotic crossover rates,
and GC content (Hodgkinson and Eyre-Walker 2011;
Michaelson et al. 2012; Park et al. 2012; Francioli et al.
2015; Besenbacher et al. 2016;Goldmann et al. 2016). Somatic
mutation rates have also been associated with replication
timing (in Hela cell lines) and with average transcription
levels across 91 cell lines in Cancer Cell Line Encyclopedia
(Lawrence et al. 2013).

In many cases, little is known about the mechanistic basis
for the association of a given factor with mutation rates.
However, the association of somatic mutation rates with
transcription levels appears to be a byproduct of transcrip-
tion-coupled repair (TCR), a subpathway of nucleotide exci-
sion repair (NER) (Hanawalt and Spivak 2008; Nouspikel
2009). NER is a versatile repair pathway that senses lesion-
causing distortions to DNA structure and excises the lesion
for repair. Another subpathway of NER, global genome repair
(GGR), can repair lesions on both transcribed strand (TS)

and nontranscribed strand (NTS), including transcribed re-
gions as well as transcriptionally silent ones. In contrast, TCR
operates only within transcribed regions, triggered by lesions
on the TS, which it repairs off the NTS. This mechanism gives
rise to a mutational strand asymmetry, as well as a composi-
tional asymmetry between strands. For example, TCR leads
to more A–G mutations (henceforth A . G) on the NTS than
TS; acting over long periods of time, this phenomenon gen-
erates an excess of G over A (and T over C) on the NTS (Green
et al. 2003; McVicker and Green 2010). Such mutational
strand asymmetry has been found in both germline and
soma (Green et al. 2003; Polak and Arndt 2008; Rubin and
Green 2009; Lawrence et al. 2013; Francioli et al. 2015;
Martincorena et al. 2015).

While many of the same determinants appear to play
important roles in both germline and soma, there are hints
of differences as well. For instance, studies of preneoplastic
somatic mutations indicate that, over a 100 kb scale, the
mutation rates in somatic tissues decrease with expression
levels, and increase with later replication timing (Lawrence
et al. 2013). Similarly, two studies that focused on somatic
mutations in noncancerous somatic tissues, normal eyelid
tissue, and neurons, found mutations to be enriched in re-
gions of low expression and repressed chromatin (Lodato
et al. 2015; Martincorena et al. 2015). A similar effect of
replication timing was identified in studies of germline mu-
tation (Stamatoyannopoulos et al. 2009; Francioli et al. 2015;
Besenbacher et al. 2016; Carlson et al. 2017). However, the
effect of expression levels on germline mutation rates re-
mains unclear: one study reported increased divergence be-
tween humans and macaques with greater germline
expression (Park et al. 2012), but others found no discernable
effect of expression levels on mutation rates (Green et al.
2003; Webster et al. 2004; Polak and Arndt 2008;
Hodgkinson and Eyre-Walker 2011; Francioli et al. 2015).
This difference between germline and soma is particularly
puzzling in light of the observation that the strand asymmetry
of mutation rates between TS and NTS is seen in the germline
as well as the soma (McVicker and Green 2010; Pleasance
et al. 2010a,b; Lawrence et al. 2013). Together, these obser-
vations suggest that the determinants of mutation rates may
differ between germline and soma, raising the more general
possibility that the damage rate or the repair efficacy differs
among cell types (Lynch 2010).

A limitation, however, is that studies have used different
statistical approaches, rendering the comparison hard to in-
terpret. As an illustration, whereas some studies binned the
genome into windows of 100 kb (e.g., Lawrence et al. 2013)
or 1 Mb regions (e.g., Polak et al. 2015), other studies have
compared the mean mutation rate in transcribed regions and
nontranscribed regions or in genes grouped by expression
levels (Hodgkinson and Eyre-Walker 2011; Francioli et al.
2015; Lodato et al. 2015). Studies of somatic mutation also
vary in whether they group different tissues or distinguish
among them (e.g., Pleasance et al. 2010b; Lawrence et al.
2013). An additional limitation of earlier studies of germline
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mutation is that, by necessity, they relied on human–chimpanzee
divergence as a proxy for de novo mutation rates (Green
et al. 2003; Webster et al. 2004; Hodgkinson and Eyre-
Walker 2011), even though divergence reflects not only
the mutation process but also effects of natural selection
in the human–chimpanzee ancestor and biased gene con-
version (Duret and Galtier 2009; McVicker et al. 2009).

To our knowledge, only one study has used a uniform
approach to study germline and soma. Their findings point to
possible differences in their determinants: for instance, the
histone mark H3K9me3 accounts for.40% of mutation rate
variation at 100 kb in tumors, when a much weaker associ-
ation is seen in the germline (Schuster-Böckler and Lehner
2012). This analysis relied on pairwise correlations, however,
and therefore the results may be confounded by other factors
that are correlated to the histone marks and differ between
tissues. Moreover, to our knowledge, there has been no par-
allel treatment of strand asymmetry in germline and soma.

To overcome these limitations, we built a multivariable
regression model, in which the mutation rates of CpG Ti and
other typesofmutations inacodingregionarepredictedbyGC
content, expression levels, replication timing and two histone
repressive marks. To this end, we used the expression levels,
replication timing and histone marker levels of matched cell
types, when available. We applied the model to a large set of
germline point mutations identified in exomes from recently
published studies on developmental disorders and to somatic
point mutations in exomes found in four types of tumors and
reported by the Cancer Genome Atlas (see Materials and
Methods). In addition, we considered the mutational strand
asymmetry in the two sets of data.

Materials and Methods

Datasets

To study germline mutations, we relied on de novo mutation
calls made from 8681 trios surveyed by exome sequencing.
We combined results from two main sources: studies of
neurodevelopmental disorders (NDD), which considered
5542 cases and 1911 controls (unaffecteds), and studies of
congenital heart defect (CHD), conducted by the Pediatric
Cardiac Genomics Consortium, which included 1228 trios.

The NDD cases include 3953 cases of Autism Spectrum
Disorder (ASD), 1133 cases of deciphering developmental
disorders (DDD), 264 cases of epileptic encephalopathies
(EE), and 192 cases of intellectual disability (ID). All these
studies applied similar capture and sequencing methods, and
most samples were at .203 coverage (see Table 1).

We tested for an effect of the study,which could potentially
arise fromdifferences in design or analysis pipeline, by adding
a categorical variable (by an analogous approach to the one
described below to test for differences among tissues). We
found a marginally significant interaction between the study
and the expression level in testis (our proxy for expression
levels in the germline), driven by one study (CHD cases;
Homsy et al. 2015), as well as for interactions between the
studies and the effects of H3K9me3 and GC content, driven
by two small studies (EE and ID) (see Supplemental Material,
Figure S1 in File S1). Given these minor differences, and in
order to increase our power, we combined all the germline
mutation datasets in what follows (see Table S1 for list of
mutations).

To examine determinants of mutation rates in somatic
tissues, we downloaded somatic mutation calls identified in
four types of cancer from the Cancer Genome Atlas (TCGA)
portal (in July 2015): breast invasive carcinoma (BRCA),
cervical squamous cell carcinoma and endocervical adenocar-
cinoma (CESC), brain lower grade glioma (LGG), and liver
hepatocellular carcinoma(LIHC).Thenumbersof samplesare
listed below (Table 2). In all cases, both noncancerous and
tumor tissues of patients were sampled, and the exomes were
sequenced using an Illumina platform. In the studies, muta-
tion calls shared by the normal and tumor samples were re-
moved (on the presumption that they are germline). What
remains are somatic mutations found at high enough fre-
quency to be seen in a large population of cells, which are
therefore likely to predate the tumorigenesis, i.e., that oc-
curred in the preneoplastic tissues (Martincorena et al.
2015).

For each type of cancer with more than one mutation
annotation file available in the TCGA data portal, we selected
the file that included the largest number of patient samples.
We removed the �7.6% of samples that had an unusually
large number of mutations per sample (P , 0.05 by Tukey’s
test), because they are likely to reflect loss of some aspect of

Table 1 Summary of germline datasets

Dataset Trios References Capture Sequencing

ASD 3953 De Rubeis et al. (2014);
Iossifov et al. (2014)

Exome Illumina and SOLiD

Simons simplex
collection, unaffected

1911 Iossifov et al. (2014) Exome Illumina

CHD 1213 Homsy et al. (2015) Exome Illumina
DDD 1133 The Deciphering Developmental

Disorders Study (2015)
Exome Illumina

EE 264 Epi4K Consortium et al. (2013) Exome Illumina
ID 192 de Ligt et al. (2012); Rauch et al. (2012);

Hamdan et al. (2014)
Exome Illumina
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the DNA mismatch repair, and hence their mutational mech-
anisms likely differ (Supek and Lehner 2015).

Possible determinants of mutation rates

We considered the main factors previously reported to be
significantly correlated with mutation rates, namely ex-
pression levels, replication timing, GC content, and histone
modification levels. To quantify expression levels, we relied
on gene expression data (measured as RPKM) from the
Genotype-Tissue Expression (GTEx) for breast, uterus,
brain cortex, and liver tissues. We also used GTEx expres-
sion data from testis and ovary tissues, as proxies for germ-
line cells.

The effect of the replication timing on somatic mutation
rates was argued to be cell-type specific (Supek and Lehner
2015). We therefore relied on Repli-Seq measurements (pro-
vided per base pair) in ENCODE cell lines that match the four
types of cancer, namely MCF-7 (breast cancer), Hela-S3
(cervical cancer), SK-N-SH (neuroblastoma), and HepG2
(liver hepatocellular carcinoma) cell lines. These measure-
ments were obtained from the University of California, Santa
Cruz (UCSC) Genome Browser. In all cases, the replication
timing reported is a smooth measure of the relative enrich-
ment of early vs. late S-phase nascent strands, with high
values indicating early replication. For each gene, we com-
puted the average replication timing by taking the mean
value of the data points that overlap with gene start-to-end
coordinates in UCSC Refseq gene database. For genes with
multiple transcripts, we took the union of all exons in all
transcripts. For germline mutations, there are no data for
the appropriate cell types, so we used replicating timing es-
timates for lymphoblastoid cell lines (LCL) (provided in
10 kb windows) (Koren et al. 2012). We also tried using
replication timing data from three somatic tissues instead;
the replication timing data are highly correlated among the
tissues, and, accordingly, the effects of mutation were esti-
mated to be very similar (see Figure S2 in File S1).

In addition, we considered the effects of chromatin marks
that had been shown to correlate individually with somatic
and germline mutation rates (Schuster-Böckler and Lehner
2012; Carlson et al. 2017): specifically, histone modification
H3K9me3 and H3K27me3, two repressive marks associated
with constitutively and facultatively repressed genes, respec-
tively. Levels of these marks were downloaded from roadmap
epigenomics data browser (December 2015, hg19) and con-
verted to gene-based histone modification levels by averag-
ing across the gene. We used the histone modification levels
of adult ovary, breast myoepithelial cells, brain hippocampus,

and adult liver as proxies for germline, breast, brain, and
liver, respectively. In the following regression analysis, we
considered only three of four somatic tissues, as we could
not obtain histone modification data for CESC. Finally, we
computed exonic GC content as the fraction of G or C residues
in the union of exons in all isoforms of a given gene.

Germlinemutation studies relied on theUCSCRefseq gene
annotation, whereas TCGA uses GENECODE annotation,
which contains more transcripts (Larsson et al. 2005; Zhao
and Zhang 2015). To make the comparison cleaner, we fo-
cused on exonic regions considered in both types of studies by
using gene and exon coordinates of Refseq database in build
hg19 from the UCSC genome browser.

Statistical model

Our main goal was to investigate possible relationships be-
tween mutation rates and gene expression levels, while con-
trolling for replication timing, GC content and some histone
modification levels. Because our mutation counts are over-
dispersed, with greater variance than mean, we used a neg-
ative binomial regression model (instead of, e.g., a Poisson
regression model). Specifically, for every protein-coding
gene, we counted the number of CpG Ti or other types of
mutations in the coding exons of a gene and treated it as
an outcome of a sequence of independent Bernoulli trials
with probability li, where li is the probability of a mutation
occurring in gene i.

Transitions at CpG sites are thought to occur primarily due
to spontaneous deamination at methylated cytosines, a dis-
tinct mutational source, and thus their determinants may be
distinct from other mutation types (reviewed in Ségurel et al.
2014). However, within CpG islands, most CpGs are hypome-
thylated (Takai and Jones 2002). To focus on a more homo-
geneous set of methylated CpGs, we therefore excluded CpG
islands from the analyses of CpG Ti. CpG island annotations
were downloaded from UCSC browser (track: CpG Islands).
In one analysis (Figure 2), we included the average level of
CpG methylation in each gene in our model, as assayed by
bisulfate sequencing in ovary, sperm, breast myoepithelial
cells, brain hippocampus cells, and adult liver cells.

We considered gene expression levels measured in RPKM
(X1), replication timing (X2), mean histone modification
levels (H3K9me3 as X3 and H3K27me3 as X4), and GC con-
tent (X5) as predictors. We also included L, the total number
of CpG sites (when considering CpG Ti) or all nucleotides
(when considering all other types of mutations) in the exons
of the given gene, as an exposure variable, to account for the
variation in gene length. The logarithm of li is then modeled
as a linear combination of these features scores:

logðliÞ ¼ b0 þ
X5
j¼1

bjXij þ logðLÞ þ e

WeusedR function glm.nb to estimate the coefficients, where
b0 is an intercept term, bj is the effect size of feature j, and Xij

Table 2 Sizes of TCGA datasets

Dataset Sample size

BRCA 904
CESC 181
LGG 502
LIHC 171
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is the score for feature j in gene i. In order to make the effect
sizes of different features comparable within a model, we
normalized all the predictor variables to have a mean of
0 and a SD of 1. The gene expression levels measured in
RPKM originally range from 0 to a few hundred thousand.
As is standard (e.g., Green et al. 2003; Francioli et al. 2015),
we added half of the smallest nonzero value in the corre-
sponding expression data sets and then log-transformed the
expression level before normalization.

We note that, in this model, we are considering possible
effects one at a time. Including interaction terms affects the
estimates and significance levels but changes none of the qual-
itativeresults,withtheexceptionofresults forH3K27me3,which
become less significant (see Figure S3 in File S1).

To examine whether the predictors have significantly dif-
ferent effects across tissues, we combined themodels into one
by including a categorical variable C for the tissue type (see
Figure 3). In this approach:

C ¼ 1  for  somatic  tissues;   C ¼ 0  for  germline;

logðlijÞ ¼ b0 þ
P5
j¼1

bjXij þ C
�
b6 þ

P11
j¼7

bjXij

�
þ logðLÞ þ e

where X1, X2, X3, X4 and X5 are the same genomic or epige-
nomic features as in the separate model, b1, b2, b3, b4, b5 are
the effect sizes of features X1 to X5 for testis, and b7, b8, b9,
b10, and b11 are the differences of effect size in the somatic
tissue of features X1 to X5 compared to those in testis. We
used the R function glm.nb to estimate the coefficients.

Similarly, in order to ask whether effects differ between
CpG Ti and other type of mutations in the same tissue, we
included a binary variable C for the two mutation types (see
Figure S4 in File S1) where:

C ¼ 1  for  CpG  Ti;   C ¼ 0  for  all  other mutations;

logðlijÞ ¼ b0 þ
P5
j¼1

bjXij þ C
�
b6 þ

P11
j¼7

bjXij

�
þ logðLÞ þ e

All variables are set up the samewayas in the combinedmodel
described previously, except for that b7, b8, b9, b10, and b11

are now the differences of the effect sizes for CpG Ti com-
pared to those for all other mutation types.

Mutation spectrum and strand asymmetry analysis

We annotated the direction of transcription using the UCSC
CCDS track andfiltered out genes that are transcribed off both
strands (1.7% of genes in Refseq), which left �19,000 genes
to consider. This annotation allowed us to classify mutations
into six types of mutation (A. C, A.G, A.T, G. A, G. C,
G . T) on either TS or NTS. There are thus 12 possible
changes (each of the six on both strands). We then calculated
themutation rate of any given type onNTS and TS separately,
by considering the number of corresponding mutations in the
combined data sets, divided by the total number of nucleo-
tides that could give rise to such a mutation in the exons.
To obtain the confidence intervals on the mutation rates (re-
ported in Figure 4, Figure 5, and Figure S5 in File S1) as well

as for the mutation asymmetry ratio (Figure 5 and Figure S5
in File S1), we used bootstrap resampling. Specifically, we
created 100 samples of the same size as the original sample,
by drawing randomly from the original sample with replace-
ment, and estimated the 95% CI from those 100 samples.

We tested for strand asymmetry by a Chi-squared test.
Because A . G strand asymmetry shows the greatest asym-
metry (Green et al. 2003), and is the only mutation type that
we found to be significant (and in the same direction) in all
tissues (Figure 4), we focused primarily on this type, though
we also considered A.T mutational patterns (see Figure S5
in File S1). To test if the extent of strand asymmetry changes
with transcription levels, we grouped genes into expression
level quantiles and calculated A . G strand asymmetry. Our
measure of strand asymmetry is the ratio of the mutation rate
on NTS to that on TS.

We also considered the A. G mutation rates on NTS and
TS separately (in Figure 6). Here, the number of A . G mu-
tations on NTS and TS for gene i is treated as an outcome of a

Figure 1 Coefficients of multivariable binomial regression model fit to
germline and somatic mutation data. (A) Results for CpG Ti, (B) results for
other mutation types. Red, blue and green, purple and orange bars rep-
resent the 95% CI for the estimate of the regression coefficient in germ-
line data set using ovary expression and testis expression, BRCA, LGG,
and LIHC data sets, respectively. For all replication timing data, a higher
value means earlier.
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sequence of independent Bernoulli trials with probability li
as the response variable in the model below.

logðliÞ ¼ b0 þ
X5
j¼1

bjXij þ logðLÞ

where L is the corresponding number of As on the NTS or TS
of a gene and other predictor variables are set up the same
way as in the separate model in Figure 1. We applied the
same analysis to A . T mutations, for which we detected
significant asymmetry in the same direction in all types of
tissues except for LGG (Figure S6 in File S1).

Data availability

Germline mutations are provided in Table S1. TCGA somatic
mutations can be downloaded from GDC data portal
(https://gdc-portal.nci.nih.gov/). The replication timingdata
of LCL and other tissues are available from Koren et al. (2012)
and the ENCODE website (https://www.encodeproject.
org/search/?type=Experiment&assay_title=Repli-seq), re-
spectively. The histone modification data can be freely
accessed from the Epigenome Roadmap website (http://
www.roadmapepigenomics.org/data/tables/all). CpG meth-
ylation data were downloaded from GEO (https://www.ncbi.
nlm.nih.gov/geo/), with accession number GSM1010980 for
ovary, GSM1127119 for sperm, GSM11217054 for breast
myoepithelial cells, GSM1112838 for brain hippocampus cells,
GSM916049 for adult liver cells, and GSM429321 for ESC
cells.

Results

Variation among germline and somatic tissues

We began by applying our multivariable regression model
(see Materials and Methods) to compare the determinants of

mutation rates per gene between the two germline tissues,
and among the three somatic tissues (Figure 1). Results for
germline mutations are very similar using testis or ovary ex-
pression profiles.

Notably, in both testis and ovary, we found little effect of
replication timing on germline mutation rates, other than a
marginally significant negative effect for mutations other
than CpG Ti (P = 0.046, using testis expression data).
An association of replication timing had been previously re-
ported for (imperfect) proxies of de novo mutation rates
(Stamatoyannopoulos et al. 2009), suggesting that our in-
conclusive findings may reflect lack of power. Indeed, if we
combine all mutation types within a coding region, and add
CpG methylation levels within the gene as a covariate,
the effect of replication timing is more readily apparent (Fig-
ure 2; P = 3.3 3 1024 using testes expression data, and
P = 0.01 using ovary expression data).

We also detected a significant increase of germline muta-
tion rates with expression levels for both CpG Ti and other
mutation types (Figure 1; see also Figure S2 in File S1 for
similar results with replication timing for different tissues), in
contrast to a previous study using de novo mutations
(Francioli et al. 2015) and most previous studies of diver-
gence. One difference with the previous analysis of de novo
mutations is that we rely on exonic mutation data and focus
on the unit of a gene, whereas they consideredwhole genome
data, dividing it up into 100 kb windows.

In our analysis, the effect of expression levels is most
clearly seen using testis expression (e.g., in Figure 2,
P = 2.1 3 1026) rather than ovary expression (P = 0.02),
possibly due to the fact that over three-quarters of germline
mutations are of male origin (Kong et al. 2012; Goldmann
et al. 2016; Rahbari et al. 2016). Alternatively, the ovary
expression profile may be a poorer proxy for female germ
cells than the testis expression profile is for male germ cells.
In any case, henceforth, we use testis expression profile for

Figure 2 Coefficients of multivariable binomial re-
gression model with DNA methylation levels added
as a predictor, fit to germline and somatic mutation
data. Red, blue and green, purple and orange bars
represent the 95% CI for the estimate of the regres-
sion coefficient in germline data set using ovary ex-
pression and testis expression, BRCA, LGG, and LIHC
data sets, respectively. For all replication timing data, a
higher value means earlier.
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analysis of the germline mutation rates, unless otherwise
noted.

We note that our analysis of germlinemutation relies on de
novo mutation calls made in exome studies of blood samples
from six sets, including five cases and unaffected controls
(see Table 1). A previous study reported that in one set of
cases, individuals with CHD, there is an increased number of
putatively damaging mutations in the genes most highly
expressed in the developing heart and brain (Homsy et al.
2015). Since the mutations are thought to be germline
mutations (rather than somatic mutations), this association
cannot be causal, instead reflecting an enrichment of damag-
ing mutations in important heart developmental genes in
CHD patients. To evaluate whether our findings of increased
mutation rates with germline expression levels could be
driven by a similar ascertainment bias, we excluded the
CHD set and obtained the same results (see Figure S7 in File
S1). We also reran the analysis, comparing the effects in the
five cases compared to the controls; none of the qualitative
results differed, though, as expected from the smaller size of
the control sets, the estimated effect sizes were more uncer-
tain (see Figure S8 in File S1). Thus, our results suggest that
the increase in mutation rates with expression levels in testes
is not a result of focusing primarily on cases.

Germline mutation rates involving CpG Ti and other types
are negatively associated with H3K27me3 levels (Figure 1).
We also found that, other than for CpG Ti, germline mutation
rates increase with the GC content of a gene. This observation
is consistent with previous findings of a high rate of GC to AT
mutations relative to other types (e.g., Kong et al. 2012). In
addition, it is thought that misincorporated bases during
DNA replication in AT rich regions are more easily accessible,
and thus more easily repaired than GC rich regions (Petruska
and Goodman 1985; Bloom et al. 1994). Indeed, considering
only AT sites, mutation rates increase in regions of higher GC
(see Figure S9 in File S1), indicating that there is an effect of
the GC content of nearby sites, not only of the higher muta-
tion rate of GC sites themselves.

Among somatic tissues, the effects of mutation rate pre-
dictors are also concordant. Notably, mutation rates decrease
with expression levels in all three tissues, though the mag-
nitudes of the effects differ. This finding is consistent
with previous studies and thought to be a result of TCR
(Lawrence et al. 2013). Intriguingly, in a model comparing
the effects on CpG Ti and other mutation types directly, in all
three somatic tissues, the effect of expression levels on mu-
tation rates is most pronounced for CpG Ti (see Figure S4 in
File S1). This finding suggests that damage or repair of CpG
Ti is tightly coupled to transcription.

In all three somatic tissues, a later replication timing, a
decrease in H3K27me3 levels, or an increase with H3K9me3
levels lead to an increase in mutation rates (Schuster-Böckler
and Lehner 2012; Behjati et al. 2014; Blokzijl et al. 2016).
The effect of replicating timing on mutation rate has been
attributed to the depletion of free nucleotides within later
replicating regions, leading to the accumulation of single-

stranded DNA, and thus rendering the DNA more susceptible
to endogenous DNA damage (Stamatoyannopoulos et al.
2009). An alternative hypothesis is that DNAmismatch repair
(MMR), which is coupled with replication, is more effective
in the early replicating regions of the genome; this possibility
is supported by the finding that this association is not de-
tected in the tissue of MMR-deficient patients (Supek and
Lehner 2015). While on face value, it may seem surprising
that replication timing is a significant determinant for the
LGG samples, given that neurons are postmitotic, glial cells
still retain their ability to divide and a substantial fraction of
mutations detected in neuronal samples may have occurred
at earlier stages in development.

Differences between somatic tissues and testis

Figure 1 and Figure 2 also hint at a difference between testis
(and more tentatively, ovary) and somatic tissues in the mag-
nitude of the effects of replication timing on mutation rates
and the direction of the effects of expression levels, with a

Figure 3 Coefficients of combined model comparing each somatic data
set to germline data set using testis expression. (A) Results for CpG Ti, (B)
results for other mutation types. Red, blue and green bars represent the
95% CI of the deviation of the estimated coefficient from the germline
estimate; they are shown for BRCA, LGG, and LIHC data sets, respectively.
For all replication timing data, a higher value means earlier.
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significant positive effect for germline mutations and a sig-
nificantly negative effect for somatic tissues (e.g., BRCA:
P = 8 3 10216 for CpG Ti; P , 2 3 10216 for other mu-
tation types; P , 2 3 1027 for all somatic tissues and mu-
tation types). When we tested for this difference explicitly,
by adding a binary variable for soma and germline (see Ma-
terials and Methods), we found that, indeed, both expression
levels and replication timing differ in their effects, for CpG Ti
and other mutation types (using testis as a proxy for germline
expression levels; Figure 3). The same qualitative results are
obtained when using expression data from ovary instead
(Figure S10 in File S1).

Notably, the effect of replication timing is stronger in soma
(Figure 2 and Figure 3). The simplest explanation is that a
larger fraction of mutations in the soma are introduced by
errors related to replication, as opposed to other nonreplica-
tive sources. Another (not mutually exclusive) possibility is
that the effect of early replication vs. late replication differs to
a greater extent in the soma than in the germline. For exam-
ple, if MMR is muchmore efficient in early replicating regions
(Supek and Lehner 2015) and more efficient in soma than
germline.

In addition, there is a significant difference between the
effects of expression in testis and ovary compared to all three

Figure 4 Comparison of the mutation spectrum between NTS and TS. Results for (A) germline; (B) BRCA; (C) CESC; (D) LGG; and (E) LIHC. The error
bars of the mutation rate denote 95% CIs estimated by bootstrapping (see Materials and Methods).
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somatic tissues considered, with a greater decrease in muta-
tion rates with expression seen in soma (Figure 2, Figure 3,
and Figure S10 in File S1). To examine this possibility further,
we considered a signature of TCR—strand asymmetry—in
the different tissues, detecting its presence among germline
mutations as well as in all four somatic tissues (Figure 4).
Consistent with previous studies (Green et al. 2003;McVicker
and Green 2010; Francioli et al. 2015), one type in particular,
A . G, stands out. While the asymmetry is significant (and
in the same direction) in all five data sets, with more muta-
tion on the NTS than the TS, the extent of asymmetry is

significantly different among the five data sets (x2 test,
P = 3 3 1028; the ratios of the mutation rates on NTS vs.
TS are 1.66, 1.35, 1.25, 1.44, and 1.60 for germline, BRCA,
CESC, LGG, and LIHC, respectively). Intriguingly, other mu-
tation types, notably G . C mutations, show even more pro-
nounced differences among tissues, with a significant excess
on the TS in the germline and LGG samples, but a significant
paucity on the NTS in BRCA and CESC. These findings in-
dicate a potential difference in either strand-biased damage
or in TCR (or both) among somatic tissues. In summary, the
total mutation rate appears to behave quite differently as a

Figure 5 The degree of A. G strand asymmetry and the A. G mutation rate as a function of gene expression level quartiles. Shown are results for the
germline using testis expression levels (A) and ovary expression levels (B); (C) BRCA; (D) CESC; (E) LGG; and (F) LIHC. The error bars for both the strand
asymmetry and the mutation rate per quartile were estimated by bootstrapping (see Materials and Methods).
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function of expression levels in testis and ovary compared to
soma (Figure 1, Figure 2, and Figure 3), despite the fact that
we observed clear evidence for TCR in both germline and
somatic mutations (Figure 4).

One way to visualize these differences is to focus on A. G
mutations, and to consider how themutation rate and degree
of strand asymmetry vary with expression in different tissues
(Figure 5). A striking contrast emerges: in testis and ovary, as
expression levels increase, mutation rates and asymmetry in-
crease, whereas, in the somatic tissues, asymmetry increases
while mutation rates decrease. The same pattern is seen
when A . T mutation rate and asymmetry are considered
(see Figure S5 in File S1). This difference in behavior with
expression levels suggests that the balance between damage
and repair rates during transcription differs between germ-
line and soma.

To explore the effects of transcription in more depth, we
applied our regression model to NTS A.Gmutations and TS
A. G mutations separately (Figure 6). Increased expression
in the soma has no discernable effect on the NTS, other than
in liver, where it slightly increases mutation rates, but it de-
creases themutation rate on the TS. In contrast, expression in
testis and ovary leads to increasedmutation rates on the NTS,
and little or no elevation on the TS. Assuming there is no
repair of the NTS by TCR, these findings indicate that tran-
scription in the germline introduces greater damage than it
does in the soma, and, in both cases, that damage is effi-
ciently repaired on the TS strand. If, however, the NTS is
occasionally repaired by TCR or some other mechanism, then
the findings indicate that the efficiency of TCR (relative to the
damage rate) is greater in soma. In this regard, we note that
when the same analysis is applied to A.T mutations, which
show significant asymmetry in all tissues considered other
than LGG, there is some evidence that mutation rates de-
crease with expression in somatic tissues even on the NTS,
suggesting some form of repair of the NTS coupled to tran-
scription (Figure S6 in File S1).

Discussion

We compared the determinants of mutation in the soma and
the germline, using the sameunit of analysis (a coding region)
and the same statisticalmodel, and applied it to similar exome
data for germline de novomutations and four types of tumors,
in which mutations largely predate tumorigenesis. We reca-
pitulated previous findings of the effects of GC content and of
a histone mark indicative of repression on germline and so-
matic mutations, as well as those of expression levels and
replication timing on somatic mutations (Schuster-Böckler
and Lehner 2012; Lawrence et al. 2013). Strikingly, we also
found clear differences in the determinants of mutation rates
between germline and soma, consistent with earlier hints
based on divergence data (Hodgkinson and Eyre-Walker
2011). Notably, our results confirmed that somatic mutation
rates decrease with expression levels, and reveal that, in
sharp contrast, de novo germline mutation rates increase with

expression levels in testis (and more tentatively, in ovary).
This contrast suggests that transcription may be mutagenic in
germline cells but not in soma, and that the DNA damage or
repair processes differ between them.

One limitation of our comparison—and of previous studies
of germline and somatic mutation—is the need to rely on
proxies for determinants of interest, such as replication tim-
ing data from cancer cell lines instead of normal cells and,
perhaps most importantly, the use of testis and ovary as a
proxy for germ cells. One difficulty in that regard is that
so-called “germline mutations” actually arise from many
stages of development, including cell types that predate the
specification of the germline (see, e.g., Rahbari et al. 2016)
and thus it is difficult to knowwhich of the available tissues to
use as a proxy. Until these findings can be revisited with
expression data from more precise cell types, such as primor-
dial germ cells and spermatocytes, all that can be concluded
is that our findings point to a difference between somatic
tissues and some subset of germ cells.

Figure 6 Coefficients of the multivariable binomial regression model fit
to A . G mutations on NTS (A) and TS (B). Red, blue, green, purple and
orange bars represent the 95% CI for the estimate of the regression
coefficient in germline data set using expression levels in ovary, testis,
BRCA, LGG, and LIHC. For all replication timing data, a higher value
means earlier.
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A second limitation is that we considered only two types of
mutations (CpG Ti and other). While these two types capture
most of the variation in mutation rates, the larger context
(adjacent base pairs, but also 7mers) also impacts mutation
rates (Hwang and Green 2004; Hodgkinson and Eyre-Walker
2011; Aggarwala and Voight 2016). These differentmutation
subtypes are likely affected somewhat differently by the de-
terminants considered here (Carlson et al. 2017). Despite
these limitations, our work provides a framework to contrast
possible determinants of mutation rates in soma and germ-
line while controlling for some confounding effects, and
results will only improve as data sets increase and the mea-
surements of salient genomic and cellular features become
more accurate.

What is already clear is that there exist divergent effects of
expression on mutation rates across tissues that are not
attributable to well-known covariates. Moreover, the differ-
ences cannot readily be explained by the noise introduced by
imperfect proxies or limited data. One possibility is that the
effects of transcription do not vary across tissues, but are
nonlinear in their effects on mutation rates. As a thought
experiment, if genes that are not expressedwere not repaired,
and had a relatively high mutation rate as a result, and genes
that arehighly expressedhadahighmutation ratebecause the
repair efficiency is insufficient relative to damage, then genes
with low levels of expression would be the least mutagenic. If
so, tissues in which many genes have either low or no expres-
sionmight showa decrease ofmutation rateswith expression,
whereas tissues with many genes that are lowly or expressed
might show an increase in mutation rates with expression.

A more likely explanation, in our view, is that the tradeoff
between damage and repair associated with transcription
differs among tissues, and in particular between germline
and soma. Indeed, we know that tissue differs by sources
of damage (Alexandrov et al. 2015) and the rate at which
mutations accumulate (Blokzijl et al. 2016). There also
exist differences in the signatures of strand asymmetry
(Alexandrov et al. 2013; Blokzijl et al. 2016; Figure 4). Tran-
scription plausibly increases the rate of damage by opening
up the DNA helix, rendering the single strands more suscep-
tible to mutagens (Polak and Arndt 2008; Jinks-Robertson
and Bhagwat 2014). One possibility is that, in the germline,
transcription-associated mutagenesis (TAM) swamps TCR,
leading to highermutation rates with increased transcription,
whereas in the soma, TCR is more efficient, especially on the
TS, and the balance of TAM and TCR leads to decreased
mutagenesis with increased expression. Another possibility,
which is not mutually exclusive, is the presence of additional
repair mechanisms in somatic tissues. In support of this
possibility, global genome repair (GGR) is attenuated in dif-
ferentiated cells, yet mutations on the NTS appear to none-
theless be repaired efficiently (Nouspikel and Hanawalt
2000; Marteijn et al. 2014). This evidence led to the hy-
pothesis of transcription-domain-associated repair (DAR),
which might repair damage on both strands in addition to
TCR (reviewed in Nouspikel 2007). From an evolutionary

standpoint, the increased efficiency of TCR relative to TAM
in soma vs. germline may be explained by selection pressure
on the repair of somatic tissues to prevent aging and cancer
(Lynch 2010).

Mounting evidence suggests that per cell divisionmutation
rates differ across tissues (Greenman et al. 2007; Lynch 2010;
Alexandrov et al. 2013), and, in particular, that they may be
higher in early embryonic development than at other stages
of development (Ségurel et al. 2014; Harland et al. 2016;
Lindsay et al. 2016; Rahbari et al. 2016). This study raises
the possibility that at least part of the explanation may lie in
the balance between damage and repair, with TCR operating
at different efficiencies relative to TAM or jointly with other
repair pathways, thereby maintaining low mutation rates in
soma. As mutation data from more tissues become available,
it will be both feasible and enlightening to examine tissue-
specific differences in repair.
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