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Many new types of regulated cell death have been recently implicated in human
health and disease. These regulated cell deaths have different morphological, genetic,
biochemical, and functional hallmarks. Ferroptosis was originally described as a
carcinogenic RAS-dependent non-apoptotic cell death, and is now defined as a type
of regulated necrosis characterized by iron accumulation, lipid peroxidation, and the
release of damage-associated molecular patterns (DAMPs). Multiple oxidative and
antioxidant systems, acting together autophagy machinery, shape the process of lipid
peroxidation during ferroptosis. In particular, the production of reactive oxygen species
(ROS) that depends on the activity of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOXs) and the mitochondrial respiratory chain promotes lipid
peroxidation by lipoxygenase (ALOX) or cytochrome P450 reductase (POR). In contrast,
the glutathione (GSH), coenzyme Q10 (CoQ10), and tetrahydrobiopterin (BH4) system
limits oxidative damage during ferroptosis. These antioxidant processes are further
transcriptionally regulated by nuclear factor, erythroid 2-like 2 (NFE2L2/NRF2), whereas
membrane repair during ferroptotic damage requires the activation of endosomal sorting
complexes required for transport (ESCRT)-III. A further understanding of the process and
function of ferroptosis may provide precise treatment strategies for disease.
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INTRODUCTION

The survival and death of cells are strictly controlled by various signals and molecules (Fulda
et al., 2010). Physiological cell death is essential for normal function and tissue development. But
pathological cell death may have side effects that cause inflammation and threaten our health.
The first classification of cell death was based on morphological criteria proposed by pathologists
in the 1970s. The pathologists suggested that cell death has three main forms, namely apoptosis
(type I), autophagy (type II), and necrosis (type III) (Schweichel and Merker, 1973). The typical
morphological changes of apoptosis are nuclear chromatin concentration and the formation
of apoptotic bodies in the cytoplasm (Elmore, 2007). This is different from cell swelling and
membrane rupture in necrosis (Golstein and Kroemer, 2007) and the formation of cytoplasmic
double membrane vesicles in autophagy (a lysosome-dependent degradation process) (Xie et al.,
2015). The latest cell death classification was formulated and is recommended by the Cell Death
Nomenclature Committee. Generally, cell death is divided into accidental cell death and regulated
cell death (Galluzzi et al., 2018). Accidental cell death is a passive process, whereas regulated
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cell death is an active process that plays an important role
in the pathogenesis of the disease (Galluzzi et al., 2018). In
the past 20 years, many new types of regulated cell death
(e.g., necroptosis, pyroptosis, ferroptosis, entotic cell death,
netotic cell death, parthanatos, lysosome-dependent cell death,
autophagy-dependent cell death, alkaliptosis, and oxeiptosis)
have been identified in various models (Tang et al., 2019).
Although they may share several common signals (e.g., redox
signals), different forms of regulated cell death require special
molecular machinery to trigger cell death (Tang et al., 2019).
In this review, we summarize the major ways in which
oxidative stress and antioxidant defense regulate ferroptosis,
which is a form of iron-dependent cell death driven by lipid
peroxidation (Figure 1).

THE BASIC PROPERTIES OF
FERROPTOSIS

The concept of ferroptosis is derived from precision medicine
for tumors that targeted RAS mutation signals (Dolma et al.,
2003; Yang and Stockwell, 2008). RAS is a proto-oncogene and
is frequently mutated in human cancer, leading to tumorgenesis
and therapy resistance. Drug screening identified that the small
molecular compounds erastin and RSL3 can selectively kill RAS-
mutant cancer cells, but not RAS wild-type cells (Dolma et al.,
2003; Yang and Stockwell, 2008). Later, it was proved that
the anticancer activity of erastin and RSL3 depends on the
induction of a new type of iron-dependent cell death, termed
ferroptosis (Dixon et al., 2012). Although initial research showed
that ferroptosis may be different from the classical cell death
(e.g., apoptosis, necrosis, and autophagy-dependent cell death)
(Dixon et al., 2012), recent studies demonstrate that there is a
close relationship between ferroptosis, necrosis, and autophagy
(Chen M.S. et al., 2017; Muller et al., 2017; Li et al., 2020; Lin
et al., 2020; Liu et al., 2020c; Xie et al., 2020a). Ferroptotic
cells usually exhibit cell membrane rupture and the release of
intracellular contents, especially damage-associated molecular
patterns (DAMPs) (Wen et al., 2019; Dai et al., 2020b), and are
therefore classified as a type of regulated necrosis (Conrad et al.,
2016). Increased autophagy, especially several types of selective
autophagy [e.g., ferritinophagy (Hou et al., 2016), lipophagy (Bai
et al., 2019), clockophagy (Yang M. et al., 2019), and chaperone-
mediated autophagy (Wu et al., 2019)], promotes ferroptosis,
indicating that ferroptosis is related to an abnormal intracellular
degradation pathway.

Although the direct effectors of ferroptosis are unclear, iron
accumulation and lipid peroxidation seem to play a central role
in regulating the process of ferroptosis (Dixon et al., 2012; Yang
et al., 2016; Shintoku et al., 2017; Wenzel et al., 2017; Li et al.,
2020). Iron is an essential nutrient for cell proliferation, but
iron overload can cause iron toxicity and lead to cell damage,
even death. The balance of iron in cells and in the body is
controlled by an integrated system. Pathways for abnormal
iron metabolism, such as increasing the iron absorption and
reducing iron storage or iron output, may cause ferroptosis
through at least two ways. One is iron-mediated reactive

oxygen species (ROS) production through the Fenton reaction
(Dixon et al., 2012). The other is involved in the activation of
iron-containing enzymes, such as lipoxygenase (ALOX) (Yang
et al., 2016; Shintoku et al., 2017; Wenzel et al., 2017; Li et al.,
2020). Finally, the accumulation of iron causes lipid peroxidation,
which is the process of oxidative degradation in lipids [especially
polyunsaturated fatty acids (PUFAs)] (Yuan et al., 2016; Doll
et al., 2017; Kagan et al., 2017), leading to subsequent membrane
damage and rupture. In contrast, an increased membrane
repair ability through the activation of charged multivesicular
body protein 5 (CHMP5) and charged multivesicular body
protein 6 (CHMP6), which then mediate the endosomal sorting
complexes required for transport (ESCRT)-III pathway, limits
ferroptosis (Dai et al., 2020c). Notably, multiple oxidative stress
and antioxidant defense pathways are involved in shaping
ferroptotic responses (discussed later). This process is further
regulated by epigenetic, transcriptional, posttranscriptional, and
posttranslational mechanisms (Dai et al., 2020a; Wu et al.,
2020). In particular, the activation of nuclear factor, erythroid 2-
like 2 (NFE2L2/NRF2) plays a major transcriptional regulatory
role in the suppression of ferroptosis through the induction of
expression of antioxidants or iron metabolism genes (Sun et al.,
2016a,b). Functionally, impaired ferroptosis (due to its excessive
activation or cellular defects) is increasingly recognized as the
cause of human diseases, especially neurodegenerative diseases,
cancer, and infectious diseases as well as tissue damage (Xie et al.,
2016; Stockwell et al., 2017).

OXIDATIVE DAMAGE IN FERROPTOSIS

Oxidative damage results from an imbalance between the
generation of free radicals and the body’s ability to neutralize
or eliminate their harmful effects through antioxidants. ROS-
mediated lipid peroxidation is the key step that drives
ferroptosis. Below, we describe the main cellular sources of
ROS and the main regulators of lipid peroxidation during
ferroptosis (Figure 1).

Mitochondria-Mediated ROS Production
Mitochondria play a key role in regulating cell energy and cell
death signal transduction. In addition to producing adenosine
triphosphate, mitochondria are also the main source of ROS
production (Zorov et al., 2014). The production of mitochondrial
ROS mainly occurs during the oxidative phosphorylation in the
electron transport chain located on the inner membrane of the
mitochondria. Electrons leak from complex I and complex III
on the electron transport chain, resulting in a partial reduction
of oxygen to form superoxide anion (O2

·−). Subsequently, O2
·−

is rapidly disproportionated into hydrogen peroxide (H2O2) by
the superoxide dismutase 2 (SOD2) in the mitochondrial matrix
and superoxide dismutase 1 (SOD1) in the intermembrane
space. Overall, O2

·− and H2O2 produced during this process
are called mitochondrial ROS, which is related to the loss of
mitochondrial membrane potential (19m) (Zorov et al., 2014).
The reduction of 19m is a common sign of apoptosis and
ferroptosis, but their regulatory mechanisms are different. In
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FIGURE 1 | The major mechanism of oxidative damage and antioxidant defense in ferroptosis. Ferroptosis is an iron-dependent oxidative cell death caused by ROS
from the Fenton reaction and subsequent lipid peroxidation. Multiple oxidative and antioxidant systems control the process of membrane oxidative damage during
ferroptosis. In particular, NOX-dependent and mitochondrial respiratory chain-dependent ROS production promotes lipid peroxidation by ALOX or POR. The
production of lipids, especially PUFA, requires the activation of the ACSL4-LPCAT3 pathway. In contrast, the GSH, CoQ10, and BH4 systems limit oxidative damage
during ferroptosis. Membrane repair during ferroptotic damage requires the activation of the ESCRT-III pathway. ACSL4, acyl-CoA synthetase long-chain family
member 4; AIFM2, apoptosis-inducing factor mitochondria-associated 2; ALOX, lipoxygenase; BH4, tetrahydrobiopterin; CHMP5, charged multivesicular body
protein 5; CHMP6, charged multivesicular body protein 6; COQ2, coenzyme Q2, polyprenyltransferase; CoQ10, coenzyme Q10; CTH, cystathionine gamma-lyase;
ESCRT-III, endosomal sorting complexes required for transport-III; GCH1, GTP cyclohydrolase 1; GCLC, glutamate-cysteine ligase catalytic subunit; GPX4,
glutathione peroxidase 4; GSH, glutathione; LPCAT3, lysophosphatidylcholine acyltransferase 3; NOX, nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase; POR, cytochrome P450 oxidoreductase; ROS, reactive oxygen species; Se, selenium; SLC3A2, solute carrier family 3 member 2; SLC7A11, solute carrier
family 7 member 11.

mitochondria, cytochrome C, somatic (CYCS) plays an essential
role in generating 19m. The translocation of CYCS from
the mitochondria to the cytoplasm is an important event that
initiates the loss of 19m in the process of apoptosis induced
by mitochondrial ROS (Yang et al., 1997). However, changes
in CYCS position and the subsequent activation of apoptosis
effector caspases are not observed during ferroptosis (Dixon
et al., 2012), indicating that different mechanisms control 19m
during ferroptosis.

Some important mitochondrial apoptosis regulators, such
as those in the voltage-dependent anion channel (VDAC)
family and BCL2 family, are also involved in the regulation of
ferroptosis in a context-dependent manner. VDAC, also known
as mitochondrial porin, is the most abundant protein in the
outer mitochondrial membrane. In the VDAC family, VDAC2

and VDAC3 are considered to be directly targeted by erastin to
induce ferroptosis (Figure 2; Yagoda et al., 2007). As a negative
feedback mechanism, the proteasome degradation of VDAC2 and
VDAC3 that depends on NEDD4 E3 ubiquitin protein ligase
can block erastin-induced ferroptosis in melanoma cells (Yang
et al., 2020b). NEDD4-like E3 ubiquitin protein ligase (NEDD4L)
inhibits ferroptosis by degrading lactotransferrin protein (Wang
et al., 2020). VDAC2 is also a direct target of lipid-derived
electrophile-induced carbonylation proteins during ferroptosis
caused by RSL3 (Chen et al., 2018). Therefore, posttranslational
modulation of VDAC2 or VDAC3 may weaken or exacerbate
ferroptosis sensitivity. In addition to VDAC, the BCL2 family is
also an important regulator of mitochondrial outer membrane
permeability, which consists of many members that promote or
inhibit apoptosis (Youle and Strasser, 2008). Pro-apoptotic BCL2
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FIGURE 2 | The role of mitochondria in ferroptosis and apoptosis. The loss of
mitochondrial membrane potential (19m) and the production of ROS are
implicated in ferroptosis and apoptosis by different pathways. Erastin can bind
VDAC2 and VDAC3 to induce BID-dependent ferroptosis through ALOX,
whereas BAK1 and BAX are required for staurosporine-induced apoptosis
through CYCS. ALOX, lipoxygenase; BAK1/BAK, BCL2 antagonist/killer 1;
BAX, BCL2-associated X, apoptosis regulator; BID, BH3 interacting domain
death agonist; CYCS, cytochrome C, somatic; ROS, reactive oxygen species;
VDAC, voltage-dependent anion channel.

family members, such as BCL2 antagonist/killer 1 (BAK1/BAK)
and BCL2-associated X, apoptosis regulator (BAX), are required
for staurosporine-induced apoptosis (Wei et al., 2001), but not
required for erastin-induced ferroptosis in fibroblasts (Dixon
et al., 2012; Figure 2). However, BH3 interacting domain
death agonist (BID), a pro-apoptotic BCL2 family member,
mediates mitochondrial ROS-induced ferroptosis in neuronal
cells (Neitemeier et al., 2017; Jelinek et al., 2018). These findings
increase the likelihood that apoptotic or ferroptotic death
requires different types of changes in mitochondrial membrane,
which are further regulated by different members of VDAC
and BCL2 families.

In addition, mitochondrial energy sensors or mitochondrial
quality control systems plays a dual role in ferroptosis.
AMP-activated protein kinase (AMPK) is a key sensor
of cellular energy and regulates ferroptosis through its
phosphorylated substrate. AMPK-mediated BECN1 (a key
autophagy regulator) phosphorylation promotes ferroptosis
through the inhibition of system xc− activity (Song et al.,
2018). In contrast, AMPK-mediated acetyl-CoA carboxylase
alpha (ACACA) phosphorylation blocks ferroptosis through
the inhibition of fatty acid biosynthesis (Lee et al., 2020).
Additional signals, currently unknown, are needed to explain
the substrate selectivity of AMPK-related ferroptosis regulation.
Although many types of selective autophagy promote ferroptosis,
mitophagy (an important mitochondrial quality control
system) may play a context-dependent role in ferroptosis.
On the one hand, mitophagy can maintain a healthy number
of mitochondria to promote survival against ferroptosis
(Gao et al., 2019). On the other hand, excessive mitophagy
may cause metabolic stress and subsequent production of
mitochondrial ROS, leading to ferroptosis (Basit et al., 2017). The

interaction of mitochondria and other organelles in ferroptosis
remains to be explored.

NOX-Mediated ROS Production
For a long time, the production of O2

·− by transmembrane
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
(NOX) has been regarded as an important function in
professional phagocytes, such as macrophages and dendritic
cells (Bedard and Krause, 2007). In addition to phagocytes,
other cells also express NOX to produce O2

·− or H2O2 by
transporting electrons across the membrane. The human genome
encodes seven members of the NOX family, including five NOX
proteins [NOX1, cytochrome B-245 beta chain (CYBB/NOX2),
NOX3, NOX4, and NOX5] and two dual oxidases (DUOX1
and DUOX2). NOX-derived ROS plays a broad role in various
physiological and pathological conditions (e.g., development,
infection, immunity, and cell death) (Bedard and Krause, 2007).
As an important regulator of lipid raft-derived redox signaling
platforms, NOX participates in the induction of apoptosis (Jin
et al., 2011). Similarly, NOX1-, CYBB-, and NOX4-mediated
ROS production is also involved in the initiation of ferroptotic
cancer cell death by inducing lipid peroxidation (Xie et al.,
2017; Chen et al., 2019; Yang W.H. et al., 2019; Yang et al.,
2020a), indicating a wide role for NOXs in cell death. In
cancer cells, the activity of NOXs in ferroptosis is further
affected by oncogenes and tumor suppressors. For example,
the loss of tumor suppressor TP53 inhibits the accumulation
of dipeptidyl-peptidase-4 (DPP4/CD26) in the nucleus, thereby
increasing plasma-membrane associated DPP4-dependent lipid
peroxidation and subsequent ferroptosis via the formation of the
DPP4-NOX1 complex (Xie et al., 2017). During the activation
of oncogenic RAS, NOX1 mediates the production of ROS
(Adachi et al., 2008), which may promote ferroptosis through
the activation of the extracellular signal-regulated kinase (ERK)
pathway (Yagoda et al., 2007). More research is needed to clearly
define how different NOX members, coupled with impaired
genetic signals in tumors, cause ferroptosis.

ALOX-Mediated Lipid Peroxidation
Reactive oxygen species-mediated lipid peroxidation is mainly
accomplished by ALOX, which is a dioxygenase that contains
non-heme iron. ALOX includes six members (ALOXE3,
ALOX5, ALOX12, ALOX12B, ALOX15, and ALOX15B) and
catalyzes the stereotactic insertion of oxygen into PUFAs,
especially arachidonic acid (AA) and adrenic acid (AdA), in
a tissue- or cell-dependent manner. For example, ALOX5,
ALOXE3, ALOX15, or ALOX15B mediates ferroptosis caused
by erastin or RSL3 in BJeLR, HT1080, or PANC1 cells (Yang
et al., 2016; Shintoku et al., 2017; Wenzel et al., 2017; Li
et al., 2020). ALOX15 or ALOX12 mediates TP53-induced
ferroptosis in cancer cells following different stimuli (Ou
et al., 2016; Chu et al., 2019). Phosphatidylethanolamine-
binding protein 1 (PEBP1) can be used as an adaptor
protein for ALOX15 and enhances the activity of ALOX15
in the induction of ferroptosis in vitro (Wenzel et al., 2017).
However, ALOX12/15 may not be important for ferroptotic
damage in mice caused by glutathione peroxidase 4 (GPX4)
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depletion in kidney (Friedmann Angeli et al., 2014) or
T cells (Matsushita et al., 2015). Therefore, when evaluating the
sensitivity of ferroptosis, it is necessary to first detect the basic
expression levels of different ALOX members.

Lipoxygenase-mediated lipid peroxidation is firstly initiated
by the generation of AA/AdA derivatives mediated by ACSL4
and LPCAT3 (Yuan et al., 2016; Doll et al., 2017; Kagan
et al., 2017). ACSL4 catalyzes the combination of free AA/AdA
and CoA to form AA/AdA-CoA derivatives and promotes
their esterification to phospholipids, while LPCAT3 then
catalyzes the biosynthesis of AA/AdA-CoA and membrane
phosphatidylethanolamine (PE) to form AA/AdA-PE. ALOX
then mediates the peroxidation of AA/AdA-PE to generate
AA/AdA-PE-OOH (e.g., 5-HETE, 11-HETE, and 15-HETE,
but not 12-HETE), which leads to membrane injury during
ferroptosis. Therefore, the genetic or pharmacological inhibition
of the ACSL4-LPCAT3-ALOX pathway inhibits ferroptosis
in vitro and in vivo. Although ACSL4-independent ferroptosis
may exist, increased ACSL4 expression is a biomarker of
ferroptosis (Yuan et al., 2016).

POR-Mediated Lipid Peroxidation
Cytochrome P450 reductase (POR) plays a major role in the
metabolism of drugs and steroids. POR supplies electrons to
microsomal cytochrome P450 from NADPH (Riddick et al.,
2013). Consequently, the destruction of POR affects the activity
of all microsomal P450 enzymes. In addition to ALOX-mediated
lipid peroxidation, POR-mediated lipid peroxidation plays an
alternative role in mediating ferroptosis. In particular, POR binds
its cofactors, such as flavin mononucleotide (FMN) and flavin
adenine dinucleotide (FAD). This complex mediated electron
supplementation to cytochrome P450 from NADPH is required
for erastin-, FIN56-, ML210-, or RSL3-induced lipid peroxidation
and subsequent ferroptosis in melanoma and other cancer
cells (Zou et al., 2020). Although the exact mechanism of
POR-mediated lipid peroxidation is still unknown, POR may
accelerate the cycling between ferrous and ferric iron in the
heme component of cytochrome P450 (Zou et al., 2020). Given
that the conditional knockout of POR in the liver leads to a
decrease in the metabolism and lipid accumulation in mice
(Henderson et al., 2003), the pathological role of POR-mediated
ferroptosis in tissue damage and metabolism disease is worthy
of further study.

ANTIOXIDANT DEFENSE IN
FERROPTOSIS

Cellular protection against oxidative damage in ferroptosis is
organized at multiple levels. The synthesis of antioxidants,
such as glutathione (GSH), coenzyme Q10 (CoQ10) and
tetrahydrobiopterin (BH4), is the main defense strategy in
the process of ferroptosis, which is related to multiple
enzymes or proteins (Figure 1). In addition to the antioxidant
systems discussed below, some antioxidant proteins, such as
peroxiredoxins (PRDXs) (Lu et al., 2019; Qi et al., 2019; Lovatt
et al., 2020) and thioredoxin (Llabani et al., 2019), can also

block ferroptotic cell death. Therefore, an integrated antioxidant
defense network exists in different cells.

GSH System
Glutathione is an active tripeptide, formed by the condensation
of glutamic acid, cysteine, and glycine. As an important
antioxidant, glutathione is used to treat liver diseases, tumors,
poisoning, cataracts, and aging diseases. The pharmacological
inhibition of GSH synthesis and utilization is a classic method of
inducing ferroptosis (Dixon et al., 2012; Yang et al., 2014).
There are two main sources of cysteine production for
GSH synthesis, namely the system xc− pathway and the
transsulfuration pathway (McBean, 2012; Lewerenz et al.,
2013). System xc− is a transmembrane sodium-independent
and chloride-independent transporter of cystine and glutamic
acid, which contains two key components [solute carrier family
7 member 11 (SLC7A11/xCT) and solute carrier family 3
member 2 (SLC3A2/CD98)] (Lewerenz et al., 2013). After being
transported into the cell by system xc−, cystine is oxidized
to cysteine, which is then used for glutamate-cysteine ligase
catalytic subunit (GCLC/GCL)-mediated GSH synthesis.
The inhibition of system xc− (using erastin, sorafenib, and
sulfasalazine) or GCL (using buthionine sulfoximine) triggers
ferroptosis in various cells (Conrad and Pratt, 2019). The
expression or activity of system xc− is affected by epigenetics,
transcription, and posttranscriptional and posttranslational
regulators, such as TP53 (Jiang et al., 2015), NFE2L2 (Chen
D. et al., 2017), BRCA1-associated protein 1 (BAP1) (Zhang
Y. et al., 2018), mucin 1, cell surface-associated (MUC1)
(Hasegawa et al., 2016), or BECN1 (Song et al., 2018), leading
to complex feedback mechanisms to control GSH levels
in ferroptosis. The transsulfuration pathway is a metabolic
pathway that involves the interconversion of cysteine and
homocysteine through intermediate cystathionine (McBean,
2012). Cystathionine gamma-lyase (CTH/CGL)-mediated
decomposition of cystathionine is required for cysteine
production. This process is inhibited by cysteinyl tRNA
synthetase 1 (CARS1/CARS), an enzyme that charges tRNACys

with cysteine in the cytoplasm. In contrast, knocking down
CARS1 increases resistance to ferroptosis by activating the
transsulfuration pathway (Hayano et al., 2016).

The main anti-ferroptotic activity of GSH is related to
GPX4, which reduces phospholipid hydroperoxide production
(AA/AdA-PE-OOH) to AA/AdA-PE-OH (Yang et al., 2014).
GPX4 is a selenium-containing protein whose activity is regulated
by GSH. As an essential trace element, the function of selenium
depends on a unique functional group, namely the selenol (-
SeH) group. In the catalytic cycle of GPX4, active selenol (-
SeH) is oxidized by peroxide to selenic acid (-SeOH), and then
reduced by GSH to intermediate selenide disulfide (-Se-SG)
(Ingold et al., 2018). GPX4 is further activated by the second
GSH, releasing glutathione disulfide (GS-SG) (Ingold et al., 2018).
GPX4 inhibitors (e.g., RSL3, ML162, ML210, FIN56, and FINO2)
are also known as classic ferroptosis activators, although their
activities and effects are still different (Conrad and Pratt, 2019). In
addition to ferroptosis, GPX4 also mediates antioxidant defense
in apoptosis (Ran et al., 2003), necroptosis (Canli et al., 2016), and
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pyroptosis (Kang et al., 2018), suggesting a context-dependent
role of GPX4 in cell death.

CoQ10 System
Coenzyme Q10 is a vitamin-like endogenously produced
isoprenyl benzoquinone compound that occurs naturally in
the human body and is highest in the heart, liver, kidney,
and pancreas (Hernandez-Camacho et al., 2018). CoQ10 exists
in oxidized form (ubiquinone) and reduced form (ubiquinol).
The effective function of mitochondria depends on various
cofactors, such as L-carnitine, α-lipoic acid, and CoQ10 (Pagano
et al., 2014). CoQ10 is particularly interesting because it not
only supports the mitochondrial respiratory chain, but also
acts as a powerful antioxidant by neutralizing free radicals in
various membrane structures (Teran et al., 2018). CoQ10 not
only inhibits apoptosis (Chen et al., 2011), but also ferroptosis
(Shimada et al., 2016). For example, the application of farnesyl
pyrophosphate (an upstream product of CoQ10 synthesis) or
idebenone (a hydrophilic analog of CoQ10) prevents ferroptosis
caused by FIN56 (Shimada et al., 2016). In contrast, inhibiting
the production of CoQ10 may accelerate ferroptotic cell death.

In particular, apoptosis-inducing factor mitochondrial-related 2
(AIFM2/FSP1/AMID), a traditional regulator of apoptosis in the
mitochondria (Wu et al., 2002), can mediate the production
of CoQ10 to inhibit ferroptosis in a GSH-independent manner
(Bersuker et al., 2019; Doll et al., 2019). This process requires the
N-myristoylation of AIFM2, which results in the translocation
of AIFM2 to the cell membrane (Bersuker et al., 2019; Doll
et al., 2019). The depletion of CoQ10 biosynthesis enzyme [e.g.,
coenzyme Q2, polyprenyltransferase (COQ2)] may reverse the
anti-ferroptotic activity of AIFM2 (Bersuker et al., 2019; Doll
et al., 2019). Of note, the increased accumulation of AIFM2
in the cell membrane may also inhibit ferroptosis by activating
CHMP5- and CHMP6-mediated ESCRT-III membrane repair
mechanisms, which are independent of CoQ10 (Dai et al., 2020d).
Statin drugs inhibit 3-hydroxy-3-methylglutaryl–coenzyme A
reductase (HMG-CoA), a rate-limiting step that converts
HMG-CoA to mevalonate in the production of cholesterol.
Interestingly, statins can cause a decrease in CoQ10, thereby
increasing the sensitivity of ferroptosis (Shimada et al., 2016).
Further understanding of the antioxidant capacity of CoQ10 may
provide benefits for reducing ferroptosis-related damage.

FIGURE 3 | The role of ferroptosis in diseases. Impaired or excessive ferroptotic pathway is involved in various diseases, such as neurodegenerative diseases,
infectious diseases, cancers, and ischemia-reperfusion (I/R) injury diseases.
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BH4 System
Tetrahydrobiopterin is a natural nutrient that can be used as a
cofactor for various enzymes, such as tryptophan hydroxylase,
phenylalanine hydroxylase, tyrosine hydroxylase, nitric oxide
(NO) synthase, and glyceryl ether mono-oxygenase (Werner
et al., 2011). Functionally, BH4 is involved in the biosynthesis
of some neurotransmitters, such as 5-hydroxytryptamine,
dopamine, noradrenaline, adrenaline, and melatonin (Werner
et al., 2011). Exogenous dopamine or melatonin has been shown
to suppress erastin- or hemin-induced ferroptosis in various
cells (NaveenKumar et al., 2019; Wang et al., 2016), but it
remains unclear whether BH4-mediated endogenous dopamine
or melatonin production regulates ferroptosis. In addition, BH4
plays a redox role in the catalysis of L-arginine, O2, and
NADPH to form NO. The oxidation of BH4 to BH2 causes
an uncoupling of NOS, thereby forming O2

·− instead of NO.
O2

·− reacts rapidly with NO to form peroxynitrite, and nitrite
can further uncouple NOS (Werner et al., 2011). The activation
of the NO pathway is implicated in ferroptosis-related tissue
injury (Deng et al., 2020). In particular, L-arginine induces acute
pancreatitis in mice through the activation of ferroptosis-induced
sterile inflammation, which is further regulated by circadian
rhythms (Liu et al., 2020d). The synthesis and recycling of BH4
is a dynamic process, and GTP cyclohydrolase-1 (GCH1) is
the rate-limiting enzyme for the biosynthesis of BH4. GCH1-
mediated BH4 production prevents ferroptosis by inhibiting
lipid peroxidation (Kraft et al., 2020), indicating that BH4 has
antioxidant activity during cell death. Overall, these findings
demonstrate the prosurvival role of BH4 in protecting against
ferroptotic damage.

FERROPTOSIS IN DISEASE

More and more reports showing that impaired or
excessive ferroptotic pathway in various diseases, such as
neurodegenerative diseases, infectious diseases, cancers, and
ischemia-reperfusion (I/R) injury diseases (Figure 3). In cancer
pathology, ferroptosis not only inhibits tumor growth (Daher
et al., 2019), but also promotes tumor formation (Dai et al.,
2020b), depending on the type, stage, and microenvironment
of the tumor. Iron-induced ferroptotic damage is implicated
in Huntington’s disease (HD), Alzheimer’s disease (AD), and
Parkinson’s disease (PD) (Skouta et al., 2014; Do Van et al.,
2016; Zhang Y.H. et al., 2018; Hirata et al., 2019), although
oxytosis has long been considered to be the main mode leading
to neuronal cell damage caused by glutamate toxicity (Tan
et al., 2001). Inflammation mediated by ferroptotic cell death
can promote pancreatitis (Liu et al., 2020d), liver fibrosis
(Tsurusaki et al., 2019; Zeng et al., 2020), chronic obstructive

pulmonary disease (COPD) (Park et al., 2019; Wang and Tang,
2019; Yoshida et al., 2019), inflammatory bowel disease (Mayr
et al., 2020), and preeclampsia (Zhang et al., 2020). In addition,
inhibiting ferroptosis can prevent I/R damage to various tissues,
especially liver, kidney, brain, and heart (Linkermann et al.,
2014; Skouta et al., 2014; Martin-Sanchez et al., 2017; Muller
et al., 2017; Fang et al., 2019). Therefore, the development of
pharmacological agents that regulate ferroptosis under these
pathological conditions is crucial.

CONCLUSION AND PERSPECTIVES

Ferroptosis was discovered not long ago, and there have been
more and more studies related to it in recent years. This
is because the core signals of ferroptosis (iron accumulation
and lipid peroxidation) are often observed abnormally in
various diseases and pathological conditions. Like other types
of regulated cell death, ferroptosis may be caused by an
imbalance between oxidation and antioxidant systems (Chen
et al., 2020). In particular, NOX-dependent and mitochondrial
respiratory chain-dependent ROS formation facilitates lipid
peroxidation, whereas the GSH, CoQ10, and BH4 systems play
a major role in limiting oxidative damage during ferroptosis.
However, the process and function of ferroptosis needs to be
explored. An unresolved central issue is that these oxidative
damage, antioxidant defense mechanisms, and membrane repair
mechanisms are also involved in the regulation of other kinds
of non-ferroptotic cell death (Bae et al., 2011; Liu et al.,
2020a). Thus, although they may share a common upstream
mechanism, the identification of unique downstream effectors
may distinguish ferroptosis from non-ferroptotic cell death.
Similarly, it remains a challenge to distinguish the pathological
role of ferroptosis and non-ferroptotic cell death in disease
(Hotchkiss et al., 2009). In addition, the complexity of autophagy
and lipid metabolism in the regulation of ferroptosis should be
further clarified (Liu et al., 2020b; Xie et al., 2020b) and therefore
provide a reasonable explanation for regulating ferroptosis in a
context-dependent manner.
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