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Background:Cancer stroma contains the neural compartment with specific components
and action. Neural microenvironment processing includes among others axonogenesis,
perineural invasion (PNI), neurosignaling, and tumor cell neural/neuroendocrine
differentiation. Growing data suggest that tumor-neural crosstalk plays an important
function in prostate cancer (PCa) biology. However, the mechanisms involved in PNI and
axonogenesis, as well as their patho-clinical correlations in this tumor are unclear.

Methods: The present study was carried out on FFPE samples of 73 PCa and 15 benign
prostate (BP) cases. Immunohistochemistry with neural markers PGP9.5, TH, and NFPwas
performed on constructed TMAs and selected tissue sections. The analyzed parameters of
tumor innervation included small nerve density (ND) measured on pan-neural marker
(PGP9.5) and TH s4tained slides, as well assessment of PNI presence and morphology.
The qualitative and topographic aspects were studied. In addition, the expression of
neuroendocrine marker chromogranin and NPYwas assessed with dedicated indexes. The
correlations of the above parameters with basic patho-clinical data such as patients’ age,
tumor stage, grade, angioinvasion, and ERG status were examined.

Results: The study showed that innervation parameters differed between cancer and BP.
The neural network in PCa revealed heterogeneity, and ND PGP9.5 in tumor was
significantly lower than in its periphery. The density of sympathetic TH-positive fibers
and its proportion to all fibers was lower in cancer than in the periphery and BP samples.
Perineural invasion was confirmed in 76% of cases, usually multifocally, occurring more
commonly in tumors with a higher grade. NPY expression in PCa cells was common with
its intensity often rising towards PNI. ERG+ tumors showed higher ND, more frequent PNI,
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and a higher stage. Moreover, chromogranin-positive cells were more pronounced in PCa
with higher NPY expression.

Conclusions: The analysis showed an irregular axonal network in prostate cancer with
higher neural density (panneural and adrenergic) in the surroundings and the invasive front.
ND and PNI interrelated with NPY expression, neuroendocrine differentiation, and ERG
status. The above findings support new evidence for the presence of autocrine and
paracrine interactions in prostate cancer neural microenvironment.
Keywords: neural microenvironment, prostate cancer, NPY, nerve density, perineural invasion
INTRODUCTION

There is growing preclinical and clinical data confirming that the
peripheral and central nervous system contributes to the
initiation and progression of cancer (1, 2). The neuronal
influence is provided by sympathetic and parasympathetic
activity through electrochemical synaptic impulses, paracrine
and systemic signaling. Connections between cancer and its
neural microenvironment constitute a new concept in cancer
pathobiology and begin the era of cancer neuroscience (3–6).

The correlations between prostate cancer (PCa) and the
nervous system are prominent. PCa often develops multifocally
within the peripheral region of the organ which is the most
innervated. A lower incidence of PCa was noted in patients with
spinal injury. Moreover, experimental studies showed that
sympathectomy decreased the risk of cancer (7, 8). The
phenomenon of cancer axonogenesis and neurogenesis in PCa
was first described by Ayala et al. (9). The rich innervation of the
prostate is clinically important for oncologists and urologists,
especially in the context of the surgical technique and its
consequences for the patient’s quality of life (10). Perineural
invasion (PNI) is a well-known phenomenon in cancer, being
explained for decades as a passive type of neoplastic infiltration.
The incidence of PNI in PCa is the highest among urogenital
malignancies. It is one of the ways of cancer spreading.
Additionally, it is postulated as an additional factor of the
development of bone metastases (11, 12). The active role of the
neuronal network within the tumor and its surroundings is
another new focus of investigations in cancer neuroscience.
Since little is known about the biological mechanisms
contributing to PNI, in vitro and in vivo studies showed that
neurotrophic factors and axon guidance molecules were involved
in this process (12–16). Neurotransmitters, neurotrophins and
neuropeptides play a crucial role in the neural regulation of
cancer cells, but their exact mechanisms remain undefined (12,
16). Furthermore, different hypotheses were presented to explain
the origin of nerve fibers in the cancer microenvironment. One
of them is axonogenesis defined as an increase observed in case
of axon extensions and their quantity or growth in the nerves
within the tumor (9). Several parameters were implemented to
examine tumor innervation, e.g. axonal or neural density (ND),
neural area, neural score and neural index (2, 17–21). ND seems
to be a simple method, but available research on different types of
cancer provided divergent results due to differences in
2

definitions, methodology, and the type of analyzed samples
(17, 20–23). Since the chemical, genetic or surgical
modifications of nerves influence tumor development, the
relations cancer – the nervous system became a new concept of
treatment (2).

The neural stromal compartment is responsible for a specific
microenvironment which is different in benign and malignant
prostatic glands (5). The glandular part of the normal prostate is
supplied by cholinergic fibers while the stromal part – by adrenergic
ones and peptidergic nerve fibers. Neuroendocrine cells (NE) which
are dispersed within the prostate epithelium release several
neurotransmitters, which play an integrational role. This
innervation and interaction model is aberrant in cancer (2).
Preclinical studies supported evidence confirming that the
sympathetic nervous system was involved in the early and local
phases of PCa growth, and the parasympathetic system had a role in
its dissemination (2). The neurotransmitters, neurotrophic factors
and axon guidance molecules which are released by nerves and
cancer cells drive the tumorigenesis of PCa. In addition, prostate
and PCa cells are characterized by the altered expression of genes
which are involved in neural regulation.

The E26 transformation-specific (ETS) transcription factors
are a family of transcription factors which control numerous
biological processes like the apoptosis, angiogenesis, growth,
proliferation, migration and differentiation of cells. They are
also involved in the pathogenesis and progression of cancer (24).
The TMPRSS2-ERG fusion is an early event in PCa which most
frequently occurs between exon 1 of the TMPRSS2 gene and
exon 4 of the ERG gene which is an ETS member. The
TMPRSS2-ERG fusion is one of the most common genetic
alterations in PCa, leading to the androgen-regulated
overexpression of ERG oncogene, which affects the expression
of numerous signaling pathways and genes including
Neuropeptide Y (NPY) (25–27).

NPY is the most abundant peptide in the central nervous
system. However, it is also released by nerves and can be
synthetized by tumor cells (28). The most important pathway
involved in prostate cancer biology is the androgen pathway, but
nervous signaling emerges as the second one (29). Interestingly,
the amount of NE cells increases during antiandrogen PCa
therapy, leading to the so called “neuroendocrine switch” and
therapy resistance (castration-resistant prostate cancer) (30).

The study was performed to analyze the morphological and
quantitative aspects of axonogenesis and neuroinvasion in
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prostate cancer and their correlations with the neuroendocrine
features and basic patho-clinical characteristics of tumors.
MATERIAL AND METHODS

The research was carried out according to The Code of Ethics of
the World Medical Association (Declaration of Helsinki) and
approved by MUG (Medical University of Gdańsk) Bioethics
Committee (NKBBN/448/2015). The examined group was based
on 97 formalin-fixed paraffin-embedded archival samples of
prostate carcinoma (PCa) obtained from patients who
underwent radical prostatectomy as the first-line treatment at
two oncology centers between 2013 and 2016. Before
prostatectomy, patients had not been treated with hormone
therapy and/or radiotherapy. The tumors were examined
according to WHO 2016 Classification of Tumours of the
Urinary System and Male Genital Organs, TNM 8th Edition,
and the recommendations of the Polish Society of Pathologists
(31–33). The patho-clinical data encompassed: patients’ age,
tumor stage, histological Grade Group (GG), the presence of
perineural invasion, and angioinvasion. The characteristics of the
group are collated in Table 1. The control group consisted of 15
benign prostate (BP) cases operated due to benign prostate
hyperplasia (12) or bladder cancer (T2N0) (3). Hematoxylin
and eosin (H&E) slides from all cases were reviewed by two
Frontiers in Oncology | www.frontiersin.org 3
observers. The most representative fields of neoplastic tissue and,
if present, areas with PNI were selected. 24 cases were excluded,
because of insufficient material for further analysis.

The study was performed with tissue microarray technique
(TMA) with Tissue-Tek Quick-Ray Tissue Microarray System
(Sakura, Japan). Seven TMAs were constructed with tissue cores,
5 mm in diameter, collected from 73 cases of the PCa group and
15 from the control BP group. Each case was represented by 2-3
cores, parallel to the heterogeneity of specimens and a separate
sample from PNI fields. In total, we examined 156 prostate
cancer and 14 benign prostate cores for each immunostaining.
Additionally, whole section slides were used in six cancer cases
for topographical and morphological analysis. The blocks were
cut serially into 4 µm-thick sections. The next step comprised
immunohistochemistry with the use of: monoclonal anti-protein
Gene Product 9.5 antibody (PGP) (anti-PGP 9.5, ab 8189,
mouse, Abcam, 1:1000), polyclonal anti-tyrosine hydroxylase
antibody (anti-TH, ab 112, rabbit, Abcam, 1:500), monoclonal
anti-neurofilament proteins (anti-NFP, Dako Ready-to-use,
mouse, Dako), polyclonal anti-neuropeptide Y (anti-NPY, ab
30914, rabbit, Abcam, 1:1000), anti-chromogranin A (mouse,
Ready-to-use, Thermo Fisher Scientific), and monoclonal anti-
ERG antibody (ab 136152, mouse, Ready-to-use, Abcam). PGP
and NFP were used as pan-neuronal markers while TH was used
as a sympathetic marker. The immunohistochemistry was
carried out with appropriate positive and negative controls,
with the routine performed according to the producer
guidelines and dedicated protocols established in our
laboratory. Histopathological assessment and analyses were
carried out with a light microscope (Olympus BX51). All slides
were scanned with Hamamatsu C12740 scanner.

Immunohistochemistry with PGP, TH and NFP was
performed for the morphological and quantitative analysis of
neural structures (nerves, nerve fibers/axons). The number of
axons and nerves was counted manually in five fields in the hot
spot tumor area, and at least two fields in the tumor periphery (up
to 1 mm outside of the tumor infiltration) in hot spot areas. Hot
spot areas were identified under 200xmagnification. Nerve density
was defined as the average of structures per one field under 400x
magnification (the area of 0.15 mm2). The diameter of counted
neural structures was below 20 µm. Any immunopositive single
separate dark brown structure taking the shape of a dot, line, or
linear structure was considered and counted.

Perineural invasion was defined as cancer cell presence in any
of the nerve layers in the form of an invasion, surrounding, or
passing through a nerve.

NPY expression was performed semi-quantitatively as the
expression score (ES). The paravertebral ganglion neurons were
used as the positive control. ES (0–2) was based on the intensity
and rate of staining. The intensity of staining was calculated on a
0-3 scale (0 – negativity, positivity: 1 – weak, 2 – moderate, 3 –
strong), in two selected tissue regions with the strongest staining.
The field was considered positive if at least 5% of cells showed
positivity. ES was calculated with the following formula: 1x[% of
cells staining weakly (0-1)] +2x[% of cells staining moderately
(2)] +3x[% of cells staining strongly (3)]. Finally, ES was
TABLE 1 | The patho-clinical characteristics of the study group.

Age of patients (55-80 years) N (%)

<65 years old 25 (34.25)
≥ 65 years old 48 (65.75)

pT stage N (%)
2a 2 (2.74)
2b 2 (2.74)
2c 27 (36.98)
3a 22 (30.14)
3b 20 (27.40)

pN stage N (%)
0 67 (91.78)
1 6 (8.22)

Grade Group N (%)
1 12 (16.43)
2 33 (45.21)
3 13 (17.81)
4 7 (9.59)
5 8 (10.96)

Perineural Invasion (PNI) N (%)
No 17 (23.29)
Yes 56 (76.71)

Extraprostatic extension N (%)
No 31 (42.47)
Yes 42 (57.53)

Angioinvasion or/and Lymphatic invasion N (%)
No 57 (78.08)
Yes 16 (21.92)

ERG N (%)
Negative (0) 38 (52.05)
Positive (1,2) 35 (47.95)
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calculated according to the modified scale by Pirker et al.: ES0
(0-99), ES1 (100-199), and ES2 (200-300) (34). A 0-2 scale was
used to assess the expression of NPY in PNI areas in comparison
to tumor infiltration. The strength of staining was classified as:
the same/weaker (0), stronger (1), or much stronger than 1 (2).

Chromogranin expression was assessed as a measure of
neuroendocrine differentiation. The average of positive cells was
counted in one field (surface area – 0.15 mm2, magnification:
400x) in 5 hot spot areas. In addition, we assessed the level of
chromogranin expression according to Ishida et al. (35). It was
classified as high (H; ≥10 positive cells/1 field) or low (L; <10
positive cells/1 field). ERG expression was assessed in the nuclei of
cancer cells on the scale: 0 (negativity), 1 (weak, light brown
staining), and 2 (strong, dark brown, or at least 50% of dark
nuclei). The endothelial cells were used as the positive control.
Only two categories: negative (0) and positive (1 and 2) were used
for further statistical analysis.

Statistical analysis was performed with MedCalc software.
The differences between groups were tested using the Mann-
Whitney U test and the t-student test. Differences at p<0.05 were
considered statistically significant.
RESULTS

The Morphological Analysis of Innervation
The arrangement of nerve structures differed between PCa and
BP (Figures 1A–F, 2F). PGP was the most sensitive antibody
with the best detection contrary to NFP which was the least
sensitive and showed the lowest number of structures. In BP the
highest concentration of nerve structures was identified in the
periphery of the organ, where the diameter of nerve fibers was
the highest and diminished towards the center of the prostate.
Numerous axons in the fibromuscular stroma and axons
surrounding vessels were revealed at the depth of 3-5 mm.
Axons were distributed quite regularly in BP, with irregularity
found in nodular hyperplasia. Small nerve fibers also surrounded
the blood vessels. As regards cancer, the nerve fibers were
distributed irregularly. Axons penetrated between the
neoplastic glands and inflammatory infiltrate in the stroma
and entwined them in PCa PGP+. Axons that closely adhered
to separate glandular cells created a basket or net-like structures.
TH-positive axons occurred mainly in the stroma of the prostate
contrary to neoplastic interglandular infiltration. The highest
concentration and diameter of nerve structures were present in
the peripheral region of neoplastic prostate infiltration.
Moreover, differences occurred between low (GG 1,2,3) and
high-grade (GG 4,5) tumors. In low-grade tumors, the nerves
were dispersed within the infiltration among the preexistent
benign glands as opposed to high-grade cases creating a more
solid mass, where the neuronal network dominated in the
invasive tumor front.

PNI included the infiltration of larger nerves, ganglia and
nerve structures, most commonly in the form of segmental or
circular invasion, and in 90% of cases they occurred multifocally.
The disintegration (combing out) of the nerves by neoplastic
Frontiers in Oncology | www.frontiersin.org 4
cells was also observed, usually located more centrally in
the tumor.

Neural Density
The assessment of ND with TH sympathetic marker showed that
TH ND was lower in PCa than in BP (8.40 vs. 15.6 structures;
p<0.01). No difference was observed between PGP ND in PCa
and BP (31.45 vs. 38.15 structures; p=0.21). ND was higher in
cancer periphery than in PCa (PGP – 42 vs. 31.45 structures;
p=0.01; TH – 21.5 vs. 15.6; p<0.01). There was no difference
between the periphery of cancer and BP in both axonal markers,
i.e. PGP (p=0.52) and TH (p=0.57). In addition, we analyzed the
statistical correlation between PGP and TH ND in PCa (r=0.44;
95% CI 0.23-0.6; p<0.01). The comparison of PGP/TH ND ratio
in PCa and the periphery was statistically significant (PGP;
r=0.35; 95% CI 0.13-0.54; p<0.01; TH; r=0.36; 95% CI 0.14-
0.55; p<0.01). Furthermore, the PGP/TH ratio was higher in PCa
than in the periphery (p<0.01) and BP (p=0.02).

The Correlations Between ND and PNI,
and the Clinico-Pathological Features
of Tumors
No correlations were found between tumor differentiation grade
(Grade Group <3 vs. ≥3), ND in PCa (PGP p=0.86; TH p=0.77), and
the peripheral area of PCa (PGP p=0.66; TH p=0.52). The only
subgroup of Grade Group 1 (15.90, 95%CI 4.37-19.89) tumors were
characterized by higher TH ND than Group 2 (8.00, 95% CI 5.13-
9.26, p=0.04). Moreover, the difference between tumor stages (pT2
and pT3) was not statistically significant (Table 2).

PNI was observed more commonly in Grade Group >1 tumors
than GG 1 (OR 7.13, 95% CI: 1.88-27.08; p<0.01). PNI occurred
more frequently in pT3 tumors than in pT2 (OR=4.67; 95%CI 1.43-
15.22; p=0.02). Additionally, we did not observe the dependence of
perineural invasion on the invasion of blood and lymph vessels
(p=0.09), which was more common in pT3 tumors (p=0.01).

The Analysis of NPY and Chromogranin
Expression
Benign prostate and PCa cells showed NPY expression
(Figures 2A, B). As regards BP, only luminal cells were
characterized by membrane apical expression and, rarely, weak
cytoplasmic staining, with the negativity of basal cells
(Figure 2B). Cancer glands were characterized by both
cytoplasmic and membrane staining with different intensity.
Neuroendocrine cells in BP and PCa were NPY-positive, but
the strongest staining was observed in case of autonomic nerve
ganglia (Figures 2C, D). Other compounds of the tumor stroma
were negative. In 65.75% (45 cases) the staining was non-
homogeneous. The results of immunostaining are presented in
Table 3. We checked if the parameters of cancer innervation
depended on NPY expression. The average of ND in PCa and the
periphery was the same (Table 3). However, a tendency towards
lower ND was noted in the peripheral tumor area of PCa in
tumors with a high NPY expression (p=0.07). In some cases NPY
expression was higher in the peripheral area or in the proximity
of the nerves. A high NPY expression (NPY2) in PNI area
July 2021 | Volume 11 | Article 710899

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sigorski et al. Neural Microenvironment in Prostate Cancer
occurred more commonly in NPY-positive than NPY-negative
cases (OR: 5, 95% CI: 1.14-24.64; p=0.03). No correlation
occurred between NPY and tumor stage (p=0.74), EPE
(p=0.23), Grade Group (p=0.95), and ERG (p=0.60).

In BP, chromogranin positivity was present in neuroendocrine
cells located between luminal cells. In cancer cells, three types of
expression patterns were distinguished – a single-cell, cluster,
and diffuse pattern (Table 3) (35). Chromogranin immuno
reactivity was not different in PNI regions compared to the
rest of the infiltration. The average number of chromogranin-
positive cells varied between 1 to 38/field in PCa (median 1.65,
95% CI: 1-2.38), while in BP – between 0 to 15.8 (median
6.40, 95% CI: 4.65-7.52). The median of positive cell count
was lower in PCa than in BP (p<0.01, 95% CI: 1.60-5.40).
Frontiers in Oncology | www.frontiersin.org 5
The level of chromogranin expression (High/Low) did not
differ significantly between ND in the tumor (PGP 9.5, p=0.78;
TH, p=0.85) and the periphery (PGP 9.5 p=0.37; TH p=0.78),
PNI (p=0.67), pT stage (p=0.12), Grade Group (p=0.19), vascular
invasion (p=0.11), EPE (p=0.12), age (p=0.12), and ERG
(p=0.37). Interestingly, a high chromogranin level (H) was
observed in tumors with a high NPY expression (NPY2,
OR=3.84; 95% CI: 1.10-13.35, p=0.03).

The Analysis of ERG Expression
A total of 47.95% of studied PCa cases were ERG-positive
(Figure 2E and Table 1). The analysis of ND in correlation with
ERG status revealed that the mean of ND PGP 9.5 in the ERG+
group was higher than in ERG- group (CI 95% 1.03-17.81; p=0.03),
FIGURE 1 | The morphology of perineural invasion and axonogenesis in PCa and the benign prostate. (A, B) Different forms of perineural invasion and small nerves
within the cancerous infiltration (PGP 9.5, 200x). (C) Multiple axons and small nerves within the stroma of the benign prostate (PGP 9.5, 400x). (D, E) Axons within
the neoplastic infiltrate located in the stroma and surrounding cancer cells (D, TH, 600x), (E, TH, 400x). (F) High neural density in the surrounding benign prostate
with axons growing into the cancer tissue of high Gleason score PCa (PGP 9.5, 200x).
July 2021 | Volume 11 | Article 710899
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but ND TH was similar in PCa (p=0.89). PNI was present four
times more commonly in ERG-positive tumors than in ERG-
negative ones (OR=4.03; 95% CI 1.17-13.90, p=0.03). ERG
positivity was associated with EPE (OR=3.22; 95% CI:1.19-8.63,
p=0.02), but it was not correlated with Grade Group (p=0.10), age
(p=0.62), or angio- and lymphatic invasion (p=0.14).
DISCUSSION

Complex interactions between nerves and PCa cells were first
described by Ayala et al. who showed that the co-culture of PCa
Frontiers in Oncology | www.frontiersin.org 6
cell line with dorsal root ganglion stimulated the outgrowth of
neurites and the migration of tumor cells toward the neural
structures (6). PCa represents a tumor with a specific
microenvironment, where reciprocal interactions between nerves
and other cellular and extracellular components were observed
molecularly and clinically in vitro and in vivo (5, 7, 36, 37).
Neurotransmitters released within the tumor microenvironment
modulate the expression of genes by targeting tumor receptors
affecting the biological potential of cancer. PCa cells are prone to
neurotransmitter expression, partially due to the special signature of
genes known as the “brain profile’’ particularly observed during the
CRPC stage of the disease (29, 38). The systemic and regional
FIGURE 2 | NPY, chromogranin, and (NPY, 400x) ERG expression and perineural invasion in prostate cancer. (A, B) Cytoplasmic-membranous NPY expression in
neoplastic glands. (A) Strong expression score (2). (B) 200x Heterogenous intermediate NPY expression score and membranous apical immunostaining within the
preexistent prostate glands (NPY, 200x). (C) Chromogranin – a strongly positive scattered single cell pattern (chromogranin, 400x). (D) A high level of neuroendocrine
differentiation within PCa (chromogranin). (E) Nuclear ERG expression with diverse intensity within the cancer cells, positive endothelial cells, and immunonegative
benign prostatic glands (ERG, 100x). (F) A histological section of prostate cancer with focal perineural invasion and other invisible neural components of the
microenvironment (HE, 200x).
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activity of the autonomic nervous system seems to differ between
solid tumor types. In some of them tumor growth is promoted by
adrenergic transmission. Conversely, cholinergic ones have
stimulating or inhibitory properties or function depending on the
type and stage of cancer (39, 40). Neural stimulation was found to
modify immune response, angiogenesis, apoptosis, cancer cell
metabolism, and invasiveness (3, 16, 39, 41). Neurogenesis and
axonogenesis may be considered as new hallmarks of cancer,
similarly to the neuro-glial activation or angiogenesis (42, 43). The
available results underlay the hypothesis of the importance of neural
Frontiers in Oncology | www.frontiersin.org 7
network and altered nerve density in PCa (2). An experimental
clinical study by Magnon et al. demonstrated that ND was higher in
the PCa area and cancer-surrounding zone in the high-risk group of
patients. Moreover, this group showed a different sympathetic and
parasympathetic regulation of tumor growth which might be
modified genetically, surgically or pharmacologically (2).

Our study was conducted to examine axonogenesis and some
aspects of the crosstalk between nerves and neoplastic cells in
PCa. Our analysis revealed the heterogeneous distribution and
topography of nerves in cancer compared to benign prostate
where the distribution of innervation was regular and adjusted to
histological structures. Morphological analysis showed the
presence of small nerve fibers in the invasive tumor front,
which also implies the nervous promotion of tumor invasive
growth. Moreover, PNI presented more distinct morphological
features in the peripheral areas of the prostate and extraprostatic
extension zones than in the deeper part of the prostate. More
centrally, cancer infiltrate was able to disintegrate the nerves,
probably activating the axonal sprouting. The distribution of
nerves within the tumor infiltrate microenvironment was not
homogeneous. The quantity of the analyzed structures depended
on the amount of stroma. High-grade compact and cellular
tumors (GG 4-5) did not contain many internal axonal
structures contrary to low-grade tumors with more dispersed
growth among the preexistent structures. The presence of neural
structures in PCa stroma is diverse and may be a result of the
recruitment of loco-regional nerves by the tumor, but also of
axonogenesis or neurogenesis (1, 2, 44). It was proposed that the
TABLE 3 | The summary of chromogranin and NPY expression results.

Marker N (%)

Chromogranin staining
1. Single-cell pattern 57 (78.08)
Cluster pattern 15 (20.55)
Diffuse pattern 1 (1.37)
2. High expression 57 (78.08)
Low expression 16 (21.92)

NPY
Expression score
0 4 (5.48)
1 25 (34.25)
2 44 (60.27)
Expression in PNI
Lower/equal 27 (73.68)
Higher 10 (26.32)
GG, grade group; NPY, neuropeptide Y; PNI, perineural invasion.
TABLE 2 | ND and PNI in the study group according to Grade Group, pT stage and ERG status.

PGP ND TH ND PNI

PCa (structures/field of view) p-value (structures/field of view) p-value N (%) p-value
Range: 1.5-87.4 1-27.4
Average: 31.1 9.9
Median: 31.45 (95% CI 24.3-36) 8.40 (95% CI 6.97-10.1)

pT Median
pT2 26.50 (95% CI 1.5-73.9) p=0.28 8.00 (95% CI 1-27.4) p=0.96 37 (66) p=0.02
pT3 34.05 (95% CI 3.4-87.4) 8.40 (95% CI 1-26.4) 19 (34)

GG
1 33.50 (95% CI 10.34-45.47) p=0.04* 15.90 (95% CI 4.37-19.89) 5 (41.66) p<0.01**
2 28.60 (95% CI 21.02-36.05) 8.00 (95% CI 5.13-9.26) 27 (81.82)
3 37.30 (95% CI 11.10-53.97) 12.90 (95% CI 3.74-18.79) 10 (76.92)
4 35.10 (95% CI 19.40-50.18) 10.20 (95% CI 4.19-22.40) 7 (100)
5 24.17 (95% CI 17.28-41.64) 7.13 (95% CI 5.57-10.56) 7 (87.50)

ERG
Positive*** 36.00 (95% CI 29.38-42.62) p=0.03 8.80 PNI + PNI - p=0.03
Negative 26.58 (95% CI 21.10-32.05) 8.00 31 (42.46) 4 (5.48)

25 (34.25) 13 (17.81)
Periphery p-value p-value
Range: 5-143 1-100
Average: 46.2 26.89
Median: 42 (95% CI 33.8-55) 21.5 (95% CI 17.9-29.5)

pT
pT2 42.50 (95% CI 5-124) p=0.85 25.00 (95% CI 1-100) p=0.49
pT3 40.00 (95% CI 7-143) 20.75 (95% CI 1-66)

BP
Range: 10.2-114.9 3.5-185
Average: 36.15 32.7
Median: 38.15 (95% CI 15.2-61.2) 15.60 (95% CI 10-40.79)
J
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origin of new neurons in the tumor microenvironment might be
peripheral or even central (1, 9). The concept of central
neurogenesis was proposed by Mauffrey et al. who found the
increased number of cells with doublecortin in the murine model
of PCa and discovered that those cells originated from the
cerebral subventricular zone, settled in the prostate and
differentiated into adrenergic nerve fibers (1). The peripheral
hypothesis of neurogenesis is based on neuronal or stem cell
differentiation processes. Reeves et al. showed that the most
common type of nerves was the mixed type and pure
parasympathetic innervation (45). Under special conditions,
PCa cell line may trans-differentiate into neuronal phenotype
cells (29, 46). Moreover, the transcription gene-based analysis of
prostate basal cells showed the expression of genes that were
involved in neural and neuronal development (29).

ND is one of the most commonly used quantitative
parameters of tumor innervation (9, 17, 19, 47–49). It was
analyzed with digital image systems of slides immunolabeled
with different markers, such as TH, VACHT, PGP 9.5, NF-H,
NF-L antibodies, and special image processing algorithms.
Moreover, radiological methods may also be used, e.g.
superparamagnetic iron oxide peptide nanoparticles in
magnetic particle imaging (49). All of the techniques have
various specificity and sensitivity levels. Non-compatible tumor
populations make the comparison of ND between studies
difficult in the context of clinical and tissue material, and
methodology. Several authors defined ND as the total nerve
area, the number of nerves per unit area, or different ND scores
(17, 20, 21, 23, 48). The completely simplified method included
only a statement of the presence or absence of nerves and the
level of neural marker staining intensity (22, 50).

We performed a qualitative and quantitative analysis of
innervation on TMAs and a set of whole tissue sections to
optimize and validate the results. We adopted the technique of
the manual calculation of structural elements on digital images
(PGP 9.5, NPY, chromogranin, ERG) and light microscope
images (TH). PGP 9.5 appeared to be the most sensitive pan-
neural marker. Similarly to some other reports the direct analysis
of parasympathetic nerves was not performed in our study, due
to the lack of a reliable marker in formalin-fixed, paraffin-
embedded samples at the time of measurements (45). Our
technique of ND assessment was laborious, but we precisely
counted low diameter axons, even as small as <4 µm. Such a
technique has not been presented in the literature yet. Counting
individual axons provides more precise information about the
neoplastic microenvironment in PCa than counting bigger nerve
branches. The results of ND differ between cancer types and may
be increased or decreased, in addition to its different clinical
relevance. To date, ND has been analyzed in prostate, breast,
colon, liver, pancreas, and thyroid cancers (17, 20, 22, 45, 48, 50).
Neural density reveals diverse relations with histopathological
criteria, tumor stage and clinical relevance in different tumors.
For example, ND was found increased in hepatocellular
carcinoma, thyroid and breast cancer and in some of them
correlated with a higher metastatic potential, shorter disease-
free survival and the overall survival. The degree of axonogenesis
Frontiers in Oncology | www.frontiersin.org 8
may be a more important prognostic factor than lymph node
involvement in colorectal cancer (17, 22, 49). We showed that the
absolute amount of PGP-positive structures was lower in the
cancer bed, in parallel to significantly lower TH ND median in
cancer compared to the benign prostate. The density of
sympathetic fibers and their proportion to all stained fibers
were lower in cancer than in the benign prostate (p<0.0001).
Conversely, PGP ND was significantly higher in the proximal
periphery, close to cancer infiltration than in the cancer area,
which suggests that nerves may drive tumor progression and
invasion. Our results are consistent with the Japanese study of
Iwasaki et al. in pancreatic cancer, where intrapancreatic neural
density and the number of nerves were lower and decreased
towards the center of the tumor (20). Importantly, low neural
density and high perineural invasion were associated with
shorter overall survival in pancreatic cancer patients (20). In
several PCa studies, high nerve density was associated with
poorer clinical outcomes and a higher tumor proliferative
index, which could be explained by the correlation between
ND and prosurvival pathways, hormonal receptor status, co-
regulators and co-repressors (2, 18). The increased nerve density
in PCa was shown by Magnon et al. only in high-risk PCa
patients. They assessed ND by calculating nerve fibers in the
representative normal prostate and PCa areas with tumor grade
distinction using digital microscopy software (2). This study was
based on 43 PCa cases divided into low- and high-risk-defined
PSA >10 ng/ml, Gleason Score ≥7, and ≥pT2b. Their division of
the PCa group was different than the widely accepted clinical
risk-group guidelines, since PSA level >20 ng/ml defines tumors
as high-risk independently from Gleason score or T stage (51,
52). In the study by Magnon et al. only 6 tumors had PSA above
20 ng/ml. Moreover, no pT2b tumors were present in this high-
risk group. However, T3a-T4a cases were described, which
means that according to PSA level or Gleason score they were
classified as a high-risk group. Other authors demonstrated that
the number of nerves might be tumor stage-dependent, although
correlations between tumor grades were less pronounced (45).
Reeves et al. found no dependencies between PNI status in
different nerve subtypes and Gleason score contrary to the
quantity of nerves in PNI tumors which was twice higher (45).
Our study showed that the difference between tumor stage (pT2
and pT3) and ND was not statistically significant. Additionally,
we demonstrated that regarding grade groups, only Grade Group
1 tumors had lower TH ND than GG2. However, our group was
not well balanced. GG2 was the most common (45%). There was
a relatively small representation of GG 4 and 5, which is typical
of studies on prostatectomy series (53, 54). The associations
between ND vs. GG or GS need evaluation on larger and more
representative groups of PCa cases.

The incidence of PNI in various PCa series varied between
12.4 and 83%, but it differed between biopsy and prostatectomy
specimens (21, 23). Our group included 76.71% of cases with
PNI. The prognostic significance of PNI is still not well
established in PCa (55–57). We analyzed PNI according to the
classic definition: the presence of cancer cells in or within nerves,
the circumference or divisions. PNI is defined as a simple
July 2021 | Volume 11 | Article 710899
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adhesion to nerve trunks or splitting nerve structures. As regards
our group, PNI occurred more frequently in pT3 tumors than in
pT2 and Grade Group >1, which was consistent with other
reports (23, 58, 59). A recent meta-analysis of 13 412 radically
treated PCa patients suggested that PNI might be an independent
prognostic factor which increased the risk of biochemical relapse
(60). One study suggested that only sympathetic non-PNI nerve
density and non-adrenergic, non-nitrergic PNI nerve density
were independently associated with recurrence in PCa (45). PNI
creates a specific neoplastic niche, in which tumor progression
may be driven by released neurotransmitters and neuropeptides.
The analysis of gene expression in cells within the perineural
space showed the overexpression of genes involved in anti-
apoptotic and proliferation pathways (PIM-2, DAD-1, NFkB)
(61). It was found that activated galanin receptors on cancer cells
triggered by injured nerves initiated cancer-nerves crosstalk in
the head and neck cancer model. The activation of the galanin
receptor led to prostaglandin synthesis, facilitated tumor
progression and PNI promotion by enhancing neuritogenesis
(62). A recent study by Zahalka et al. indicated that adrenergic
nerves supported cancer angiogenesis and activated angio-
metabolic switch (41). Our study revealed that tumor cell
angioinvasion occurred in more advanced cases (pT3 vs. pT2,
p=0.008), but we did not demonstrate any correlation between
angioinvasion and ND. Relatively little is known about molecular
mechanisms which drive cancer axonogenesis. The compounds
which drive axonogenesis are divided into axon guidance
molecules and neurotrophic factors. Single studies concerning
various cancers showed that Pro-NGF/NGF (nerve growth
factor), BDNF (brain-derived neurotrophic factor), Ephrin B1,
neuroligin-3, pleiotrophin, semaphorin 4F were involved in the
regulation of tumor innervation (3, 63, 64).

We considered NPY as one of the neurotransmitters possibly
involved in PCa neuroendocrine profile and innervation. NPY is
the most abundant peptide in the central nervous system, playing
numerous peripheral and central functions, e.g. as a sensor and
regulator of cell metabolism (65–67). It also promotes the
proliferation of the nerve cells of the hippocampus or damaged
glial cells (68). The expression of NPY is upregulated in some
cancers and supports tumor progression by the activation of
various signaling pathways (69). In neuroblastoma and Ewing
sarcoma NPY stimulates proliferation and modulates
angiogenesis (28, 70). Our study revealed NPY expression in
the prostate, PCa, and the neural components of the tumor
microenvironment: nerves and autonomic ganglia, similarly to
previous research (71–73). Two sources of NPY may be
distinguished in cancer cells: paracrine from the nerves within
the microenvironment, and autocrine synthesis which allows for
neuronal and non-neuronal modulation within tumor
components (71). Our study showed that the expression of this
peptide was heterogenous within the tumor and higher than in
the benign controls. Over 94% of PCa cases showed NPY
expression. We analyzed the correlation between NPY and the
parameters of tumor innervation. Few clinical studies suggested
that NPY innervation was associated with radiation resistance,
biochemical recurrence, and PCa-specific death (71). We did not
Frontiers in Oncology | www.frontiersin.org 9
demonstrate the correlation of ND and NPY expression, but
NPY immunopositivity was higher in the proximity of PNI,
especially in cases with initially high NPY expression. NPY PNI
expression was higher than baseline NPY expression in 26.32%
of cases. We analyzed all nerve fiber types with a PGP pan-
neuronal marker, although selective NPY nerve density in the
prostate had been previously reported as higher in high-grade
prostate intraepithelial neoplasia than in PCa and in younger
men, suggesting that NPY nerves were especially important in
prepubertal and pubertal growth (71). We did not observe any
correlation between NPY and PCa grade and stage. However,
lower NPY had already been found to be associated with less
differentiated tumors (74, 75). Additionally, Gleason score of ≤7
and low pro-NPY expression were associated with a lower risk of
death than high NPY expression or high Gleason score in one
study (76). Importantly, plasma low-molecular-weight proteome
profiling showed that NPY and PSA combination revealed the
sensitivity of 81.5% and the specificity of 82.2% for PCa diagnosis
(77). A recent analysis by Alshalalfa et al. showed the highest risk
for uncurable disease in patients with low NPY and ERG-positive
subgroup (74). The TMPRSS2-ERG fusion is an early and one of
the most common genetic abnormalities responsible for tumor
invasion and progression affecting growth pathways and
regulating differentiation, cell cycle, proliferation, angiogenesis
and morphology in PCa (78–80). The overexpression of ERG is a
biomarker of fusion, and may be related to unfavorable
prognostic factors and decreased survival (80–83). The
incidence of fusion significantly differs between the
nationalities and our results were similar to other Polish data
(26, 84, 85). We performed the immunohistochemical evaluation
of ERG status and its associations with clinico-pathological
variables and neural parameters finding that ND PGP 9.5 was
significantly higher in ERG-positive cancers compared to ERG-
negative ones. ND TH did not differ significantly between
groups, but PNI was four times more common in ERG+
tumors. A study by Hänze et al. found neural density to be
higher in TMPRSS2-ERG-positive cancer and no difference
between ND score and PNI (21). The molecular mechanisms
of ERG contribution into the neural microenvironment involved
regulation compounds which additionally promoted PNI (86).
The transcriptional analysis of ERG-positive PCa showed that
metabolic changes led to the increased expression of NPY. The
role of ERG rearrangement is complex. It supports NPY
synthesis in PCa cells but it was also shown to inhibit
neuroendocrine differentiation, one of the basic mechanisms
driving CRPC (71, 87). In vitro studies suggested that it
increased glucose uptake in PCa cells which did not express
endogenous NPY (65). Our study showed that NPY expression
was not correlated with ERG. The population of neuroendocrine
cells present in the prostate and PCa contains many peptides,
which may be involved in the androgen-dependent and
androgen-independent stage of the disease (35). The
neuroendocrine differentiation in PCa cells differed between
studies and ranged from several to 100% (64). The quantity of
chromogranin-positive cells differed between benign prostate
and various stages of PCa, being the highest in CRPC.
July 2021 | Volume 11 | Article 710899
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The results of accessing serum or tissue chromogranin levels as a
prognostic factor are also contradictory (88–90). Similarly to
several previous studies, we used chromogranin to assess
neuroendocrine differentiation in PCa. We showed different
patterns of chromogranin expression, with high results being
obtained in 78.08% of cases based on our criteria. We showed
that high neuroendocrine differentiation in PCa occurred 3.84
more often in cases with a high NPY subgroup, which suggests a
common neural-neuroendocrine profile and reciprocal
regulation within the tumor microenvironment which may
influence diagnostics and therapeutic opportunities in the future.

Our study constitutes a complex analysis of several aspects of
innervation and neuroendocrine profile in PCa. We assessed the
correlations between tumor and the neural microenvironment,
evaluating ND and PNI. We showed that the distribution and
morphology of tumoral innervation were heterogenous. With the
use of our own quantitative method of ND assessment we found
that ND was lower in tumoral infiltration than in the exact tumor
periphery. Moreover, the density of sympathetic nerve fibers and
their proportion to all detected fibers were lower in cancer than
in the benign prostate. PNI involves different types and manner
of infiltration and occurs more commonly in less differentiated
tumors. ERG-positive tumors presented higher innervation, PNI,
and tumor stage. NPY signaling seems to be involved in PCa
invasion, because of its higher expression in PNI areas.
Moreover, tumors with high NPY expression had more
abundant neuroendocrine cell populations.

Personalized therapies based on the biological profile create a
new direction in PCa treatment (91). Targeting tumor innervation
has become a new concept in oncology. Current clinical strategies
related to neural impact in cancer involve selective surgical and
chemical denervation, systemic therapy, imaging, and pain studies.
As regards PCa, some promising data are available concerning b-
blockers and the beneficial action of botulinum toxin as treatments
downregulating neural signaling (4, 92). Other potentially
therapeutic strategies which could affect tumor neurogenesis,
axonogenesis, and perineural invasion may be based on targeting
soluble neurotrophic factors, axon guidance molecules, and
exosomes potentially leading to alteration in tumor growth,
metastases, cancer-induced pain, angiogenesis, and nerve-immune
crosstalk. Currently, the NGF/Trk signaling pathway is the most
studied and most promising, since preclinical studies showed that
anti-NGF antibody inhibited the growth and metastases of PCa
(93). An interesting treatment option would also involve NGF gene
silencing with gold nanocluster-assisted delivery of siRNA, and anti-
NGF antibody- based therapies (94). It was also shown that the
other neurotrophic factor, GDNF released by prostate cancer
fibroblasts was involved in docetaxel tumor chemoresistance (95).
The new direction in cancer-nerve crosstalk may be either targeting
Frontiers in Oncology | www.frontiersin.org 10
the perineural niche in cancer, which contributes to oncogenic
communication between cancer and the neuro-immune system.
The disruption of the mutual regulation between neural
microenvironment (axonogenesis, neurogenesis) and leukocytes
(immune evasion) is an interesting topic for further investigation
in the context of immunotherapy, which significantly increases the
effectiveness of oncological treatment (3). Research concerning the
mechanism of cancer innervation may also broaden the knowledge
about the treatment and prevention of neurological side effects
caused by systemic therapy (96). It is crucial to identify neuro-
molecular pathways involved in neural-cancer crosstalk and
interactions to generate new therapeutic targets (42). Further
research on axonogenesis should be performed in large cohorts of
patients, especially in the context of clinico-pathological data and
clinical relevance.
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