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INTRODUCTION

Epilepsy is estimated to affect 10.5 million children worldwide.[12] In the early pediatric 
population, achieving seizure freedom is critical to prevent developmental arrest or regression.[1,13] 
Nevertheless, these patients often require multiple antiepileptic medications, leading to additive 
side effects, without adequate seizure control. About 20–40% of children have drug-resistant 
epilepsy (DRE), persistent seizures refractory to two antiepileptic medications,[3,8] presenting 
significant social, economic, health, and developmental implications.[14]

Surgical treatment of DRE has been shown to be safer and more efficacious compared to 
medical management.[11] It is aimed to remove or disconnect the epileptogenic zone (EZ), 
the minimal amount of cortex to produce seizure freedom,[17] from surrounding normal 
brain while minimizing morbidity. Conventionally, epilepsy surgery focused on resections 
or disconnections: lobectomy, hemispherectomy, cortical excision, and corpus callosotomy. 
Overtime, the armamentarium has grown to include newer, less invasive approaches including 
neuromodulation and ablative techniques.

With advances in technology, there are now multiple indications for the different types of surgery 
to address pediatric epilepsy. We describe, in Part I, practices and advances in diagnostic workup 
and surgical strategies.
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SURGICAL INDICATIONS

Surgical indications have evolved overtime to encompass a 
wider variety of epilepsy types, applying epilepsy surgery to 
more patients. Table 1 describes the evolution of indications 
for surgical evaluation in recent years.

SURGICAL PLANNING

Presurgical evaluation identifies the EZ, correlating it with 
function. Stepwise evaluation should include a detailed 
clinical history, interictal scalp electroencephalography 
(EEG), long-term video EEG, high-resolution structural 

Table 1: Timeline of indications for epilepsy surgery.

Historically Drug-resistant focal epilepsy impacting quality of life
Absence of progressive neurological disease
Presence of localizable focal epileptogenic zone[11]

American Academy of 
Neurology, 2003

Disabling complex partial seizures
With or without secondarily generalized seizures
Failed appropriate trials of first-line antiepileptic drugs[9]

International League 
Against Epilepsy, 2006

Evidence of focality or a potentially resectable lesion
Presence of cortical dysplasia, tuberous sclerosis complex, polymicrogyria, hypothalamic 
hamartoma, hemispheric syndromes, Sturge-Weber syndrome, Rasmussen syndrome, 
Landau-Kleffner syndrome, and other pathologies with evidence of cortical injury[5]

Table 2: Presurgical epilepsy evaluation.

Test Purpose Strengths/weaknesses

Interictal scalp EEG Identification of interictal electrical 
abnormalities (e.g., spike and sharp wave 
or focal rhythmic slow-wave activity).

Inexpensive; sensitive to cortical currents in all 
orientations.
Low spatial resolution; low diagnostic yield; 
attenuated by skull/scalp.

Long-term video EEG Analysis of ictal semiology and 
correlation with ictal EEG.

Rules out nonepileptic seizures; allows better 
classification of seizure type and localization.
Low spatial resolution; attenuated by skull/
scalp.

High-resolution MRI Detection of structural 
epileptogenic lesion.

Protocoled to detect hippocampal sclerosis and 
focal cortical dysplasia.
Nonexpert reading fails to detect subtle lesions.

Neuropsychological/Neuropsychiatric 
assessment

Evaluation of cognitive capabilities 
and functional deficits.

May detect subtle deficits as well as cognitive 
reserve.
Dependent on skill of administering clinician 
and cooperation of subject.

Magnetoencephalography Identification of magnetic fields 
produced by interictal epileptic 
discharges.

Sensitive to smaller cortical sources than EEG; 
lack of attenuation by skull/scalp.
More sensitive to superficial cortical 
activity; sensitive only to currents tangential to 
scalp surface.

Functional MRI Identification of eloquent cortex 
by mapping language, motor, and 
memory tasks.

Acceptable concordance with Wada testing in 
language localization.
For sensorimotor tasks, electrocortical 
stimulation more reliable; dependent on patient 
cooperation and education.

Interictal positron emission 
tomography

Detection of interictal glucose 
hypometabolism within epileptic foci.

Can detect MRI-negative focal epilepsies 
(e.g., cortical dysplasia, temporal lobe epilepsy).
Distribution of hypometabolism is wider than 
the seizure focus; less reliable in extratemporal 
epilepsy.

Ictal single-photon emission 
computed tomography

Detection of region of increased cerebral 
blood flow induced by a seizure.

Well correlated with ictal focus.
Yield depends on timing of tracer injection; not 
feasible if seizures infrequent.

EEG: Electroencephalography, MRI: Magnetic resonance imaging
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magnetic resonance imaging (MRI), and neuropsychological/
neuropsychiatric assessment[22] and also included 
magnetoencephalography (MEG), functional MRI 
(fMRI), interictal positron emission tomography, and ictal 
single-photon emission computed tomography [Table  2]. 
Conventionally, the Wada test had been used for cortical 
stimulation mapping; this may be supplemented or supplanted 
with fMRI[19] as well as MEG or resting state fMRI.[6]

Where the EZ cannot be characterized with noninvasive 
testing, or noninvasive testing yields contradictory results, 
Phase 2 assessment utilizing intracranial EEG monitoring 
may be pursued. Implantation of subdural grids and 
depth electrodes allows more accurate localization of the 
EZ than scalp EEG. Functional zones may be identified 
through cortical stimulation mapping. However, invasive 
electrocorticography may carry a complication rate of up to 
20% (e.g., intracranial hematoma).[30]

For those who are not candidates or have failed surgery, 
vagus nerve stimulation may palliatively reduce seizures by 
50–75%.[2,28] Targeted, responsive neuromodulation is also an 
option, discussed in Part 2.

SURGICAL OPTIONS

Several surgical options exist based on the seizure type, lesion 
type, size and location, and EZ characteristics. Lesionectomy 
is favored for singular cortical-based lesions and can be 
curative. Lobectomy is used for more focal lesions and proven 
superior in cases of temporal lobe epilepsy over medical 
management (Class  I evidence).[31] Hemispherectomy, 
reserved for lesions affecting an entire cerebral hemisphere, 
has evolved to focus on tissue disconnection rather 
than resection. Corpus callosotomy palliatively prevents 
synchronization of epileptic activity between hemispheres 
and is reserved for those most affected by generalized DRE. 
e clinical application, outcomes, and considerations for 
each approach are detailed in Table 3.

SURGICAL CONSIDERATIONS IN PEDIATRICS

Pediatric epilepsy is more diverse in etiology and semiology 
with migrational disorders, congenital epileptic syndromes, 
and extratemporal epileptogenic foci more common in 
children. erefore, cortical excisions and hemispherectomies 
are perhaps more common than temporal lobectomies in the 
pediatric population versus adults. In addition, DRE impacts 
neurodevelopment in children. Early surgical intervention 
limits the time on intolerable medications, minimizes 
cognitive delays and learning disabilities, and improves 
psychomotor development.[27] Children brains exhibit 
greater plasticity versus adults, increasing the potential 
for rehabilitation following even extensive resective or 
disconnective procedures.[27]

IDENTIFICATION OF CANDIDATES FOR 
EPILEPSY SURGERY

It is critical to identify the best candidates for epilepsy 
surgery. e goals include cure or palliation and may warrant 
a variety of open versus stereotactic techniques [Figure  1]. 
With growing technology, there is enhanced ability tailor 
treatment to individual patients.

Despite the growing appreciation for the deleterious 
developmental and psychosocial effects of pediatric DRE, 
there are too few surgical referrals,[23] with <1% of patients 
with DRE referred to epilepsy centers. is may be explained 
by limited access, cost, and misconceptions regarding who 
may benefit from evaluation.[25] With continuing innovation 
in the field of pediatric epilepsy surgery, it is imperative that 
continued strides be made in patient recruitment and referral 
to enhance clinical outcomes.

CONCLUSION

Here, we reviewed, summarized, and synthesized important 
practices and advances in diagnostic workup and surgical 
strategies of epilepsy surgery. Future increased awareness of 
the role of epilepsy surgery in children with DRE is critical to 
increase the breadth of impact.
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