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There is empirical evidence that expected yet not current affect predicts decisions.
However, common research designs in affective decision-making show consistent
methodological problems (e.g., conceptualization of different emotion concepts;
measuring only emotional valence, but not arousal). We developed a gambling task
that systematically varied learning experience, average feedback balance and feedback
consistency. In Experiment 1 we studied whether predecisional current affect or
expected affect predict recurrent gambling responses. Furthermore, we exploratively
examined how affective information is represented on a neuronal level in Experiment
2. Expected and current valence and arousal ratings as well as Blood Oxygen Level
Dependent (BOLD) responses were analyzed using a within-subject design. We used a
generalized mixed effect model to predict gambling responses with the different affect
variables. Results suggest a guiding function of expected valence for decisions. In the
anticipation period, we found activity in brain areas previously associated with valence-
general processing (e.g., anterior cingulate cortex, nucleus accumbens, thalamus)
mostly independent of contextual factors. These findings are discussed in the context of
the idea of a valence-general affective work-space, a goal-directed account of emotions,
and the hypothesis that current affect might be used to form expectations of future
outcomes. In conclusion, expected valence seems to be the best predictor of recurrent
decisions in gambling tasks.

Keywords: affect, decision, predecisional, expected valence, anticipation, goal-directed emotion, fMRI, Iowa
Gambling Task

INTRODUCTION

According to Prospect Theory (Kahneman and Tversky, 2013), human decision-making is not
solely rational but rather subject to inherent biases that influence judgement, decision-making,
and human behavior. Other authors have also suggested an affective involvement in decision-
making and behavior regulation (Mellers et al., 1997; Loewenstein and Lerner, 2003; Lerner
et al., 2015; DeWall et al., 2016). However, the exact role of emotions in decision-making and
behavior regulation is the subject of ongoing debate. One important issue in this context is how
to conceptualize different components of emotions. In our opinion, there are two dimensions
that need to be separated. First, it appears useful to differentiate between pre- and post-
decisional emotions (Mellers et al., 1997). Predecisional emotions are present before the decision
is made while postdecisional emotions arise after the decision when experiencing the feedback.
Second, Loewenstein and Lerner (2003) broadly distinguished expected from immediate emotions.
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Expected emotions refer to the prediction of future emotional
consequences depending on the respective decision or action
while current/immediate emotions refer to emotions that are
present while the decision is made.

In our view, distinguishing between expected and current
emotions also benefits research concerning the role of
predecisional emotions in recurrent decision-making. This
distinction mirrors dual process accounts that have been
proposed in the decision-making literature (Lerner et al., 2015;
Beer, 2017). These accounts propose that decision-making
consists of two kinds of processes. First, cognitive processes
that require time, deliberation, and cognitive resources; and,
second, automatic processes that work in a quick and dirty
fashion and thereby incorporate current emotions as a mediating
variable between stimulus and response. In a meta-analysis,
DeWall et al. (2016) examined whether during the anticipation
period current emotions or expected emotions (they called
it anticipated emotions) guide decisions and behavior. They
concluded that there is weak evidence to support the claim
that current emotions cause decisions but stronger preliminary
evidence that expected emotions do so. This contradicts the
default assumption of the described dual process accounts which
assume that current emotions directly cause behavior (e.g.,
Loewenstein et al., 2001). However, DeWall et al. (2016) did
not pit each theory against each other but rather tested them
separately. Furthermore, they included studies in their analysis
that asked about distinct emotion categories and, therefore,
for conscious emotions. We think that this level of analysis
might neglect causal mechanisms among emotion components.
Thus, we propose to look at emotion components and causal
mechanisms among them. For example, it could be fruitful to
examine subjective feelings and how they relate to decisions as,
for example, Charpentier et al. (2016) did. They showed that
feelings could predict choices in a gambling task better than
a value-based prediction model. However, they did not use a
two dimensional feelings model but just measured expected
valence. Barrett and Bliss-Moreau (2009) argued that the core
of generating subjective feelings relies on two affect dimensions:
valence or pleasantness and arousal or activation (Feldman and
Russell, 1998). Thus, they suppose that humans continuously
monitor how pleasant and arousing something is and use this to
construct an emotional episode. In sum, Charpentier et al. (2016)
have not taken a two-dimensional perspective on feelings as they
neglected arousal in their experiments. Moreover, they did not
investigate? how predecisional current affect and expected affect
relate to one another and the respective decision.

Decision Affect Theory offers a theoretical foundation for the
role of anticipated pleasure in choice prediction (Mellers et al.,
1999; Mellers and McGraw, 2001). Simply put, this theory posits
that “. . .when making decisions, people anticipate the pleasure or
pain of future outcomes, weigh those feelings by the chances they
will occur, and select the option with greater average pleasure”
(Mellers and McGraw, 2001, p. 210). In several experiments
they have identified several contextual factors which influence
anticipated pleasure ratings. They used pie charts and, therefore,
fully displayed associated probabilities and outcomes. Moreover,
participants received information about their unchosen options.

Each decision participants made referred to a new gambling
situation with different probabilities and outcomes. Hence,
participants knew probabilities in advance, could not learn
from feedback, and could not avoid gambling. Based on this
experimental paradigm, the authors identified four effects which
influenced anticipated pleasure ratings. First, outcome effects
(the higher the outcome, the higher anticipated pleasure ratings
and vice versa). Second, suprise effects (the less probable an
outcome the more pronounced are outcome effects). Last, regret
and disappointment effects can be subsumed under comparison
effects which show that the unobtained outcomes or unchosen
outcomes also influence anticipated pleasure ratings. Finally, the
authors could show that expected pleasure ratings were correlated
with decisions participants made (Mellers and McGraw, 2001).

Another common method to investigate the role of emotions
in decision-making is the Iowa Gambling Task (IGT; Aram et al.,
2019). Participants have to draw a card from one of four decks.
They do not know that there are good and bad decks. Bad decks
produce high wins in the short term but on average losses in
the long term as possible losses are also higher. However, good
decks result in small wins in the short term but on average wins
in the long term as possible losses are even smaller. Participants
have to figure this out via trial and error. Patients with damaged
prefrontal brain regions performed worse in the IGT and did not
show increased anticipatory autonomous activity before making
their decision. In contrast, neurologically healthy adults displayed
an increase in electrodermal activity prior to a decision that was
present even before participants gained conscious insight into the
task structure (Bechara et al., 1997). Consequently, results suggest
that electrophysiological correlates, which could be termed as
current affect or somatic markers, as Bechara and Damasio (2005)
call it, are essential to advantageous decision-making. At the same
time, the interpretation of results and the task design have been
criticized and alternative explanations have been proposed (Dunn
et al., 2006). We want to highlight two major points regarding
IGT’s task design: decks are not presented in a counterbalanced
order and all four decks are presented simultaneously which
makes it impossible to see which deck is attended. If feelings guide
choices, knowing which deck participants focus attention on, is
crucial as several expected and current feelings might be present
at the same time.

Taken together, previous research in choice prediction has
neglected the two-dimensional nature of affect (Mellers and
McGraw, 2001; Charpentier et al., 2016) or used only clustered
data for choice prediction (Schlösser et al., 2013). As described,
research has produced inconsistent findings. Additionally, some
experiments conducted in this area of research used gambling
tasks with fully displayed probabilities for each choice option
and did not incorporate learning experience. In more ecologically
valid tasks like the IGT, choice prediction based on predecisional
subjective feelings has to our knowledge not been employed. As
we wanted to understand causal mechanisms among emotional
components on a subjective and neuronal level of analysis,
we measured both dimensions of affect (arousal and valence)
and examined both expected and current affect. To get an
understanding of how contextual factors translate into emotion
components and neural activations in a recurrent decision task,
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we designed two experiments. In Experiment 1 we examined
how the proposed constructs are influenced by contextual factors
and which feeling constructs predict choice best. In Experiment
2 we tried to replicate Experiment 1’s main findings regarding
contextual influences on predecisional affective constructs. At
the same time, we exploratively looked at brain activity of
our gambling task to get a preliminary understanding of
how contextual factors might influence brain activity and
predecisional affect ratings.

EXPERIMENT 1

We designed a gambling task that was similar to the IGT in the
way that participants had to make recurrent decisions and did not
know gambling probabilities in advance. We did so to address the
previously mentioned shortcomings of the IGT. At the same time
our task had a similar ecologically valid structure as the IGT as
outcome probabilities were unknown in advance (like most times
in real life), participants could avoid certain outcomes, and they
had to adapt their behavior based on previous experiences.

Thus, our task presented only one choice option at a
time and allowed to vary contextual factors like feedback
consistency, learning experience (time), and feedback balance in
a systematic way. Feedback consistency refers to the probability
of certain outcomes (see Table 1), feedback balance refers to
the average outcome that could be obtained (see Table 1),
and learning experience refers to three different time points
we took measurements of predecisional affect. Four different
symbols were used in the task. Each symbol had a unique
pay-off schedule that was unknown to the participants. For
each symbol, participants could decide whether they wanted
to gamble or not. If participants decided not to gamble, their
current balance remained unaffected. Thus, participants had the
option of avoiding certain actions. If participants decided to
gamble, however, they could win or lose points. Two symbols
returned consistent positive or negative feedback while the other
two symbols returned inconsistent feedback. Furthermore, the

TABLE 1 | Example of Symbol-Feedback contingencies depending on the
average feedback balance and the feedback consistency in Experiment 1.

Average
feedback
balance

Feedback
consistency

Symbol P(+15points)

(%)
P(−15points)

(%)

Positive Consistent 100 0

Inconsistent 66.6 33.3

Negative Consistent 0 100

Inconsistent 33.3 66.6

P(+15points) refers to the probability of winning 15 points and P(−15points) to the
complementary probability of losing 15 points if the participant decided to gamble.
Please note that symbol-feedback condition mapping was randomly assigned for
each participant.

overall balance was positive for two symbols and negative for the
other two symbols.

To better understand the affective involvement in our task
and how affective components develop with task experience,
we measured different kinds of affect at three different time-
points. We took a two-dimensional perspective and, therefore,
measured current valence and current arousal. Additionally, we
looked at the expected valence and expected arousal for each
option (gambling, passing). In a first step we analyzed whether
the proposed affect constructs were sufficiently different from one
another. Second, we wanted to show that contextual factors like
feedback balance, feedback consistency, and learning experience
had an effect on self-reported affect constructs. Finally, we
hypothesized in line with the previously presented research
(Mellers and McGraw, 2001; Dunn et al., 2006; Charpentier
et al., 2016; DeWall et al., 2016) that expected affect and
especially expected valence are better predictors for decision-
making than current affect.

Materials and Methods
Participants
Data were collected from 25 healthy adults (Mage = 24.1 years,
SD = 3.6 years, 10 men). Participants had normal or corrected
to normal vision; 21 participants were right-handed, four were
left-handed; all participants were students at the University of
Bamberg and received course credit for participation. The study
was conducted in accordance with the Declaration of Helsinki.
Participants gave their written informed consent and were told
that they could refrain from the study at any point without
consequences. The study protocol was approved by the local
ethics commission.

Materials
The experiment consisted of two types of blocks: Learning Blocks
and Predecisional Affective Questionnaire (PAQ) Blocks. For
stimulus presentation, we used the software NBS Presentation1.
For answer collection, we used a two keyed Cedrus Response Box
(RB-380) and paper-pencil questionnaires.

Gambling task in the learning blocks
The main goal of the gambling task for participants was to
maximize points. Each participant started with a balance of 500
points. By making advantageous decisions participants could
accumulate wins and avoid losses. In each trial of the gambling
task, one of four symbols (circle, triangle, square, cross) was
displayed (see Table 1). The presented symbol served as a clue
for the possible feedback based on previous experience the
participants made with this symbol (see Figure 1 for timing
parameters, ITI = 500 ms, and Figure 2A for trial structure).
Thus, in each trial the participant had to decide whether she
wanted to gamble or have a pass on the symbol. If the participant
decided not to gamble (pass), the feedback was always ± 0
points irrespectively of the previously presented symbol. If the
participant decided to gamble, feedback was determined based
on constant symbol dependent winning and losing probabilities

1http://www.neurobs.com
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FIGURE 1 | Example trial to illustrate the timing of the Gambling Task.
Numbers characterize presentation durations in ms. In this case the
participant would have chosen to gamble and subsequently won 15 points.
ITI = 500 ms. ∗ Indicates a fixation dot.

(see Table 1 for an example). Moreover, participants were not
told a symbol’s objective winning probability. They were rather
instructed to figure out via trial and error for which symbol they
expected a positive point balance. Symbol–probability pairings
depended on two factors (average feedback balance, average
feedback consistency) and were randomly assigned for each
participant (see Table 1 for an example and Table 2 for an
overview). The factor feedback balance coded whether symbols
yield positive or negative feedback on average. The factor
feedback consistency coded whether symbols returned consistent
or inconsistent/mixed feedback. Hence, there were three possible
outcomes depending on the previously presented symbol and the
decision. In our example from Table 1: the square had a 100%
probability of winning 15 points (and 0% losing probability); the
circle had a 66.6% probability of winning 15 points (33.3% losing
probability); the cross had a 33.3% probability of winning 15
points (66.6% losing probability); the circle had a 0% probability
of winning 15 points (100% losing probability). Thus, to
maximize gains, participants should gamble when experiencing
an overall positive balance (square and triangle) and should avoid
gambling when experiencing an overall negative balance (circle
and cross). In each block the two symbols producing consistent
feedback (100 and 0% winning probability) were each presented

TABLE 2 | Overview of experimental factors, number of symbols, procedure, and
dependent measures in examining affective constructs and BOLD (Blood Oxygen
Level Dependent) response for both experiments.

Experiment 1 Experiment 2

Factors Average feedback balance
(positive/negative)

Average feedback balance
(positive/negative)

Feedback consistency
(consistent/inconsistent)

Feedback consistency (consistent/
inconsistent)

Time (Questionnaire Block
1/2/3)

Number of
symbols

Four (see Table 1 for more
details)

Five (see Table 1 + control symbol)

Procedure Practice Block (8 trials)
Learning Block 1 (82 trials)
PAQ Block 1 (4 trials)
Learning Block 2 (82 trials)
PAQ Block 2 (4 trials)
Learning Block 3 (82 trials)
PAQ Block 3 (4 trials)

Behavioral Practice Block (10 trials)
Learning Block 1 (52 trials)
Learning Block 2 (52 trials)
Learning Block 3 (52 trials)
fMRI Practice Block (5 trials)
fMRI Block 1 (50 trials)
fMRI Block 2 (50 trials)
PAQ Block (4 trials)

Dependent
measures

Current valence, current
arousal, expected valence
difference, expected
arousal if gambling,
expected arousal if
passing

Current valence, current arousal,
expected valence difference,
expected arousal if gambling,
expected arousal if passing; BOLD
response

PAQ, Predecisional Affect Questionnaire; fMRI, functional Magnet Resonance
Imaging.

14 times; inconsistent symbols (66 and 33% winning probability)
were each presented 27 times. Symbols were presented in a
randomized order.

Predecisional affect questionnaire block
Questionnaire blocks measured self-reported predecisional affect.
In the questionnaires blocks, after looking at the symbol and

FIGURE 2 | Example of the trial structure and possible feedback depending on gambling decision for a positive-inconsistent symbol (A) in the learning blocks in
Experiment 1, and (B) the questionnaire blocks for both experiments (Participants could win or lose points in Experiment 1 and cents in Experiment 2), and (C) the
learning and fMRI blocks in Experiment 2.
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before deciding for or against gambling, participants filled in a
paper-pencil questionnaire (see Figure 2B for an example trial
structure). In this questionnaire they rated their affective state
from three different perspectives each on the dimensions of
valence and arousal using a 9-point Self-Assessment Manikin
Scale (SAM; Bradley and Lang, 1994). The first perspective
asked participants to rate their current affective state: “Please
rate how you are feeling now.” The second perspective asked
them to rate their expected affective state if they would decide
to gamble: “Please rate how you would feel if you decided to
gamble.” The third perspective asked them to rate their expected
affective state if they decide not to gamble: “Please rate how you
would feel if you decided not to gamble.” Below each question
we presented a SAM Valence Scale and a SAM Arousal Scale.
Hence, we asked one question for each perspective but collected
two ratings (valence, arousal) per perspective resulting in six
variables: Current Valence/Arousal, Expected Valence/Arousal if
gambling, and Expected Valence/Arousal if passing (see Table 2).
In the questionnaire blocks each symbol was randomly presented
once, resulting in four trials. For every symbol participants filled
in the above mentioned questionnaire in a paper-pencil format.
Taken together, we collected 24 ratings per questionnaire block.
Question presentation was not randomized: they were first asked
to rate their current affective state, then their expected affective
state if gambling, and last their expected affective state if passing.

Procedure
At the beginning, participants were welcomed, filled in a
demographic questionnaire, and gave their written informed
consent to the experimental procedure. For an overview of
experimental factors, dependent variables, and the chronological
procedure (see Table 2). Participants could gain or lose points
in the gambling task. They were informed that the 10 highest
scoring participants would win 10 euros each. Each participant
started the experiment with a balance of 500 points. The current
score was presented after each block. Thus, participants got an
immediate feedback after each block on how much points they
won or lost in the preceding block. First, participants completed
a practice block of eight trials which did not affect their balance.
Then they started the first of the three learning blocks (for
more details see section “Materials”). Participants indicated their
gambling decision by pressing the assigned yes- or no-button.
Key assignment was counterbalanced across participants. After
each learning block there was a PAQ block (for more details
see section “Materials”). Hence, we measured predecisional affect
at three different time points which constituted the factor
time (see Table 2). Participants could take a short self-timed
break between blocks if they wanted to. At the very end,
participants were debriefed.

Results
First, we show that the experimental factors impact the self-
report ratings. In a second step, we want to examine which
self-reported affect variables predict gambling choices best. To
begin with, we analyzed how the proposed valence constructs
were correlated with one another. We used the rmcorr package in
R (Bakdash and Marusich, 2017). Both expected valence variables

(expected gambling and expected passing) were highly correlated
(r = −0.53, p < 0.001), however, all other constructs were only
moderately correlated (< r = 0.35). Therefore, we decided to
compute a difference score for the expected valence perspectives
(Expected Valence Difference = “Expected Valence if gambling”–
“Expected Valence if passing”) as Charpentier et al. (2016) did to
avoid collinearity in the analysis.

Expected Valence
We submitted the difference scores of self-reported expected
valence ratings for the three TIMES and each symbol to a 3 × 2
× 2 repeated measures ANOVA. The factor BALANCE had two
levels: positive, for symbols that won on average, and negative,
for symbols that lost on average. The factor CONSISTENCY
also had two levels, consistent, for symbols that returned
consistent positive or negative feedback, and inconsistent, for
symbols that returned mixed feedback. The three-way interaction
TIME × BALANCE × CONSISTENCY was non-significant,
F(2, 48) = 22.19, p = 0.07. However, the interaction BALANCE
× CONSISTENCY turned out to be significant, F(1, 24) = 8.96,
p = 0.006, ηp = 0.272 (see Table 3). As it was a semi-disordinal
interaction only the main effect BALANCE was interpretable,
F(1, 24) = 22.19, p < 0.001, ηp = 0.480. Symbols which had a
positive balance, M = 1.273, SE = 0.307, had significantly higher
difference scores than symbols which had a negative balance,
M = −0.973, SE = 0.307, p < 0.001. Thus, the effect of a positive
balance on expected valence ratings was even more pronounced
for symbols returning consistent positive feedback in comparison
to symbols returning inconsistent positive feedback.

Current Valence
We submitted the self-reported current valence ratings to
a 3 × 2 × 2 ANOVA for repeated measures. As in the
expected valence analysis, we used the factors TIME, BALANCE,
CONSISTENCY. The three-way interaction TIME × BALANCE
× CONSISTENCY was significant, F(2, 48) = 6.49, p = 0.003,
ηp = 0.213 (for means and other statistics see Table 4). For
resolving this interaction we conducted three additional 2 ×
2 ANOVAs for repeated measures with the factors BALANCE
and CONSISTENCY, one for each time point. For time 1, there
were no significant differences between current valence ratings.
However, for time 2, there was a significant CONSISTENCY
× BALANCE interaction effect, F(1, 24) = 8.29, p = 0.008,
ηp = 0.257. Post-hoc Bonferroni corrected t-tests indicated that
current valence ratings were smaller for consistent negative

TABLE 3 | Estimated Marginal Means, Standard Errors (SE), and 95% Confidence
Interval for the two-way interaction BALANCE × CONSISTENCY in the Analysis of
Expected Valence Difference ratings.

95% Confidence Interval

Balance Consistency Mean SE Lower Upper

Positive Consistent 1.91 0.350 1.2082 2.605

Inconsistent 0.64 0.350 −0.0585 1.338

Negative Consistent −1.08 0.350 −1.7785 −0.382

Inconsistent −0.87 0.350 −1.5651 −0.168
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TABLE 4 | Estimated Marginal Means, Standard Errors (SE), and 95% Confidence
Interval for the threeway-way interaction TIME × BALANCE × CONSISTENCY in
the Analysis of Current Valence ratings.

95% Confidence Interval

Time Balance Consistency Mean SE Lower Upper

Time 1 Positive Consistent 6.24 0.285 5.67 6.81

Inconsistent 6.60 0.285 6.03 7.17

Negative Consistent 6.52 0.285 5.95 7.09

Inconsistent 6.40 0.285 5.83 6.97

Time 2 Positive Consistent 6.92 0.285 6.35 7.49

Inconsistent 6.24 0.285 5.67 6.81

Negative Consistent 6.08 0.285 5.51 6.65

Inconsistent 6.56 0.285 5.99 7.13

Time 3 Positive Consistent 7.12 0.285 6.55 7.69

Inconsistent 6.68 0.285 6.11 7.25

Negative Consistent 6.28 0.285 5.71 6.85

Inconsistent 6.28 0.285 5.71 6.85

symbols compared to consistent positive symbols, p < 0.016.
For time 3, there was a significant main effect for BALANCE,
F(1, 24) = 11.45, p = 0.002, ηp = 0.323. Symbols with an overall
positive balance, M = 6.90, SE = 0.265, had higher current valence
ratings than symbols with an overall negative balance, M = 6.28,
SE = 0.265, irrespective of feedback consistency.

Expected Arousal
Analogous to the expected valence analysis, we submitted the
difference scores of self-reported expected arousal ratings for
the three TIMES and each symbol varying in CONSISTENCY
and BALANCE to a 3 × 2 × 2 repeated measures ANOVA. All
interaction and main effects were non-significant.

Current Arousal
For self-reported current arousal we performed a 3 × 2 ×
2 ANOVA for repeated measures with the factors TIME,
BALANCE, and CONSISTENCY. All three- and two-way
interactions were non-significant, however, the main effect of
BALANCE was significant, F(1, 24) = 7.97, p = 0.009, ηp = 0.249.
Symbols with a positive balance, M = 4.39, SE = 0.29, had higher
self-reported current arousal ratings than symbols with a negative
balance, M = 3.97, SE = 0.29.

Choice Prediction
To test which affect variables predicted choice best, we ran
a generalized mixed effects model using the glmer function
from the lme4 package in R (Bates et al., 2015). As correlation
analysis showed that both expected valence variables were highly
correlated, we decided to compute a difference score to reduce
collinearity. All other variables were only mildly correlated which
is why we entered them separately into the model. We modeled
the Participant ID as a random intercept and entered each affect
variable as a fixed effect into the model resulting in the formula:
Choice ∼ Difference Expected Valence + Current Valence +
Expected Gambling Arousal + Expected Not Gambling Arousal +
Current Arousal + (1| Participant ID). Significance was assessed

TABLE 5 | Generalized linear mixed effect estimates for the choice prediction
model including the proposed affective predictors.

Predictors Odds ratios CI p

(Intercept) 0.37 0.03–4.15 0.419

Difference expected valence 3.28 2.37–4.54 <0.001

(gambling–passing)

Expected gambling arousal 1.05 0.76–1.45 0.760

Expected not gambling arousal 1.21 0.87–1.67 0.256

Current valence 1.24 0.92–1.68 0.156

Current arousal 0.80 0.55–1.16 0.233

Random effects

σ2 3.29

τ00 Participant 0.40

ICC 0.11

NParticipant 25

Observations 300

Marginal R2/Conditional R2 0.733 / 0.762

Fixed Effects: Odds Ratios, Confidence Intervals (CI), and p-values. Random
Effects: σ 2 = within-person residual variance, τ00 Participant = between-person
variance, ICC = Proportion of variance explained by between-person differences;
Marginal R2 = variance explained by fixed effects, Conditional R2 = variance
explained by fixed and random effects. Significant results are printed in bold.

via model comparison with an Alpha of 0.05. Expected Valence
was the only significant predictor for gambling choice, β = 1.19,
SE = 0.17, X2(1) = 150.2, p < 0.001. This means, the higher
the difference score of expected valence ratings (gambling—not
gambling) were, the more likely participants chose to gamble.
For more details regarding fixed and random effect structure
(see Table 5).

Discussion
In Experiment 1, we wanted to examine how subjective feelings
are part of the decision process in a recurrent gambling task
with unknown outcome probabilities. Hence, we developed a
gambling task that was similar to the Iowa Gambling Task.
However, our task varied feedback consistency, average feedback
balance, and the learning experience in a systematic, controllable
way. For measuring subjective feelings we took different
classifications into account. Thus, we measured valence and
arousal under the perspective of current and expected feelings.
Our most important research question studied which of the
proposed subjective feeling construct would predict choice. We
found that expected valence was the only predictor for choices
participants made. All other constructs were non-significant.
Hence, the difference of expected valence ratings but not current
valence or arousal constructs predicted choices which is in line
with our hypotheses and previous research (Mellers et al., 1997;
Charpentier et al., 2016; DeWall et al., 2016). At the same time,
our findings challenge a decision guiding function of arousal. We
found that self-reported current arousal indeed varied between
good and bad symbols, however, it did not predict subsequent
choices. As self-reported arousal ratings might be unreliable, it
might be useful to simultaneously assess physiological arousal
measures to enhance predictive power (Asutay et al., 2019).
Future studies should further examine these findings and include
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physiological measures of autonomous activity instead of self-
reported arousal in their choice prediction models.

Furthermore, we examined whether the measured variables
were sufficiently different from one another. We found that most
constructs correlated only mildly or moderately and, therefore,
differed sufficiently. However, expected valence ratings of the
two choice options were highly correlated which is why we
computed a difference score for expected valence ratings (for
a similar procedure, see Charpentier et al., 2016). Moreover,
we examined how contextual factors like feedback consistency,
learning experience, and average feedback balance influence
the proposed subjective feelings variables. In general, we found
that most self-reported ratings were influenced by contextual
factors, yet, in different ways. Most constructs, except for current
valence, were insensitive to time of measurement which implies
a relatively early manifestation of constructs. As predicted,
expected valence ratings distinguished between symbols with
a positive and negative balance and for positive balanced
symbols also between consistent and inconsistent symbols. This
was the case over all measurement points, indicating an early
manifestation of expectancy constructs. The impact of contextual
factors on current valence ratings changed over time. After
the first block there was no significant difference between
ratings, at time 2 consistent positive symbols were rated higher
than all other symbols, at time 3 positive balanced symbols
(consistent and inconsistent) had higher current valence ratings
than negative balanced symbols. In other words, current valence
changed as participants learned symbol-feedback contingencies.
This posits that current valence manifests over time as learning
takes place. The difference of expected arousal ratings was not
affected by contextual factors. Taken together, contextual factors
influenced most of the proposed constructs but not expected
arousal ratings.

EXPERIMENT 2

In Experiment 1 we found that self-reported affect ratings were
influenced in different ways by feedback consistency, feedback
balance, and learning experience. As a next step, we wanted to
examine how these contextual factors determine predecisional
affective brain activity. Lindquist et al. (2016) tested three
competing hypotheses regarding neural representation of affect
in a meta-analysis of the human neuroimaging literature. The
bipolarity hypothesis assumes that pleasant and unpleasant
feelings are endorsed by a brain system that monotonically
increases and decreases along the valence dimension. Second,
the bivalent hypothesis posits two independent brain systems
for positive and negative affect. Last, the affective workspace
hypothesis suggests that valence is best represented on a neuronal
level as a valence general neural workspace which recruits a
flexible set of valence-general areas. Results clearly favored the
affective workspace hypothesis while evidence for both other
theories was rather weak. Valence-general activations were found
in the bilateral anterior insula, thalamus, dorsal ACC, bilateral
lateral orbitofrontal cortex, supplementary motor area, bilateral
amygdala, the ventral striatum, dorsomedial prefrontal cortex,

bilateral ventro-lateral prefrontal cortex, and lateral portions
of the right temporal/occipital cortex. At the same time, the
authors acknowledge that it might be a possibility that the
arousal component of affect might contribute to valence-general
activation patterns as separating arousal from valence is both a
statistically and theoretically complex endeavor.

As in Experiment 1, our task design varied the symbol’s
balance and its feedback consistency. In accordance with the
hypothesis of a valence-general affective workspace, we expected
that all symbols, which varied in contextual factors and therefore
also in affect ratings, recruit the same brain regions. In line with
the presented evidence we supposed to find brain activity in the
anterior cingulate cortex, the accumbens area, the thalamus, the
amygdala, the insula, and the prefrontal cortex. In addition to
that, we hypothesized that the symbol’s balance or its feedback
consistency would have a rather small or no effect on observed
brain activity as valence-general brain regions work together to
produce different valence intensities.

Materials and Methods
Participants
Data were collected from 22 adults of which five (Mage = 50.4
years, SD = 2.7 years, two men) were excluded because they
had not learned the symbol-feedback contingencies after the
third block. Exclusion criteria were set at a gambling rate below
70% for the 100% chance condition as well as a gambling
rate above 30% for the 0% chance condition. The final sample
consisted of 17 adults (six men) aged between 20 and 57
(Mage = 35.5 years, SD = 12.0 years). Hence, the dropout seems
to be age-related, meaning that older participants had difficulties
learning the symbol-feedback contingencies. Furthermore, after
the MRI block one participant decided to end the study.
Therefore, the sample for the questionnaire block comprised
16 adults (six men) aged between 20 and 57 (Mage = 36.4
years, SD = 11.8 years). Participants had normal or corrected to
normal vision; 16 participants were right-handed, one was left-
handed; six participants had at least an educational degree of a
German high school diploma, whereas the others had a German
Middle School Degree.

The study was conducted in accordance with the Declaration
of Helsinki. Participants gave their written informed consent
and were told that they could refrain from the study at any
point without consequences. The study protocol was approved
by the ethics committee of the Hannover Medical School with
the study ID 7416.

Materials
The general materials did not change much in comparision to
Experiment 1, however, we adapted the procedure and timing
parameters to the needs of the fMRI setting. In all blocks
(learning, fMRI, and PAQ Block) participants did not respond to
the symbol directly but rather to the question “Do you want to
gamble?” as presented in Figure 2C. We thought that it would
be easier for participants to have a consistent task structure.
Moreover, we introduced a control symbol to the gambling task,
which regardless of choice did not affect participants’ score. As
we wanted to isolate affect-related brain activity, we needed
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FIGURE 3 | Example trial to illustrate the timing of the fMRI Monetary
Gambling Task. Numbers characterize presentation durations in ms. In this
case the participant would have chosen to gamble and subsequently won 20
cents. Only the anticipation period was used for analysis of brain activity.
*Indicates a fixation dot.

the control symbol to compute difference contrasts (see “Data
Analysis” section for more details). Finally, we decided to use
real money instead of points because we hoped this would result
in stronger neural activations. Participants could win or lose 20
cents in each trial. “Gamble” and “Pass” key assignment was
counterbalanced over participants. For stimulus presentation, we
used the software NBS Presentation2.

The learning blocks consisted of 52 randomized trials: eight
consistent-positive feedback symbols, eight consistent-negative
feedback symbols, eight control symbols, 14 inconsistent-positive
feedback symbols and 14 inconsistent-negative feedback symbols.
We decided to present more inconsistent symbols to make it
easier for participants to learn these contingencies. Each trial
had the following timing parameters: fixation asterisk (250 ms),
symbol (500 ms), fixation asterisk (500–800 ms), choice (“Do
you want to gamble?,” until response), feedback depending on the
decision and the symbol’s winning probability (750 ms), inter trial
interval (ITI; 500–800 ms).

The fMRI blocks consisted of 50 randomized trials (10
repetitions of each symbol). We also adjusted the timing
parameters to fit the fMRI method (see Figure 3). The inter
trial interval (ITI) and the anticipation period were both jittered
with an average duration of 2,500 ms, ranging from 2,000 to
3,000 ms. Participants could answer within 2,500 ms when they
were requested to indicate their decision (see Figure 3). If they
did not respond within this time frame, “XXX” appeared as
feedback which did not affect their momentary balance. However,
participants were still asked to give an answer although a no-
decision would have yielded a similar result for the participant’s
overall balance. We did so to reduce missed trials, which cannot
be used in analysis, to a minimum.

Last, in the PAQ Block we did not change trial structure (see
Figure 2B). However, we presented five symbols instead of four,
as we had one additional control symbol in Experiment 2. Again,
participants indicated their predecisional affective states on a
paper-pencil questionnaire. Hence, the PAQ Block consisted of
five trials (see Table 2).

Procedure
For an overview of experimental factors and the procedure in
comparison to Experiment 1 (see Table 2). First, participants
were welcomed, filled in a demographic questionnaire, and gave

2http://www.neurobs.com

their written informed consent to the experimental procedure.
We placed five euros in front of each participant to underline
that they could win and lose real money during the experiment.
Each participant started the experiment with a balance of five
euros. The participant’s current money balance was presented
after each block. Thus, participants got an immediate feedback
after each block how much they won or lost in the respective
block. Practice blocks did not affect the participants’ balance in
any part of the experiment. After completing the practice block
consisting of 10 trials (each symbol was presented twice), they
started the three learning blocks. Participants could indicate their
gambling decision by pressing the assigned gamble or pass button
on a two keyed Cedrus Response Box (RB-380). In the learning
phase, participants could take a short self-timed break between
blocks if they wanted to. Before each task change, participants
completed a practice block to get used to the procedure or the
changed trial timing. After the fMRI practice block (five trials),
they completed two fMRI blocks starting with a 6 s fixation trial.
Between both blocks a 50 s break was inserted and the balance of
monetary gains or losses in the preceding block was presented. In
this phase we used NordicNeuroLab’s VisualSystem for stimulus
presentation in the MRI scanner and ResponseGrip to collect
their answers. The VisualSystem goggles were placed on the head
coil where participants could adjust the visual acuity depending
on their visual condition. Participants were instructed to use their
right and left thumb to indicate their decision. After the fMRI
phase, participants completed the PAQ Block. At the very end,
participants were debriefed and got paid their overall balance.

fMRI Data Acquisition
Data were collected using a 1.5 T Magnetom Avanto scanner
(Siemens Medical Systems, Erlangen, Germany) with an 18-
channel head coil. Functional images were obtained using a T2∗-
weighted echo planar imaging (EPI) sequence with TR = 2,000
ms, TE = 35 ms and flip angle = 80◦, 498 volumes, resulting in
a duration of 16.6 min. Each functional image consisted of 23
axial slices, with 64× 64 matrix, 200 mm× 200 mm field of view
(FOV), 5 mm thickness, 1 mm gap, and 3.125 mm × 3.125 mm
inplane resolution. Structural images were obtained using a 3D
structural sagittal T1-weighted MPRAGE image. Each structural
image consisted of 192 contiguous slices, with 256 mm× 250 mm
matrix size and 1 mm slice thickness.

Data Analysis
Behavioral
Behavioral data were analyzed by computing a repeated measures
ANOVA for each dependent variable of interest as we did in the
behavioral analysis of Experiment 1. As we had a small sample
size and just one measurement for each affect construct, we
decided to skip the choice prediction analysis.

fMRI
Data were preprocessed and analyzed using SPM123. The first
three volumes were discarded due to longitudinal magnetization
equilibration effects. First, structural and functional images were
roughly reoriented using the EPI-derived MNI template (ICBM

3http://www.fil.ion.ucl.ac.uk/spm/
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305, Montreal Neurological Institute). After realignment, the
structural images were coregistered to the EPI images, and the six
movement parameters (x, y, z, pitch, yaw, roll) saved to include
them as covariates in the first level analysis. Then EPI images
were time shifted to the middle slice to correct differences in
slice acquisition timing. In a further step, both structural and
functional images were directly normalized to the MNI template.
The normalized EPI images were smoothed with a Gaussian
kernel of 8 mm full-width half-maximum (FWHM) and filtered
with a high-pass filter of 128 s.

In the first level analysis, we specified conditions, estimated
parameters, and computed contrasts for each participant using
the canonical hemodynamic response function (HRF) and a
general linear model. Therefore, we defined the time-locked
anticipation periods (see Figure 3) of the five symbols as
regressors and included the six motion parameters as covariates
to reduce signal-corrected motion effects. Regardless of the
later gambling decision, anticipation periods of the symbols
were each modeled as a separate regressor. Response, feedback,
and between-block pause periods were still modeled but not
included in the analysis. Additionally, anticipation periods
of missed trials were treated the same way, the ITI serving
as implicit baseline. Then, we applied classical parameter
estimation with a one-lag autoregressive model and a masking
threshold of 0.8 to minimize false positive voxels. Finally,
we computed the t-contrasts of the symbols compared to
the control symbol to isolate brain activity of potential wins
and losses in the anticipation period. Thus, we computed
the contrasts “positive-consistent > control,” “positive-
inconsistent > control,” “negative-inconsistent > control,”
and “negative-consistent > control” to take them to the second
level group analysis.

In the second level group analysis, we defined a 2 × 2 full
factorial design for repeated measures with the factors BALANCE
and CONSISTENCY while AGE was included as a covariate
due to the previously discovered age related dropouts caused by
learning difficulties. We assigned the factor levels in the same
way as in the behavioral analysis. For computation, we entered
each participant’s t-contrasts of each symbol in comparison to the
control condition which were calculated in the first level analysis.
For each factor, variances were assumed to be unequal and
independence was not given. Furthermore, we applied implicit
masking and carried out a classical parameter estimation.

Results
Behavioral
Expected valence
We submitted the difference scores of self-reported expected
valence ratings for each symbol to a 2 × 2 repeated measures
ANOVA as in Experiment 1. The interaction BALANCE ×
CONSISTENCY turned out to be significant, F(1, 15) = 4.98,
p = 0.041, ηp = 0.241. As it was a semi-disordinal interaction, only
the main effect BALANCE was interpretable, F(1, 15) = 13.63,
p = 0.002, ηp = 0.476. Symbols which had a positive balance,
M = 2.06, SE = 0.558, had significantly higher difference
scores than symbols which had a negative balance, M = −1.16,

SE = 0.558. Thus, the effect of a positive balance on expected
valence ratings was even more pronounced for symbols returning
consistent positive feedback in comparison to symbols returning
inconsistent positive feedback.

Current valence
We submitted the self-reported current valence ratings to a 2× 2
ANOVA for repeated measures. The main effect CONSISTENCY
proved to be significant, F(1, 15) = 6.05, p = 0.027,
ηp = 0.287, with consistent symbols, M = 7.44, SE = 0.334, having
significantly higher current valence ratings than inconsistent
symbols, M = 6.72, SE = 0.334. The main effect BALANCE was
only marginally significant, F(1, 15) = 4.45, p = 0.052, ηp = 0.229.

Expected arousal
As before, we submitted the difference scores of self-
reported expected arousal ratings for each symbol varying
in CONSISTENCY and BALANCE to a 2× 2 repeated measures
ANOVA. All interaction and main effects were non-significant.

Current arousal
For self-reported current arousal we performed a 2 × 2
ANOVA for repeated measures with the factors BALANCE and
CONSISTENCY. The two-way interaction was non-significant,
F(1, 15) < 1, however, the main effect BALANCE reached
significance, F(1, 15) = 11.50, p = 0.004, ηp = 0.434. Symbols with
a positive balance, M = 4.16, SE = 0.447, had significantly higher
self-reported current arousal ratings than symbols with a negative
balance, M = 3.31, SE = 0.447.

fMRI
Results of the full factorial analysis are presented in Table 6 and
Figures 4, 5 at p < 0.001 (uncorrected) and a minimum voxel
cluster of 40. Despite the possibility of false positive results, we
decided to conduct the analysis to give an idea of potentially
activated brain regions. Main and interaction effects which are
not reported did not approach significance. For all symbols,

TABLE 6 | Group maximum T-values and MNI Coordinates of activation foci for
the t-contrast Condition (general activation averaged over anticipation periods of
the four symbols; p < 0.001, uncorrected; n = 17) and the t-contrast Balance
(negative > positive; p < 0.001, uncorrected; n = 17).

Region H x y Z t Size

Condition

Cerebellum exterior R 12 –46 −20 4.45 49

Accumbens area L 0 4 −4 4.40 49

Thalamus proper R 2 −2 6 4.05 44

Anterior cingulate L –10 40 −4 4.25 43

Medial superior frontal R 4 40 24 4.07 60

Superior frontal R 18 20 56 3.73 56

Balance

Superior temporal L –54 –20 0 4.80 91

–64 –48 16 4.79 52

Middle temporal L –48 –60 4 4.47 65

–52 –60 12 3.53 45

Size, number of activated voxels; L, left; R, right; H, hemisphere.
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FIGURE 4 | Activation patterns in the anticipation period as listed in Table 6
for all symbols in comparison to the control symbol (p < 0.001, uncorrected;
n = 17). Positive values represent the number of sagittal slices from the center
to the right hemisphere. Negative values indicate the number of sagittal slices
from the center to the left hemisphere. The colored bar specifies the
respective t-value’s magnitude.

which returned positive or negative feedback in comparison to
a control symbol, which regardless of choice returned a null
feedback, we found general activations in the anticipation period.
As presented in Figure 4, symbols associated with positive or
negative feedback showed more activity in the anticipation period
in the Cerebellum Exterior, the Accumbens Area, the Thalamus
Proper, the Anterior Cingulate Cortex, the Medial Superior
Frontal Cortex, and the Superior Frontal Cortex. Furthermore,
we found that negative balanced symbols produced stronger
activations in the Superior Temporal and Middle Temporal
Cortex in the anticipation period in comparison to positive
balanced symbols (see Figure 5).

Discussion
In Experiment 2 we adapted the gambling task from Experiment
1 to the fMRI environment. We were interested in predecisional
affect in the anticipation period of a complex decision-making

FIGURE 5 | Activation patterns in the anticipation period as listed in Table 6
for negative balanced in comparison to positive balanced symbols (main effect
balance, no > yes; p < 0.001, uncorrected; n = 17). Positive values represent
the number of axial slices from the center downwards. Negative values
indicate the number of sagittal slices from the center upwards. The colored
bar specifies the respective t-value’s magnitude.

task. Therefore, we wanted to exploratively examine affective
brain-activity and varied feedback consistency and average
feedback balance. We could only show brain activity for
uncorrected p-values which is due to our small sample size.
Nevertheless, we think that our exploratory results are still
worth reporting since future hypothesis testing research can use
our findings as a starting point. In line with previous research
(Lindquist et al., 2016), we could observe most activity in the
valence-general condition which indicated activity independent
of experimental factors in the accumbens area, thalamus proper,
anterior cingulate cortex, medial superior frontal cortex, superior
frontal cortex, and the cerebellum exterior. A negative average
feedback balance produced activity in the superior temporal
and middle temporal gyrus. Analysis of expected valence
ratings replicated findings from Experiment 1 meaning that
expected valence ratings differed between positive and negative
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balanced symbols and for positive balanced symbols between
consistent and inconsistent symbols. Findings of current arousal
could also be replicated with positively balanced symbols
having higher arousal ratings than negatively balanced symbols.
Findings of expected arousal and current valence could only
partially replicate findings from Experiment 1. Overall, the
presented evidence suggests that valence-general regions are
also recruited in the anticipation period of our decision-making
task. During the anticipation period self-reported expected
valence and current arousal ratings are robustly influenced by
contextual factors.

Our results indicate some overlapping activity with results
of the meta-analysis by Lindquist et al. (2016). However, there
is still a considerable difference between valence-general active
regions as we did not find activity in the amygdala, the insula,
and prefrontal regions, for example. The absence of activity in
prefrontal regions could be explained by findings from Oldham
et al. (2018). They conducted a meta-analysis on fMRI studies
that used the monetary incentive delay task. This task makes
it possible to disentangle the anticipation period from the
feedback period as well as gains from losses. Their findings
suggest that there is great overlapping neural activity between
the anticipation of gains and losses including the amygdala,
thalamus, striatum, and insula which is in line with Lindquist
et al.’s (2016) findings and the affective work-space hypothesis.
Furthermore, activity in orbitofrontal/ventromedial prefrontal
regions was only observed during the reward feedback period
which could explain the absence of activity in our findings. In
general, Wilson et al. (2018) replicated the findings in another
meta-analysis and analyzed active brain regions in more detail.
This resulted in similar activations like we found adding activity
in the cerebellum, the superior frontal gyrus, and the medial
superior frontal gyrus to the meta-analytic evidence. However,
we could not observe activity in the insula and the amygdala
which has been a robust finding in the presented meta-analyses
(Lindquist et al., 2016; Oldham et al., 2018; Wilson et al., 2018).
Both brain areas have been identified as key nodes of the so
called salience network which appears to serve the function of
detecting novel stimuli across different modalities (Uddin, 2015).
As we examined neural activity in relation to a control symbol,
this could be the reason why we did not observe neutral activity
in these areas of the salience network. Participants continuously
viewed different symbols intermitted by fixation asterisks and
the feedback presentation. We argue that the recognition of the
control symbol, like all other symbols, also elicited a salience
response. Hence, the control symbol was as novel as the other
symbols in our experimental design which resulted in no greater
or lesser neural activity in the salience regions.

GENERAL DISCUSSION

In two experiments, we examined the involvement of subjective
feelings in the decision-making process. We studied how
contextual factors influence current and expected subjective
feelings and which constructs predict choice behavior best. We
addressed the problems of common research designs like the

IGT (Dunn et al., 2006) by developing a recurrent decision
task that can vary contextual factors (feedback consistency,
average feedback balance, learning experience) in a systematic
way. Furthermore, we presented only one symbol at a time
and could, therefore, solve the previously mentioned problem
of the IGT without losing ecological validity. To our knowledge
this is the first study that took a two-dimensional affect
approach (valence, arousal) for measuring self-reported expected
and current affect in a recurrent decision task. This provides
a fuller picture of involved affective processes in recurrent
decision-making. Furthermore, we exploratively looked at neural
activations depending on contextual factors. Our results suggest
that expected valence is the main and only self-reported
subjective feeling component that predicts decisions. Hence, self-
reported expected valence yet not self-reported current affect
predicted decisions. Additionally, we observed valence-general
neural activity in Experiment 2 while participants’ self-reported
expected valence depended on contextual factors. Although self-
reported current affect ratings also depended on contextual
factors, the observed effect size and effect consistency for
expected valence was substantially bigger. In sum, we observed
valence-general activity in line with the presented meta analyses
(Lindquist et al., 2016; Oldham et al., 2018; Wilson et al., 2018)
and observed inconsistent and smaller contextual effects for self-
reported current valence than for self-reported expected valence.

We carefully interpret our findings in the way that based on
past experiences symbols induced current affect (fMRI findings,
self-report current affect ratings) which in turn prompted
further cognitive processes like expectancies of future outcomes
(expected valence). If this is the case, participants would feel
something and use this feeling to build their expectancies upon
this feeling which is reflected in differential expected affect
ratings. However, we did not find clear self-reported current
affect patterns and no high correlation between current valence
and expected valence which limits our interpretation. The reason
for this contradiction could be the way we asked for current
affect. Västfjäll and Slovic (2013) suggest, additionally to the
proposed dimensions, to distinguish incidential affect, which is
unrelated to the decision problem, from integral affect which is
inherently linked to the decision problem. Hence, to get a more
sensitive measure of incidential current affect we might have
asked participants how they felt while seeing the symbol. This
might have led to more consistent findings and a bigger predictive
power of current affect. Keeping this in mind, we should be
careful with this interpretation as our findings have limitations
that make it impossible to draw final conclusions. Future research
should focus on how current and expected affect interact or do
not interact with each other. Experimental designs would have to
make sure that the measurement of current affect is more precise
and should examine whether it is even possible to separately
manipulate expected affect and current affect. If it is not possible,
this will provide more evidence for the described interpretation.

Complementing our interpretation, Moors and Fischer (2019)
suggest that from a theoretical perspective there is no need to
assume an intervening emotion variable to cause behavior. Even
cases incorporating maladaptive emotions can be reinterpreted
in a goal-directed way. For example, a student is paralyzed
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during her presentation in class as she is afraid. Her goal could
be not to make a mistake which she tries to control through
increased self-monitoring (Clark and Wells, 1995). This limits
her cognitive resources which makes committing mistakes more
likely. Thus, she tries to control the first mistake with increased
self-monitoring. This results in a vicious cycle which eventually
paralyzes her. In her logic, if she stops speaking, she cannot
make mistakes which is her overarching goal. Consequently,
in this model of explaining the student’s behavior, there is no
need of a mediating emotion variable. The authors conclude
that “emotions may point in imprecise ways to other factors
(values and expectancies) that do the actual causal work. If so,
it may be time to replace explanations in terms of emotions with
explanations in terms of these other factors” (Moors and Fischer,
2019, p. 98). In our findings we can also see that expectancies
are a much better predictor than current affect. Incorporating
subjective feelings and expectancies of subjective feelings into one
model shows that there is no predictive power of current affect as
a goal-directed account of emotions would predict.

As mentioned before, there are some limitations to our study
we would like to address now. First, in the fMRI analysis
we report uncorrected p-values. Hence, cumulated alpha errors
could have led to false positive results. However, we conducted
an explorative fMRI analysis which is useful for generating
hypotheses and should not be taken as conclusive knowledge.
Adding to that, we would like to point out that we had a
relatively small sample size in both experiments which underlines
the robustness of effects regarding expected valence. However,
it is still possible that we missed smaller effects due to the
low power of our study. Future research should replicate the
main findings with a larger sample size. Moreover, we did not
present questions in a randomized order which could have led
to systematic biases in affect ratings. Future research should
counterbalance or randomize question presentation to make sure
that there is no hidden bias. We expect though that findings
regarding affect ratings will not change in a meaningful way.
Taken together, our findings can only be preliminary due to
the described limitations. Nevertheless, we still think that our
results make a valuable contribution to inspire future research
and neurocognitive decision theories.

Future research should also measure current affect in a more
sensitive way as we proposed before. This would be the first
step to further study how current and expected affect might
work together. Furthermore, experimental designs should try
to separately manipulate current affect and expected affect. We
have two ideas how this could be accomplished. First, we could
present symbol-feedback contingencies in the beginning and start
with a questionnaire block. This would mean that participants
have not experienced any outcome but draw on their knowledge
and should therefore report differential valence expectancy
ratings. Following reinforcement learning models (Holroyd

and Coles, 2002), having not experienced an outcome before,
might eliminate current affective experiences when viewing the
symbol. A second option would be to switch symbol-feedback
contingencies after a learning phase and before a questionnaire
phase. Participants should be told which symbols have changed,
so that they could adjust their expectations accordingly. This
way participants would have current affect ratings based on
their learning history and expected valence ratings based on
the new information they received. Studying how these changes
in experimental design affect subsequent gambling decisions
could elucidate how current and expected affect work together
and which is causal for decisions. Moreover, we would like to
point out that self-reported arousal might not be the best way
to measure an emotional arousal component as it produces
inconsistent results (Asutay et al., 2019). It might be better to
additionally use physiological arousal measures.

CONCLUSION

Examining the relations among current and expected affective
constructs in causing decision is a sensible way for future
theorizing and empirical research on the affective involvement in
decision-making.
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