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Abstract

Preference-based decisions are essential for survival, for instance when deciding what we should 

(not) eat. Despite their importance, preference-based decisions are surprisingly variable and can 

appear irrational in ways that have defied mechanistic explanations. Here we propose that 

subjective valuation results from an inference process that accounts for the structure of values in 

the environment and that maximizes information in value representations in line with demands 

imposed by limited coding resources. A model of this inference process explains the variability in 

both subjective value reports and preference-based choices, and predicts a new preference illusion 

that we validate with empirical data. Interestingly, the same model explains the level of confidence 

associated with these reports. Our results imply that preference-based decisions reflect 

information-maximizing transmission and statistically optimal decoding of subjective values by a 

limited-capacity system. These findings provide a unified account of how humans perceive and 

valuate the environment to optimally guide behavior.

Introduction

At any given moment, organisms receive much more sensory and interoceptive information 

than they can physically process. These capacity limitations are thought to have biased brain 

evolution towards information-processing strategies that are maximally efficient for the 

control of behavior, an idea known as efficient coding1,2. Such efficient-coding strategies 

can be observed in sensory systems where the precision with which neural representations 
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encode different states of an environmental variable (e.g., different orientations) is 

proportional to the frequency with which this state is actually encountered3,4. This strategy 

ensures that the information encoded is as great as possible given the dynamic range of the 

physical system used to represent it5. However, these representations not only need to be 

efficiently encoded but also need to be decoded and interpreted so that the resulting percepts 

provide maximally accurate information about the state of the world and the organism. 

Bayesian statistics imply that optimal perceptual processes would have to combine the 

representation of the environmental information (i.e., the likelihood of a state) with an a-

priori expectation of these states6–8. While efficient coding and Bayesian decoding theories 

may appear related, they have only recently been combined in a unified theoretical 

framework that can account for various low-level perceptual biases4,9. But whether similar 

encoding and decoding strategies also operate in other domains than low-level perceptual 

systems remains an open question.

In the domain of preference-based decisions, it is commonly assumed that organisms rely on 

strategies that maximize the utility of the chosen option, based on stable and accurate 

representations of preferences that are not systematically affected by processing-resource 

constraints. However, empirically-observed choice behavior often deviates from the 

predictions of rational choice theory10. Purely descriptive theories of such anomalies have 

been offered, postulating either competition between parallel action-selection processes 

based on simple heuristics10 or some type of arbitrary external noise that has no clear 

psychological or neural basis11–13. While such theories can account for some observed 

effects of choice variability, biases, or confidence in isolation11–15, a common framework 

linking these different aspects of behavior is largely missing. Moreover, these models 

sometimes contain assumptions about value representations that appear implausible given 

the constraints imposed by the limited-capacity nature of biological systems.

In order to account for these limitations, recent work has sought to find shared principles in 

the mechanisms underlying subjective valuation and sensory perception11–13,16–21. 

Theories from this line of research have suggested that subjective value representations may 

resemble percepts in that they are derived by inference processes that exploit prior 

information about the relevant distribution of value stimuli in the environment16,17,19,21. 

Moreover, related lines of work suggest that neural reward circuits can flexibly adapt to 

different value contexts in the evironment22–25, possibly consistent with the notion that 

neural resources are allocated efficiently to the encoding of subjective values. However, it is 

unknown whether efficient coding and Bayesian decoding principles are indeed used jointly 

to generate preference-representations, and it is unclear whether this information-processing 

scheme can explain the variability, biases, and confidence in value-based decisions in 

humans. This lack of knowledge may reflect that the distribution of subjective values in the 

natural environment is not easily measurable (in contrast to corresponding distributions of 

sensory signals26), since it depends on the long-term experience of each specific organism 

with the objects in its environment25.

Here we propose a way to test whether preference-based decisions are indeed guided by a 

value representation scheme that combines both efficient coding and Bayesian-decoding 

principles. We achieve this by introducing a novel approach for studying subjective valuation 
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that takes account of the important fact that neither decision makers nor experimenters have 

direct access to the “true” stimulus values underlying all value-related behaviors (e.g., 

ratings and choices). We demonstrate with modelling and behavioral experiments that choice 

variability, biases, and confidence in human preference-based decisions can all be explained 

by a single value-inference process. This process maximizes information transmission by 

optimally allocating limited resources to value representations, based on prior knowledge 

about the distribution of object values in the individual environment. Our approach accounts 

comprehensively for several aspects of value judgements and value-based choices and 

proposes that humans may make value-based choices optimally given resource constraints.

Results

Efficient coding of subjective value

In studies of perceptual decisions, experimenters usually have complete knowledge of any 

experimental stimulus value v (for instance, the angular orientation of displayed Gabor 

patches). This is different in experiments studying value-based choices, since experimenters 

have no direct access to the “true” value v of the presented object to an observer (Fig. 1a). 

Here we assume that this “true” value v has been shaped by each observer’s personal history 

of experiences with this type of object and is therefore entirely subjective. A common 

strategy adopted by experimenters is thus to first derive an estimate v of this subjective value 

- based on empirical choices or subjective reports (Fig. 1a) - that is subsequently used as 

input to a decision model11,12,14,15,27–29. However, we will show that this strategy is 

suboptimal because the value estimates v are likely to be as inaccurate and biased as the 

subsequent choices. This is because the observer herself does not have direct access to the 

“true” value v – after all, she does not have perfect memory of all her lifetime experiences. 

Thus, the observer needs to derive an estimate of the object’s value v every time this is 

necessary, for instance when having to rate this value or when choosing between this object 

and another one. Any noise and bias resulting from encoding/decoding processes used to 

infer this value estimate should thus affect any type of behavior in similar ways. Given these 

limitations, we elaborate a new approach that yields more precise estimates of subjective 

values for the study of preference-based decisions, based on the principles of efficient 

coding and Bayesian decoding.

We model valuation as a probabilistic inference process incorporating both encoding and 

decoding (Fig. 1a; see Methods for full details). Presentation of an object with “true” 

stimulus value v elicits an internal noisy response r (encoding) that is used by the observer to 

generate a subjective value estimate v(r) (decoding) that is reported behaviorally (Fig. 1a). In 

experimental settings, such behavioral reports typically have to be given on physically 

bounded rating scales11,12,14,15,27 that can differ across different settings. To account for 

this step, we assume that the individual’s internal subjective scale for v(r) is physically 

unbounded but can be flexibly mapped via a function g(v) to any bounded scale in line with 

experimental demands (Methods).

Inspired by previous work in the perceptual domain9, we assume that encoding of subjective 

values is efficient in the sense that the mutual information between the stimulus values v and 
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the internal response r is maximized. This results in optimal use of the underlying neuronal 

scale given the expected/learned natural distribution of values in the given environment, i.e., 

the prior p(v). Different from work in the perceptual domain and standard approaches in 

neuroeconomic studies, we suppose that the experimenter has no knowledge about the 

specific stimulus value v0 that generated the reported rating scale value v⌣ = g(v) . However, 

if the experimenter obtains several value ratings v⌣ for a given good (and if she repeats this 

for the full distribution of goods in a given context or environment), then it is possible to 

infer the stimulus value v0 that is most likely to have generated the observed rating 

distribution for that good (Methods and Supplementary Fig. 1). Moreover, if individuals 

employ this encoding approach, then inferred values v based on the rating data should 

predict subsequent choice behavior in a multi-choice task. For instance, in a two-alternative 

choice task, the optimal strategy is to choose good 1 over good 2 if v1 > v2, where the value 

estimates (v1, v2) are the Bayesian posterior means of each good, respectively (see Methods).

One can also make predictions of choice discriminability between two objects based on their 

position in the rating scale (Fig. 1b,c). If the prior distribution has higher density over low 

subjective values, then predicted discriminability resembles a u-shaped function, but with 

higher choice accuracy for lower-valued goods (Fig. 1b). On the other hand, if the prior 

distribution has higher density over high subjective values, then higher choice accuracy 

should be observed for higher-valued goods (Fig. 1c). Interestingly, the latter prediction 

would be diametrically opposite to predictions based on Weber’s law8, which generally 

assumes that higher value magnitudes should lead to poorer discrimination. Our efficient 

coding theory implies that Weber’s Law should hold in the case of a particular kind of prior 

distribution that may be realistic for some sensory magnitudes, but not for the distribution of 

values for consumption goods assumed here.

Subjective value rating and choice behavior

In a first behavioral experiment (Experiment 1), we presented a set of food items to n=38 

study participants and asked them to indicate on a continuous rating scale their preference to 

consume the presented item (Fig 2a; Methods). Crucially, the participants were familiar with 

the food products and had seen all of them before the ratings took place, ensuring that they 

could effectively use the full range of the rating scale. The products (M=64 goods) were a 

representative sample of products typically encountered in the two biggest supermarket 

chains in Switzerland. Nevertheless, we ensured prior to testing that participants were indeed 

familiar with all products (Methods).

We then asked participants to rate the same items a second time, but crucially, they had been 

unaware that this second rating phase was going to take place, thus allowing a clean 

estimation of variability in the decoded values (Methods, Fig. 2b). We tested whether this 

variability actually reflected the value coding/decoding operations rather than just random 

noise or an artifact of the bounded rating scale. To this end, the same participants underwent 

a series of incentive-compatible choices in which they selected from pairs of the previously-

rated food items the one item they preferred to eat. We defined a consistent choice as a trial 

in which the subject chose the item they had assigned a higher average rating across the two 

previous ratings. Choice consistency was affected by the value difference between the two 
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items’ prior ratings: The higher the value difference, the more consistent the choices 

(multiple logistic regression, βRandEffects=0.44±0.05, P<0.001; Fig. 2d). This concurs with 

the long-held notion that stronger evidence leads to more consistent choices11,12. 

Importantly, choice consistency also depended on the variability in the value ratings: The 

higher this variability for the items on a given trial, the less consistent the decision 

(βRandEffects = -0.21±0.05, P<0.001; Fig. 2d). Extending this trial-to-trial effect of rating 

variability, we observed that each participant’s average level of variability in the rating task 

was negatively correlated with the slope of the logistic regression of her individual choices 

on the items’ mean value difference (βrobust = -0.77±0.20, P<0.001; Fig. 2e). In other words, 

the higher the variability in the initial value ratings, the less consistent the subsequent 

choices between the rated items, both compared across trials and across participants. This 

already suggests that properties of the value coding/decoding operations can somehow affect 

preference-based choices, but it does not characterize by what mechanisms they may 

influence the observed decisions. In the next sections, we will address this question by 

formal tests of the theoretical framework outlined in our model specification.

In Experiment 1, the rating scale was continuous and without numerical cues (Fig. 2a). One 

may wonder whether rating variability might represent imprecisions in the participants’ 

assignment of the decoded subjective values to this rating line. We therefore conducted a 

second experiment (Experiment 2, n=37) in which the rating scale was divided into discrete 

steps with explicitly assigned numerical values (Fig. 2a; Methods). The variability in ratings 

across this scale clearly resembled the shape observed in Experiment 1 (Fig. 2c) and had a 

similar significant impact on choice behavior (βRandEffects = -0.25±0.05, P<0.001; Fig. 2d). 

Again, each participant’s level of variability in the rating task correlated negatively with the 

slope of the regression of choice consistency on value difference between the goods (βrobust 

= -1.2±0.25, P<0.001; Fig. 2f). Thus, the influence of rating variability on subsequent 

choices does not depend on specifics of the rating procedure but may reflect characteristics 

of the noisy coding/decoding operations used by the observer to estimate the subjective 

value.

Testing the efficient coding hypothesis

We now investigate to what extent the observed rating variability in Experiments 1 and 2 can 

be explained by the efficient coding model. We started by inferring the values v(1,⋯,M) of 

each good m that maximized the likelihood of the observed set of ratings for each participant 

(Methods). In Experiments 1 and 2, the rating data set consisted of M=64 and M=61 goods 

respectively, with N=2 ratings for each good. The fitted model successfully captured the 

empirically-observed rating variability (Fig 2b-c) and the distribution of subjective value 

estimates v (Supplementary Fig. 2). We compared the quality of these efficient-coding 

model fits with those of a simple flexible model that assumes constant Gaussian noise over 

the rating scale with no prior distribution constraints on the values v(1,⋯,M). For both 

Experiments 1 and 2, the efficient coding model explained the rating distribution better than 

the alternative model (Supplementary Fig. 3).

Exploration of the rating data revealed that the distribution of ratings was highly variable 

across participants (Supplementary Figs. 4,5), perhaps indicating that each individual holds 
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different priors over values due to different long-term experience. The inferred prior 

distributions for both experiments based on our model revealed that the expected value of 

the prior across the population was shifted towards higher values (Fig. 2b,c). Choice 

discriminability should therefore resemble the shape predicted in Figure 1c. If the subjective 

values of the products are derived using efficient-coding principles, then using the 

framework described above should allow us to predict each individual’s preference-based 

decisions. It is important to emphasize that for these prediction analyses, we fixed for each 

participant the parameters of the prior distribution p(v) and the stimulus values v(1,⋯,M) to 

the specific values obtained when fitting the model to the separate rating data. Using these 

out-of-sample parameters and values, and only adjusting the encoder and external noise, our 

model did a good job at predicting the choice data (Fig. 2g,h) as suggested by both the 

qualitative predictions and leave-one-out cross-validation metrics (Methods and 

Supplementary Note 1). To determine which aspects of the operations formalized in the 

efficient-coding model are most relevant for explaining behavior, we compared the 

predictive power of our model to that of alternative models (Supplementary Note 1). For 

both experiments, the efficient coding model predicted the data best, as suggested by both 

the qualitative predictions and leave-one-out cross-validation metrics (Supplementary Note 

1).

It may be argued that the specific pattern of observed choices in our experiments could also 

be captured by a model that does not contain efficient coding but instead fits the full shape 

of the likelihood function to the observed data, as done e.g. in in previous work on 

perceptual discrimination26. However, it is important to emphasize that our approach does 

not require us to fit arbitrary shapes of likelihood functions, as these shapes naturally arise 

from the efficient-coding formalized in our model, which only requires fit of one free 

parameter: Noise in the efficient-coding space (for a detailed discussion of this topic see 

Supplementary Note 2). Thus, the explanatory power of our model does not reflect the 

general flexibility of Bayesian inference per se but specifically relates to the efficient coding 

of values embedded in the Bayesian inference process.

The results presented so far suggest that subjective-value representations guiding human 

preference-based decisions are inferred and employed optimally using both efficient coding 

and Bayesian decoding. However, it remains unclear whether internal noise due to efficient 

coding is the main factor explaining fluctuations and potential biases in subjective value 

estimations. We investigate this issue in the following section.

Illusions of subjective value

The theory used here predicts in general that for a stimulus with value v0 near the peak of 

the prior, the subjective value estimate v (and the resulting rating v⌣) should be biased away 

from the prior, with the strength of this bias determined by the degree of noise in the internal 

representations used for inference9. We thus investigated whether a conceptually similar 

type of bias emerges during subjective value estimation, reflecting an expectation-induced 

preference illusion and further supporting efficient coding of subjective value.

The estimation of this valuation bias necessarily requires knowledge of the exact stimulus 

value v0 that serves as input on any given trial, which is difficult in our case since the 
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experimenter does not have direct access to v0 (Fig. 1a). In order to cope with this problem, 

we first derived predictions of the estimation bias for different levels of internal noise σ in 

the value representations. We assumed that this noise varies with the stimulus presentation 

times, based on theoretical frameworks postulating that value estimates are constructed 

using samples from memories/emotions associated with the physical features of the 

objects30. This suggests that a reduction in visual stimulation time should reduce the 

number of samples that can be drawn and should therefore increase the noise in the internal 

value representations31. To make this intuition explicit, we formulated a mathematical proof 

confirming that the number of discrete samples (e.g., memories) that can be drawn over time 

is inversely proportional to the level of encoding noise in a capacity-limited system 

(Supplementary Note 3). Crucially, this proof provides a normative foundation for the 

theoretical frameworks30–32 motivating our approach and confirms the validity of the 

assumptions underlying our simulations and experimental strategy.

In order to derive initial qualitative predictions for the value estimation bias for different 

presentation times – and therefore levels of encoding noise – we performed model 

simulations using the prior p(v) obtained in Experiments 1 and 2, with the consequence that 

its peak was slightly shifted to the right of the rating scale (Fig 2b,c). We selected two levels 

of encoding noise σ based on the noise levels observed in Experiment 1 (see Supplementary 

Note 4 for a detailed discussion of the relation between encoding noise and the specific bias 

pattern). The simulations predicted biases for long exposure times (low σ, black line in 

Figure 3a) and short exposure times (high σ, red line in Fig. 3a) that are markedly different 

once the value estimates have been mapped onto the bounded rating scale via g(v) . Crucially, 

the difference between these two predictions (high and low σ) is independent of v0:

(vσhigh
− v0) − (vσlow

− v0) = vσhigh
− vσlow

. (1)

Figure 3b shows that simulated rating trials with short exposure time (i.e., high σ) have 

stronger repulsive (“anti-Bayesian”) biases near the center of the prior (intersection point to 

the right of the center of the rating scale), but also stronger attraction biases when v0 is 

further away from the peak of the prior. For values close to the prior, this prediction agrees 

with previous work showing repulsive noise-related biases in perceptual tasks9; however, as 

v0 moves away from the prior, our simulations predict the opposite tendency (attraction) that 

would also be expected based on classical Bayesian frameworks.

We devised a behavioral paradigm (Experiment 3) to investigate whether these model-

predicted biases are in fact observed for subjective value estimations. Healthy individuals 

(n=24) rated goods with similar procedures as in Experiment 1. However, for the first round 

of ratings, a randomly determined half of the goods for each participant were presented for a 

duration of 900 ms and the other half for a duration of 2600 ms. Participants did not know 

whether a given item was going to be presented for the short or long duration. In the second 

round of ratings, the presentation durations were inverted for each good, but participants did 

not know that this second round was going to take place (see methods for further details). 

Thus, participants were not able to predict the presentation times of individual items and 
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could not develop differential information sampling strategies for items with long vs short 

presentation times. On each trial, the rating scale was presented just after the image had 

disappeared from the screen (see Figure 1a), and participants were instructed to then provide 

their rating as fast as possible (mean RTs of 1.53±0.45 and 1.39±0.4 for low and high 

exposure times, respectively, see Supplementary Fig. 6). Thus, the effective sampling time 

(time from the onset of stimulus presentation until response) was 1.53±0.4 s longer for long 

exposure times (βRandEffects=1.4±0.08, P<0.001; Supplementary Fig. 6), supporting our 

assumption that participants could draw a higher number of samples (and therefore reduce 

internal noise in the value representations) for images with long exposure times. We 

computed the difference in the ratings between short and long durations and plotted this 

difference as a function of the rating of the long duration (Fig. 3c). The results of this 

analysis match the non-intuitive quantitative predictions of the efficient coding model (Fig. 

3b), in showing systematic repulsion for the four data points near the peak of the prior and 

attraction for the other values that are further away from the prior (Supplementary Fig. 7). 

Note that the repulsion effect that is both predicted and observed at the center of the scale 

here is not confined to always be at this location - its location and extent over the rating scale 

depends on the interaction of the three key parameters of our model: The prior location, 

prior shape, and level of encoding noise (Supplementary Note 4).

Control analyses confirmed that our results are not caused by systematic temporal order 

effects (no difference in value ratings between the first and second rounds for each of the 

exposure times; paired t-tests, all P>0.18). We also compared the accuracy of our model’s 

predictions to that of control models in which we factorially varied all possible sources of 

noise that could in principle have affected the ratings (pre-encoding noise, efficient-coding 

noise, post-encoding noise, and lapses). Models without efficient coding lead to very 

different predictions that are not supported by our empirical data (Supplementary Fig. 8). In 

order to test this quantitatively, we performed a factorial model comparison to quantify the 

strength of empirical support given by our data for the presence of each noise source 

(Supplementary Fig. 9 and Supplementary Table 1). This revealed that the only noise source 

reliably accounting for the variation in subjective value estimation due to time pressure is 

internal noise in efficient coding (Bayes Factor > 100; see Supplementary Fig. 9). This 

strongly suggests that the biases in subjective value estimates observed in Experiment 3 

originate in the efficient-coding operations formalized in our model.

Confidence in subjective valuation

It has been suggested that the perceived confidence in subjective value reports reflects a 

second-order judgement (the confidence rating) about a first-order judgment (the subjective 

value rating)15. However, two important issues have remained unaddressed. First, previous 

work has not explicitly defined a generative model of the encoding and decoding of value 

representations; second-order statements about these ratings would therefore be subject to 

the same problems curtailing the validity of the ratings themselves. Second, previous work 

has remained agnostic about both the information structure of values in the environment and 

capacity limitations. We therefore tested whether the reported confidence in subjective value 

estimations can be predicted based on the encoding/decoding process proposed here.
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We conducted a new experiment (Experiment 4) in which participants provided value ratings 

as in experiment 1, but they now also gave a confidence rating after each value rating (Fig. 

4a). We inferred the subjective values v(1,⋯,M) exactly as for Experiments 1 and 2. Once 

again we found a shift of the expected prior (i.e., its mean) towards higher values alongside 

higher rating variability for higher than low-rated items (hierarchical linear regression of 

rating variability for each item vs. mean rated value: βRandEffects= -0.18±0.04, P<0.001). 

Based on these results, we derived three qualitative predictions for the confidence ratings 

based on the definitions of confidence formulated above. First, confidence should be higher 

for rating values near the extremes of the rating scale (Fig. 4d), reflecting the transformation 

from the subjective space to the bounded scale. This prediction is in line with previous 

work15. Second, given the shift of the prior density towards higher subjective values (Fig. 

4c), the efficient coding framework predicts that the second-order judgement of the posterior 

probability perceived in the rating scale should decrease for item values towards the right 

side of the rating scale; confidence reports should therefore be higher for items with higher 

subjective value (Fig. 4d). Third, because lower levels of variability in the rating estimates 

generate narrower posterior distributions, the average variability of each participant’s ratings 

should be negatively related to her general level of confidence.

The data (see Figure 4e,f) confirm all three predictions. First, confidence increases for 

values closer to the extremes of the rating scale (quadratic effect βRandEffects=0.41±0.03, 

P<0.001). Second, confidence was higher for higher model-predicted subjective values vm 

(βRandEffects=0.22±0.070, P=0.002). This runs counter to previous suggestions15 that 

confidence ratings should be symmetric with respect to the center of the rating scale: Both 

our model and empirical data reveal that this is not necessarily the case, as the confidence 

ratings depend on the prior distribution (Supplementary Table 2). Third, across participants, 

the higher the variability in the subjective value estimations, the less confident the 

participants are (βrobust = -0.59, P<0.0011). Crucially, this regression analysis controls for 

the mean value ratings for each participant (Fig. 4f), thereby confirming our model 

predictions that confidence relates to rating variability independently of how valuable the 

participants rated the items. Finally, to test these model predictions more quantitatively for 

the observed data using our framework, we implemented 11 different proposed models of 

how confidence may be derived15,33–35 from the posterior distributions of rating values 

given by our framework (see full details of the model specifications in Supplementary Table 

2). Crucially, we fixed both the parameters of the prior distribution and values v(1,⋯,M) for 

each participant to the values obtained by fitting the model to her prior rating data. We found 

that a model based on the statistical definition of confidence (i.e., the probability that the 

rating is correct33,34) provided the best fit to the empirical confidence reports (Fig 4e, 

Supplementary Table 2). These results confirm that our efficient-coding model can capture 

the value inference processes that underlie not only subjective value estimates but also the 

reported confidence in these estimates.

Discussion

Our work demonstrates that variability, biases, and confidence in preference-based choices 

are all consistent with information-maximizing transmission and statistically optimal 

decoding of values by a limited-capacity system. This suggests that principles governing the 
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encoding and interpretation of low-level sensory signals are also relevant when humans 

report and choose based on subjective preferences. More specifically, our results support 

theoretical proposals according to which, just as in the case of sensory systems, subjective 

value systems optimize the use of limited resources for processing value information and 

exploit environmental regularities in order to guide preference-based decisions16,17,19. 

Thus, our findings provide a fundamental step toward a unified account of how humans 

perceive and valuate the environment in order to optimally guide behavior.

Our work introduces a new framework that may serve to improve the modelling and 

prediction of preference-based decision making, and more generally any cognitive process 

that involves fully subjective value estimations (such as pain36 and health37 perception, to 

mention only two examples). We demonstrate that the common practice of using value 

ratings as inputs to decision models11,12,14,15,27–29 is suboptimal, since these reports 

should be just as variable and biased as the choices that the experimenter wants to model. 

This is not a trivial issue, as both ratings and choices can be subject to complex non-

linearities due to the encoding/decoding strategies implemented by the valuation system. 

Our model provides a solution to this problem, since it makes it possible to employ a single 

set of ratings to determine both the observer’s subjective values and their underlying prior 

distribution, while simultaneously accounting for capacity limitations. These parameters and 

values can then be used to predict fully independent preference-based decisions with higher 

accuracy than existing standard approaches in the literature. This procedure differs from 

traditional economic approaches that derive preferences directly from observed choices38 

and that ignore the processes involved in estimating subjective values (and the associated 

sources of variability). Our results show that this ignorance is not warranted; a detailed 

understanding of these processes should be a critical aspect to consider in theories of 

decision making and economic behavior39.

In our model specification, variability in subjective value estimates and choices emerges 

from both internal noise in the coding of value and unspecific (external) noise in the decision 

process. This perspective is fundamentally different from standard approaches where 

preference variability is solely attributed to unspecified noise in the decision process (e.g., 

noise added to deterministic value functions13 through the application of a softmax function 

or diffusion noise in sequential sampling models11–13). Based on our empirical and 

modelling work, we argue that positing unspecified sources of noise in the decision process 

may be insufficient, given that accounting for noise involved in the coding of value appears 

to be crucial for deriving more accurate predictions of economic decisions21. Even though 

some characteristics of the models used for this purpose (e.g., encoding rules and loss 

function of the Bayesian encoder) may be refined by future research on both perception40 

and subjective valuation23, our findings clearly illustrate the general utility of this approach.

In some respects, our model of the coding of value resembles the one posited by decision-

by-sampling theory41. That theory proposes that estimated subjective values directly reflect 

samples drawn from an internal noisy representation of value, but unlike in our approach, no 

optimal Bayesian decoding is assumed. As a consequence, decision-by-sampling theory 

cannot account for our finding that biases in valuation are changed by time pressure, since 

drawing fewer samples should lead to value estimates that are noisier, but not different on 
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average. This contrasts with the predictions of the framework presented here, which we 

show to be fully congruent with the empirically observed biases under time pressure.

Our results support the idea that reported confidence in subjective value estimations is well 

captured by a statistical measure of confidence33,34. While a recently proposed 

framework15 provides an elegant model of confidence judgments for individual value 

estimates, it does not provide a precise account of what information should actually be 

encoded but focuses only on what may be decoded. Additionally, that framework does not 

account for the effects of capacity limitations in information processing and the distribution 

of object values in the environment. Our work provides a more comprehensive 

characterization, by demonstrating that the same efficient coding framework that accounts 

for biases and variability in subjective value estimates and choices also accounts for the 

reported confidence in these value estimates. In general, we hope that these results may 

motivate researchers to further develop explicit process models of metacognition42.

While our work highlights similarities between perceptual and value inference, it has 

remained agnostic as to how the internal response used for this purpose is derived from low- 

and high-level sensory signals. Understanding such feature extraction will be important for 

characterizing how the internal value response may be constructed, e.g. by sampling from 

memory30,43 and emotion systems44. While we formally demonstrate that the precision of 

encoded subjective values in capacity-limited systems may relate to the number of discrete 

samples that can be drawn (e.g., from memory or emotion systems), we have so far only 

focused on the encoding and readout of simple one-dimensional subjective values associated 

with an object. However, the framework used here could be parsimoniously extended to 

incorporate a whole range of lower-level sensory signals and to encompass more complex 

hierarchical structures. Despite this interesting challenge to further understanding the 

construction of preferences10, it is remarkable that a simple normative specification inspired 

by fundamental principles of low-level sensory perception can capture important aspects of 

preference-based decisions.

Bayesian models have often been criticized for allowing an arbitrary choice of prior and 

likelihood functions, as a consequence of which it is suggested that their predictions are 

vacuous45. However, in this study we have shown that by fully constraining the decision 

model to the distribution of object values – while taking account of capacity constraints – it 

is possible to accurately capture preference-based choice behavior using a parsimonious 

model. In line with previous work on low-level sensory perception4,9, our results 

demonstrate that the above-mentioned critique is not always valid. This should motivate 

researchers to pursue the identification of optimal solutions to computational problems 

posed by the environment – in both perception and subjective valuation – without ignoring 

the fact that biological systems are by definition limited in their capacity to process 

information.

Taken together, our findings suggest that resource-constrained models inspired by models of 

perception3,9,16 may have far-reaching implications not only in neuroscience, but also in 

psychology16,46–48 and economics19,21,48–50. Such models offer the prospect of 

explanations for seemingly irrational aspects of choice behavior, grounded in the need to 
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represent the world with only finite precision. Recent work suggests that features of 

economic decisions such as risk aversion21 and preference reversals19 can be understood as 

further examples of biases resulting from optimal Bayesian inference from imprecise 

internal representations of value. This supports our emphasis on the desirability of 

developing models of decision making that account simultaneously for the goals of the 

organism, its environment, and its biological constraints.

Methods

Participants

The study tested healthy young volunteers (total n=127, age 19-37 years, 55 females: n=38 

in experiment 1, 17 females; n=37 new participants in experiment 2 (replication of results 

obtained in experiment 1), 14 females; n=24 new participants in experiment 3, 11 females; 

and n=28 new participants in experiment 4, 13 females). Participants were randomly 

assigned to each experiment. No data was excluded from the analyses. Sample size was 

determined based on previous studies using similar stimuli and tasks11,51. Participants were 

instructed about all aspects of the experiment and gave written informed consent. None of 

the participants suffered from any neurological or psychological disorder or took medication 

that interfered with participation in our study. Participants received monetary compensation 

for their participation in the experiment, in addition to receiving one food item in the 

decision-making task (see below). The experiments conformed to the Declaration of 

Helsinki and the experimental protocol was approved by the Ethics Committee of the Canton 

of Zurich.

For all experiments, participants were asked not to eat or drink anything for 3 hours before 

the start of the experiment. After the experiment, participants were required to stay in the 

room with the experimenter while eating the food item that they had chosen in a randomly 

selected trial of the decision-making task (see below). All experiments took place between 

9am and 5pm. Our experiments did not include different conditions determined a priori by 

the experimenter, since the participants themselves sorted trials into conditions as a direct 

consequence of their ratings and choices given during the experiment. Blinding was 

therefore neither necessary nor possible.

Value rating task

Experiments 1 and 2 consisted of three main phases: (1) rating phase 1, (2) rating phase 2, 

and (3) the decision-making task. In rating phase 1, we asked the participants to provide 

subjective preference ratings for a set of 64 food items using an on-screen slider scale 

(Figure 2a). All of the food items were in stock in our lab and participants were notified 

about this. Importantly, participants saw all food products before the ratings so that they 

could effectively use the full range of the rating scale. Moreover, participants knew that all 

products were randomly drawn from the two biggest supermarkets in Switzerland. Based on 

pilot measurements and previous studies11,51 in our lab, we selected food items that varied 

all the way from items that most participants would find unappealing (e.g., raw broccoli) to 

items that most participants would find highly appetitive (e.g., ice cream). This was 

important as our model should capture the full range of subjective values that humans 
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typically assign to food items on a daily basis. During the ratings, participants indicated 

“how much they wanted to eat the presented food item at the end of the experiment”. The 

slider scale was continuous in experiment 1 with no numbers displayed (Fig. 2a), whereas 

the rating scale in experiment 2 was divided in 20 steps of equal size with numbers 

displayed under each step (Fig. 2a). This was done to ensure that the effects observed in 

Experiment 1 did not reflect the absence of reference points in the middle of the rating scale. 

Participants were informed that the rightmost endpoint would indicate items that they would 

most love to eat, whereas the leftmost endpoint would indicate items that they would most 

hate to eat. The initial location of the slider was randomized for each item to reduce 

anchoring effects.

Rating phase 2 was identical to rating phase 1 and took place immediately after phase 1. The 

order of the items’ presentation was randomized. Crucially, participants were not informed 

before the rating phase 1 that a second rating phase and a decision-making task would take 

place. This was important as it prevented participants from actively memorizing the location 

of the rating in the slider in the first phase, thus providing us with a clean measure of the 

variability in the value estimates.

In Experiment 3, participants provided value ratings as in Experiment 1, but for the first 

round of ratings, half of the goods were presented with a duration of 900 ms and the second 

half with a duration of 2600 ms. For the second round of ratings, the presentation durations 

were inverted for each good. The exposure time (900 ms or 2600 ms) was pseudo-randomly 

selected for each good in the first round of ratings, and participants did not know in advance 

for how long they were going to see each specific food item. The rating scale appeared only 

once the image disappeared from the screen (see Figure 1a), and the participants were 

instructed to provide their rating as fast as possible (mean RTs 1.53±0.45 and 1.39±0.4 for 

low and high exposure times, respectively). Crucially, participants were not informed in 

advance about the details of the time manipulations.

In Experiment 4, participants provided value ratings as in experiment 1, but indicated after 

each rating their confidence in their first-order rating (Fig. 4a). Following procedures of 

previous work15, we informed participants that the leftmost side of the rating scale means 

“Not at all” confident and the rightmost side means “Totally” confident.

Choice task

For Experiments 1 and 2, immediately after the two rating phases, an algorithm selected a 

balanced set of decision trials divided into four value difference levels on the rating scale 

(rating difference ~5%, ~10%, ~15% and ~20% of the length of the rating scale), as defined 

by the average rating across phases 1 and 2 provided by each participant. Decision-making 

trials started with central presentation of a fixation cross for 1-2 seconds. Immediately after 

this, two food items were displayed simultaneously, one in the upper and one in the lower 

hemifield (Fig. 2a). The food items were presented until response and participants had up to 

four seconds to make a choice. Participants were instructed to choose which of the two items 

(upper or lower) they preferred to consume at the end of the experiment. To make these 

choices, participants pressed one of two buttons on a standard keyboard with their right-

index finger (upper item) or their right thumb (lower item). In Experiments 1 and 2, we 
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defined a consistent choice as a trial in which the subject chose the item with a higher mean 

rating from the prior rating phase. Each experimental session comprised a maximum of 240 

trials (this depended on the rating distribution of each participant) divided into 6 runs of 40 

trials each. The trials were fully balanced across rating-difference levels (~5%, ~10%, ~15% 

and ~20% of the length of the rating scale) and location of consistent response option (Up or 

Down).

Model

We assume that the presentation of an object with stimulus value v elicits an internal noisy 

response r (encoding) that the observer uses to generate a subjective value estimate v(r) – the 

decoded stimulus value. At the encoding stage, a function F(v) maps the stimulus space to a 

new space where the Fisher information is uniform over the entire real line. This requires the 

definition

F(v) = ∫
0

v
p(χ)d χ for v > 0 (2)

F(v) = − ∫
v

0
p(χ)d χ for v < 0, (3)

where p(χ) is an improper prior distribution, so that F(v) → ∞ as v → ∞, and F(v) → –∞ 
as v → –∞. We assume that conditional on the value v, an internal noisy (neural) response 

is generated

r = F(v) + δ (4)

with δ ~ N(0,σ2), where σ measures the degree of noise in the internal representation that is 

constant over all possible values F(v). We also note that the prior distribution for possible 

values of F(v) is uniform on the real line. The posterior mean estimate of F(v) (the estimator 

that minimizes mean squared error) is then given by

v(r) = E[F−1(r + ϵ1)] (5)

with ϵ1 ~ N(0,σ2). Here E[.] means the expectation over possible values of ϵ1. This estimator 

is a deterministic function that maps each measurement r to an estimated subjective value 

v(r); this deterministic mapping therefore cannot account for trial-to-trial fluctuation in the 

value estimates. The variability in the value estimates arises because of the variability in the 

measurement r on each trial. Accounting for this variability, it follows that for any true 

stimulus, v0, the mean estimate should be given by
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E v v0 = E F−1(F(v0) + ϵ1 + ϵ2) (6)

with ϵ2 ~ N(0,σ2). E[.] now means the expectation over possible values of (ϵ1 + ϵ2) ~ 

N(0,2σ2).

In the small-noise limit, we can take a second-order Taylor expansion:

F−1(F(v0) + ϵ) ≈ F−1(F(v0)) + ϕ′ ⋅ ϵ + (1/2)ϕ″ ⋅ ϵ2, (7)

where ϵ ≡ ϵ1 + ϵ2, ϕ(v) ≡ F−1(v), and the derivatives of ϕ(v) are evaluated at v0 = F(v0). 

Taking the expected value over possible realizations of ϵ1 we obtain

v ≈ v0 + ϕ′ ⋅ ϵ2 + (1/2)ϕ″ ⋅ (σ2 + ϵ2
2) . (8)

Conditional on a particular stimulus value v0, this is a random variable with expected value

E[v v0] ≈ v0 + ϕ″ ⋅ σ2 (9)

and variance

Var[v v0] ≈ (ϕ′)2 ⋅ σ2 . (10)

If we approximate this distribution by a normal distribution with the mean and variance just 

calculated above, we would obtain a probability density for v given by

p(v; v0, θ, σ) = N(v; v0 + ϕ″ ⋅ σ2, ϕ′ 2 ⋅ σ2), (11)

where θ is a set of parameters of the prior distribution (see below). This expression is the 

likelihood of a given subjective value estimate v conditioned on a true stimulus value v0. If 

one wants to write the joint likelihood of a pair of values (v , v0) occurring when v0 is drawn 

from the prior, one obtains

pjoint(v; v0, θ, σ) = N(v; v0 + ϕ″ ⋅ σ2, ϕ′ 2 ⋅ σ2) ⋅ F′(v0) . (12)

In addition to internal noise in the coding of value σ, we also account for late noise in the 

decision stage (i.e., post-decoding noise), which may capture any unspecific forms of 
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downstream noise occurring during the response process that are unrelated to valuation per 

se. We assume this late noise to be normally distributed; therefore, it can be easily added to 

our model as follows (see Supplementary Note 1 for further discussion on the different 

sources of noise)

pjoint(v; v0, θ, σ, σext) = N(v; v0 + ϕ″ ⋅ σ2, ϕ′ 2 ⋅ σ2 + σext) ⋅ F′(v0) . (13)

The last part of the model defines the probability distribution in the space of the bounded 

rating scale. Without loss of generality, we assume that this scale is bounded from 0 to 1, 

with a monotonic mapping of subjective preference values that preserves preference 

ordering. Transforming the unbounded internal scale to this bounded physical scale requires 

a mapping that preserves monotonicity. A convenient and relatively simple function allowing 

this transformation is the logistic function: v⌣ = g(v) = 1/(1 − e−v), which provides a one-to-

one mapping of the estimate v from the subjective to the physical scale on any given trial. 

The implied joint probability density ( v⌣, v0) on the rating scale is thus given by

p⌣( v⌣; v0, θ, σ, σext) = N(g−1( v⌣); v0 + ϕ″ ⋅ σ2, ϕ′ 2 ⋅ σ2 + σext) ⋅ F′(v0) ⋅ (g−1( v⌣))′ (14)

Here the inverse mapping of the subjective to the unbounded scale is given by

g−1( v⌣) = log v⌣
1 − v⌣ , (15)

and its first derivative is

(g−1( v⌣))′ = 1
v⌣ − v⌣2 . (16)

Recall that we are assuming here that the decision maker maximizes mutual information 

between the input stimulus and the noisy measurement, therefore F(v) is defined as the 

cumulative density function (CDF) of the prior distribution p(v). Here we assume that the 

prior follows a logistic distribution

p(v; μ, s) = 1
4ssech2((v − μ)/(2s)), (17)

where μ and s represent the mean and scale, respectively. The advantage of using this 

distribution is that its CDF and both the first and the second derivative of the quantile 

function have closed-form solutions; however, any similar prior distribution could be used 

without greatly affecting the quantitative predictions presented here. F(v), ϕ(v)′ and ϕ(v)″ are 

given by:
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F(v) = 1
2 1 + tanh v − μ

2s , (18)

ϕ(v)′ = s
v(1 − v) , (19)

ϕ(v)″ = s(2v − 1)
v2(1 − v)2 (20)

Thus, for any experimental data set consisting of M goods and N value ratings for each 

good, we can find the set of parameters of the prior, the internal valuation noise σ, external 

noise σext, and the “true” stimulus values v(1,⋯,M) that maximize the likelihood of the 

observed set of ratings (under the constraint that v(1,⋯,M) is distributed following p(v)).

In order to compute choice consistency predictions that an experimenter would obtain when 

performing such analysis in the rating scale (Fig. 1b,c), we first computed for a fine-grained 

sequence of subjective values v0 their corresponding expected value and variance perceived 

in the rating scale (if we assume that the experimenter can obtain a large number of ratings 

for each good) via

μ v⌣ = ∫ g(v) ⋅ N(v; v0 + ϕ″ ⋅ σ2, (ϕ′)2 ⋅ σ2 + σext)dv (21)

and

σ v⌣
2 = ∫ [g(v) − μ v⌣]2 ⋅ N(v; v0 + ϕ″ ⋅ σ2, (ϕ′)2 + σext)dv, (22)

where the subscript ( v⌣) reflects the expected value (μ v⌣) and variance (σ v⌣
2 ) at position v⌣ in 

the rating scale. We then looked for expected values μ v⌣ closer to the values [0.1,0.11,0.12, 

… 0.89,0.9] and used their corresponding variance to approximate the level of choice 

consistency as follows:

Φ
μ v⌣ + δ − μ v⌣

σ v⌣ + δ + σ v⌣
+ Φ

μ v⌣ − μ v⌣ − δ
σ v⌣ − δ + σ v⌣

/2, (23)

with δ = 0.05 (note that different values of δ move the accuracy curve up or down but does 

not affect the general u-shaped curve obtained in our predictions; see Fig. 1b,c).
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Behavioral analyses and statistics

Preference-rating variability in Experiments 1 (n=38), 2 (n=37) and 4 (n=28) was computed 

as the standard deviation (SD) for each item across the rating phases 1 and 2. To visualize 

this effect, we plotted the SD as a function of the mean rating (Figs. 2b,c; 4b). To investigate 

the influence of both VD and rating variability on the consistency of choices (Fig. 2d), we 

performed a hierarchical logistic mixed-effects regression of choices (defining consistent=1, 

inconsistent=0) on three main regressors of interest, namely: value difference (VD), 

summed-variability (Var, defined as the sum of the two SDs of the two food items presented 

in each trial), and the summed-value (OV, defined as the sum of mean rating values of the 

two food items presented in each trial). All regressors of interest were included in the same 

model. Similarly, all the population-level regressions described for Experiment 4 were based 

on a hierarchical linear mixed-effects regression approach. All mixed-effects regressions in 

this study had varying subject-specific constants and slopes (i.e., random-effects analysis). 

Posterior inference of the parameters in the hierarchical models was performed via the Gibbs 

sampler using the Markov Chain Monte Carlo (MCMC) technique implemented in JAGS52, 

assuming flat priors for both the mean and the noise of the estimates. For each model a total 

of 10,000 samples were drawn from an initial burn-in step and subsequently a total of new 

10,000 samples were drawn with three chains (each chain was derived based on a different 

random number generator engine, and each with a different seed). We applied a thinning of 

10 to this final sample, thus resulting in a final set of 1,000 samples for each parameter. We 

conducted Gelman–Rubin tests53 for each parameter to confirm convergence of the chains. 

All latent variables in our Bayesian models had R < 1.05, which suggests that all three chains 

converged to a target posterior distribution. We checked via visual inspection that the 

posterior population level distributions of the final MCMC chains converged to our assumed 

parametrizations. The “p-values” reported for these regressions are not frequentist p-values 

but instead directly quantify the probability of the reported effect differing from zero. They 

were computed using the posterior population distributions estimated for each parameter and 

represent the portion of the cumulative density functions that lies above/below 0 (depending 

on the direction of the effect). The regressions across participants reported for Experiments 

1,2 and 4 were computed using robust linear regressions using the rlm function54 

implemented in the statistical computing software R55.

In order to fit the efficient coding model to the rating data in Experiments 1, 2 and 4, we 

found the stimulus values v(1,⋯,M), parameters of the prior θ, encoding noise σ and external 

noise σext that maximized the likelihood function p( v⌣m; vm, θ, σ, σext) (Eq. 14) of the 

observed set of ratings for each participant under the constraint that v(1,⋯,M) is distributed 

following p(v;θ) (Supplementary Fig. 1). Alternatively, defining v ≡ F(v), one can find the 

values estimates in the efficient space v(1, ⋯, M) under the constraint that these are uniformly 

distributed. Using either approach, we found nearly identical results for the fitted 

parameters, which is expected for correct model specification. Posterior inference of the 

parameters for this model can be conveniently performed via the Gibbs sampler.

We used the stimulus values v(1,⋯,M) and prior parameters θ fitted to the rating in order to 

predict choices in the two-alternative choice task in Experiments 1 and 2. Following our 
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modelling specification, over many trials the probability that an agent chooses an alternative 

with stimulus value v1 over a second alternative with stimulus value v2 is given by:

P(v1 > v2 |v1, v2) = Φ
E[v1 v1] − E[v2 v2]

Var[v1 v1] + Var[v2 v2] + 2σext
2 , (24)

where Φ() is the CDF of the standard normal distribution and the expressions for E[.] and 

Var[.] are given in Eqs. 9 and 10 (see above). In other words, the input values of the choice 

model are fully constrained by the efficient coding model based on the fits to the rating data 

and therefore the choice model has only two free parameters, namely the resource noise of 

the encoder σ and the external noise σext. Fits to the choice data were performed via the 

Gibbs sampler using a hierarchical Bayesian model assuming flat priors for both noise 

terms. When evaluating different models, we are interested in our model’s predictive 

accuracy for unobserved data, thus it is important to choose a metric for model comparison 

that considers this predictive aspect. Therefore, in order to perform model comparison, we 

used a method for approximating leave-one-out cross-validation (LOO) that uses samples 

from the full posterior56. The smaller the LOO the better the fit. We found that in 

Experiments 1 and 2, the best model was the efficient-coding model. Crucially, this finding 

is fully replicated when using a different Bayesian metric such as the wAIC56. Description 

of the different choice models tested here is presented in Supplementary Note 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Simplified schema of the value inference model.
a) Observers infer the true value v of a food item by Bayesian inference constrained by 

efficient coding. The perceived food item with value value v elicits an internal response r. 
The corresponding likelihood function p(r|v) is constrained by the prior belief p(v) via 

efficient coding. In this example, the prior p(v) matches the distribution of subjective values 

v of supermarket products. The prior is combined with the likelihood to generate a posterior 

distribution p(v|r) via Bayes rule, to generate a subjective value estimate v(r) . This estimate 

is subsequently mapped to the bounded rating scale imposed by the experimenter, resulting 

in an observed rating v⌣ . Crucially, unlike for experiments of perception, the experimenter 

has no access to the “true” stimulus value v that the participant uses to generate a rating. b,c) 

Choice consistency predictions as a function of the rating scale position (right plots in each 

panel) for two different priors (depicted on left of each panel). Prior distributions with higher 

density over low subjective values lead to higher choice consistency for low-valued goods 

(panel b); on the other hand, prior distributions with higher density over high subjective 

values lead to higher choice consistency for higher valued goods (panel c).
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Figure 2. Paradigm and results for Experiments 1 and 2.
a) Example display from the preference rating phase (two rounds) during which the 

participants rated their preference to eat the displayed food item using a continuous scale 

(Experiment 1, n=38) or a discrete scale with numerical cues (Experiment 2, n=37). The 

lower-left panel shows an example display from the decision-making task requiring 

participants to choose which of the two items (upper or lower) they preferred to consume 

after the experiment. (b) Left panels show rating variability plotted as a function of each 

item’s mean rating across both rounds for experiment 1 (black dots show the mean across 

participants; dot error bars represent the s.e.m. across participants). Based on our model fits, 

we simulated 500 experiments in which we draw N=2 ratings for each good and plot the 

simulated rating variability as a function of the mean rating (semi-transparent red lines). 

Right panels show that posterior estimates of the expected value of the prior are shifted 

towards higher rating values (the zero position maps to the center of the rating scale). c) 
Same as panel b but for experiment 2. d) Standardized estimates from multiple logistic 

regression show that the higher the value difference VD between the mean ratings, the more 
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consistent the choices. Crucially, the higher the variability in the ratings of the alternatives, 

the less consistent the decisions. Total value of the two ratings of each good OV = v⌣1 + v⌣2
had no reliable influence on choices across the two experiments. Error bars in this panel 

represent the 95% highest-density interval of the posterior estimates. (*) P<0.05; (***) 

P<0.001. e,f) The trial-to-trial effect shown in panel d was also reflected across participants, 

as the general level of variability in the rating task correlated negatively with the slope of a 

logistic regression (Experiment 1: panel e, βrobust = -0.77±0.20, P<0.001; Experiment 2: 

panel f, βrobust = -1.2±0.25, P<0.001). g,h) Observed data (red dots) match the model 

predictions (blue dots), plotted as a function of the two items’ absolute value difference 

( v⌣1 − v⌣2  in 10-tiles, left panels) and overall value ( v⌣1 + v⌣2 in quartiles, right panels) 

(panel g: Experiment 1; panel h: Experiment 2). Lower and upper boxplot hinges correspond 

to the 25th and 75th percentile and each semitransparent dot represents the data of one 

participant.
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Figure 3. Illusion of preference (Experiment 3).
a) Model-predicted biases for two degrees of internal measurement noise (σ) during 

subjective-value estimations: high (red, generated by short valuation exposure) and low 

(black, generated by long valuation exposure). b) Model-predicted differences of the biases 

for high and low σ across the value rating scale. c) Difference of the empirical estimates 

between low and high exposure times (n=24, mean data are black dots with s.e.m. across 

participants, blue line interpolates these data for visualization). Note the qualitative and 

quantitative overlap with the model prediction in panel b. This suggests that human 

valuation exhibits complex illusions of subjective preference, as predicted by the Bayesian 

and efficient coding hypothesis (see also Supplementary Fig. 7). Lower and upper boxplot 
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hinges correspond to the 25th and 75th percentile and each semitransparent dot represents the 

data of one participant.
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Figure 4. Confidence (Experiment 4).
a) Participants (n=28) provided value ratings as in experiments 1 and 2, but also rated their 

confidence in the value ratings. b) Rating variability plotted as a function of each item’s 

mean rating across both rounds (solid black dots) was higher for low-rated items (β= 

-0.18±0.04, P<0.001). c) Posterior estimates of the expected value of the prior are shifted 

towards higher rating values (the zero position maps to the center of the rating scale). d) 
Posterior densities were constructed for four symmetric subjective values v (different colors) 

in the unbounded subjective scale. Group of densities on the left (light colors) and right side 

(dark colors) reflect low and high subjective values, respectively. Given the expected value 

of the prior (panel c), the efficient-coding model predicts lower levels of confidence for low-

rated goods (relatively wide posteriors; light colors) than for high-rated goods (relatively 

narrower posteriors; dark colors). e) Empirical confidence ratings (solid red dots) match the 

predictions (blue dots) of the best-fitting confidence model (red; see also Supplementary 

Table 2) across different value ratings (x-axis). Confidence was higher for higher model-

predicted subjective values (βRandEffects=0.22±0.070, P=0.002). f) Confidence relates to 

value-rating variability (shown is the partial correlation after controlling for rating value). As 

predicted by the model, these two metrics are negatively correlated (r = -0.59, p<0.001). 

Dots represent the data of single participants, the blue line represents the identified 

correlation line, and the shaded area the 95% confidence interval of this line. In all other 

plots, error bars around data points represent s.e.m. across participants. Lower and upper 
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boxplot hinges correspond to the 25th and 75th percentile and each semitransparent dot 

represents the data of one participant.
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