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Satellite magnetic data reveal interannual waves in Earth’s core
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The Earth’s magnetic field displays variations on a broad range of time scales, from years
to hundreds of millions of years. The last two decades of global and continuous satellite
geomagnetic field monitoring have considerably enriched the knowledge on the rapid
physical processes taking place in the Earth’s outer core. Identification of axisymmetric
torsional Alfvén waves with subdecadal periods from observatory and satellite data has
given access to an averaged intensity of the magnetic field in the Earth’s core interior.
A significant part of the rapid signal, however, resides in nonaxisymmetric motions.
Their origin has remained elusive, as previous studies of magnetohydrodynamic waves
in the Earth’s core mainly focused on their possible signature on centennial time scales.
Here, we identify nonaxisymmetric wavelike patterns in the equatorial region of the
core surface from the observed geomagnetic variations. These wavelike features have
large spatial scales, interannual periods in the vicinity of 7 y, amplitudes reaching
3 km/y, and coherent westward drift at phase speeds of about 1,500 km/y. We interpret
and model these flows as the signature of Magneto–Coriolis (MC) eigenmodes. Their
identification offers a way to probe the cylindrical radial component of the magnetic
field inside Earth’s core. It follows from our work that there is no need for a stratified
layer at the top of the core to account for the rapid geomagnetic field changes.
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1. Introduction

The propagation of waves within the Earth’s core is influenced by the Earth’s rapid rotation
about its axis, the background magnetic field permeating the fluid core, and possibly the
buoyancy stratification. The footprint of one type of wave, the torsional Alfvén waves (or
simply torsional waves), has already been found both in core surface-flow models and
in length-of-day time series (1). The estimation of their period TA, about 6 y, has been
important, because TA mainly depends on the strength B of the magnetic field in the core
interior: Specifically, TA ∼ 6 years gives B ∼ 5 mT. This period is a crucial time scale for
the physics of the core, as it separates waves mostly influenced by rotation, the inertial
waves with periods T < TA, from Magneto–Coriolis (MC) waves with periods typically
longer than TA (2). We can also distinguish these different waves by their energy. In the
case of torsional Alfvén waves, it is evenly distributed between their kinetic and magnetic
parts, while the energy of MC (respectively [resp.], inertial) waves is predominantly
magnetic (resp., kinetic). Torsional waves alone do not suffice to account for the observed
interannual magnetic signal (3).

Accurate and mostly continuous monitoring of the geomagnetic field from low Earth-
orbiting satellites (4) (Oersted, CHAMP, CryoSat-2, and the Swarm constellation), which
began in 1999, now covers several cycles with period TA. In addition, models built from
these observations can be continued to some extent in the past, thanks to high-quality
ground-based records that extend back to the late 20th century. Recently, the existence of
a broad spectral peak centered on a period of ≈ 7 y has been isolated in some observatory
series recorded at low latitudes (figure 3 of ref. 5). This enables us to gain insight into
geomagnetic field fluctuations at the core surface, on time scales close to TA and at large
length scales (typically spherical harmonic degrees l � 8). At shorter periods (T � 2 y),
we struggle to separate the magnetic field originating in the core from the ionospheric and
magnetospheric fields (5).

Torsional waves consist of differential rotation between “geostrophic” cylinders, coaxial
with the Earth’s rotation axis, permeated by a magnetic field: They do not depend on
the coordinate z along this axis (s ,φ, z the cylindrical polar coordinates). Due to their
(exactly) geostrophic nature, the Coriolis term does not enter the equilibrium of forces
governing these motions. Consequently, the calculation of the period of the torsional
waves is independent of the Earth’s rotation rate Ω. For more general nonaxisymmetric
flows (the class to which MC waves belong), the dynamics within the core at periods close
to TA is still strongly anisotropic, i.e., almost invariant in the direction parallel to the
rotation axis, or quasi-geostrophic (QG) (6). The Coriolis force re-enters the momentum
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balance because the no-penetration condition at the core–mantle
boundary needs to be satisfied. For MC waves to reach periods
close to TA, the contribution of the Coriolis force to the mo-
mentum balance must be minimal, and, thus, interannual MC
waves can only exhibit relatively short length scales in the cylin-
drical radial direction. For this reason, their magnetic footprint
at the core surface was expected to be invisible in geomagnetic
field models, which are limited to large length scales. This is
not true close to the equator, where short length scales in the
cylindrical radial direction project at the spherical core surface
onto latitudinal length scales large enough to be observed in the
second time derivative of the field with spherical harmonic degrees
l � 8 (3, 7).

QG models that are valid in full spheres, including the equato-
rial region, where the rotation vector is parallel to the boundary,
have recently been developed (8, 9). They can be combined with
a description of the magnetic field that satisfies the appropriate
boundary condition for a metallic core surrounded by an insulat-
ing exterior (10). We are thus now able to reproduce the observed
changes of the magnetic field at the core surface with periods close
to TA. We can also construct maps of the core surface velocity
from these observations and compare them with the output of
QG models for the core interior. This is the approach we follow
here.

2. Results

A. Core Surface Dynamics as Inferred from Magnetic Observa-
tions. We have inverted core surface flow motions for 1999–2021
(Section 4) from models of the geomagnetic field constructed
using ground-based and satellite data (11, 12). The calculated
flows, obtained under the spatiotemporal constraints of a geody-
namo simulation, are mostly compatible with the QG hypothesis
(SI Appendix, Fig. S1) and can thus, for a large part, be continued
into the core interior. QG flows with relatively large latitudinal
length scales �λ at the core surface project onto flows, with
small length scales �s in the cylindrical radial direction near the
equator. Then, the shear in the equatorial plane is the largest in
the cylindrical radial direction. Mass conservation implies us ∼
uφ�s/�φ, with �φ the azimuthal length scale, so that the azimuthal
flow component uφ dominates. We find recurring quasi-periodic

patterns in the equatorial belt, of period T � 7 y, propagat-
ing westward at a phase velocity Vφ ∼ 1,500 km/y or 25◦/ y
(Fig. 1 A, Lower, and SI Appendix, Fig. S2). They are carried by
low azimuthal wave numbers m, predominantly m = 2, and,
together with torsional waves, they account for the interannual
magnetic signal. Time–latitude diagrams (Fig. 1 A, Upper, and
SI Appendix, Figs. S2 and S3) indicate outward propagation at a
speed Vs ∼ 200 km/y along the cylindrical radius s, as well as
several zero-crossings in latitude. The latitude of the first one is
λ� �±10◦. It corresponds to a horizontal length scale at the
core surface �λ = 2r0λ

� ∼ 1,200 km, where r0 = 3,485 km is
the outer core radius. Once projected onto the equatorial plane,
it gives �s = r0(1− cos(λ�))∼ 50 km.

Assuming that the mantle is electrically insulating, we focus
the discussion of our results on the equatorial region. At the
core surface, magnetic fluctuations b have to match a potential
field so that �b =−∇Φ, where Φ is the magnetic potential.
We have |br | ∼ (l + 1)|Φ|/r0 and |bφ| ∼m|Φ|/r0, leading to
|br | ∼ (l + 1)|bφ|/m . Therefore, the two components have sim-
ilar amplitude at r = r0. Conversely, in the interior, the azimuthal
component is much stronger than the radial component because
�s � �φ. For a solenoidal field, we have near the equator |br | �
|bs | ∼ |bφ|�s/�φ � |bφ|. The relative magnitude of the magnetic
and kinetic parts can be estimated in the interior from the
linearized induction equation

∂b

∂t
=∇× (u ×B0) + η∇2b, [1]

with η the magnetic diffusivity and B0 the slowly evolving
background field. Assuming diffusion does not affect much the
rapid changes in the magnetic field, as it is the case in Earth-like
geodynamo simulations (13), the magnetic field perturbation in
the interior scales as |bφ| ∼ |B0,r ||uφ|/ω�s , with ω = 2π/T . We
can transform this result into a magnetic to kinetic energy ratio in
the interior

1

ρμ

|b|2

|u|2
∼ |B0,r |2

ρμ(ω�s)
2 ≈ 10 [2]

with ρ� 104 kg/m3 the core density, μ= 4π × 10−7 H/m its
magnetic permeability, and |B0,r |= 5× 10−4 T an estimate of
the radial magnetic field at the core surface in the equatorial region

Fig. 1. Propagation of interannual flow patterns at the core surface. (A) Surface azimuthal velocity inverted from the CHAOS-7 geomagnetic field model,
bandpass-filtered between 4 and 9.5 y (Section 4), as a time–longitude diagram at the equator (Lower) and a time–latitude diagram at the longitude φ = 170◦

(Upper). (B) Same representation for one example of a calculated QG MC mode of period 7.16 y and azimuthal wave number mainly m = 2, with the time–latitude
diagram shown at the longitude φ = 219◦ (Section 4).
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(14). This result agrees with the classification of the waves we have
detected as MC waves, whose energy is mostly magnetic. From
Eq. 1 below the equator, we get |br | ∼m|B0,r ||uφ|/(πr0ω), with
m the azimuthal wave number of the magnetic perturbation. As a
result, using the continuity of br and of uφ across the boundary
layer, the magnetic to kinetic energy ratio at the core–mantle
boundary behaves as

1

ρμ

|b|2

|u|2
∼ m2|B0,r |2

ρμ(ωπr0)
2 ≈ 2m2 × 10−4 . [3]

It is � 10−2 for observable length scales. Using |uφ| ∼ 4 km/y
(Fig. 1), we find br ∼ 1 μT for m = 5, in agreement with
interannual field changes observed at the core surface (3, 7). The
difference between the kinetic to magnetic energy ratio at the
surface and in the interior is one reason why a detection of such
waves is difficult from the magnetic field alone, as has been the
case for torsional waves (1). Eq. 3 tends to indicate that the
direct extraction of waves from magnetic field models is easier
for their high m part. As a matter of fact, previous investigations
of equatorial waves emphasized magnetic structures with wave
number m = 5− 6 (3), whereas the present study, relying on core
surface flows, focuses on m = 2 components.

Field changes induced by the recovered flow at interannual
periods account well for the oscillations in the rate of change
of the magnetic field observed above the Earth’s surface, in
particular near the equator. This is well illustrated by low
latitudes observatory series (Fig. 2). Still, subgrid processes
play a significant role (SI Appendix, Figs. S4 and S5). Maps
of the interannual induction at the core surface show a clear
correlation between these two sources of magnetic field changes
(SI Appendix, Fig. S6). This is a property shared with geodynamo
simulations (SI Appendix, Fig. S7).

B. QG MC eigenmodes. We have computed linear solutions to
the QG model in the presence of a nonaxisymmetric poloidal
background field B0, accounting for weak magnetic diffusion

as in the Earth (Section 4). The computed eigenmodes include
QG inertial (or Rossby) modes at periods shorter than TA,
torsional Alfvén modes at periods around TA, and QG MC
modes with periods longer than TA. In Fig. 1B, we show time–
latitude (Upper) and time–longitude (Lower) diagrams for the
surface azimuthal velocity of a QG MC mode with a period
T � 7.16 y and a much longer decay time of 92.56 y. It is
readily seen that the numerical QG MC mode compares well
with the flow inferred from observations (Fig. 1). The mode is
characterized by small length scales in the latitudinal direction
and larger length scales in longitude. The complexity observed
in the time–longitude diagram for the flow reflects the mixing
of azimuthal orders in the eigenmode, in link with azimuthal
variations in B0 (see SI Appendix, Fig. S10 and the local dispersion
relation below). Because B0 is nonaxisymmetric, eigensolutions
mix azimuthal orders m. Still, motions for interannual eigenmodes
are dominated by low m patterns. For our particular choice of
background field, it happens that eigenmodes separate between
modes whose flow presents only even or odd orders m (Section
4). Among the whole set of calculated MC eigenmodes, the
one presented here is dominated by a m = 2 flow structure and
presents nine zero crossings in the radial direction. The azimuthal
complexity of the magnetic perturbation is higher (Fig. 3), as a
result of the magnetic boundary condition (Section 2A).

The mode features propagation toward the equator, similar to
the flow recovered from observations. The velocity peaks near the
equator, with the first zero crossing at λ� �±10◦. The time–
longitude diagram shows a clear westward propagation of the
mode. Notwithstanding their small cylindrical radial length scale,
QG flows project on surface flows with large length scales in the
latitudinal direction in the equatorial region of the core surface.
This is also seen in Fig. 3 A and B, which illustrate, respectively,
the surface flow and magnetic field perturbations of the mode for
a snapshot in time. In order to compare the magnetic and the
kinetic energies, we transform the magnetic field into a quantity
that has the dimension of a velocity:b/√ρμ. Its radial component
br/

√
ρμ at the core surface is a factor six times smaller than the

Fig. 2. Contributions to the rate of change of the magnetic field at an observatory near the equator. Observations (15) (black dots; in nT/y) cleaned for the
contributions from external signals (16) for the three components measured at the Ascension Island observatory (8◦S, 27◦W), superimposed with predictions
from the CHAOS-7 model truncated at degree l = 13 (yellow) and the contributions from the ensemble average of the large-scale flow (blue) and of the errors
of representativeness resulting primarily from subgrid processes (orange; Section 4), inverted from the CHAOS-7 Gauss coefficient data. The total contribution
(dashed green) almost superimposes with the CHAOS-7 data. The recorded interannual oscillations, in particular toward low latitudes, are clearly associated
with some fluctuations in the large length-scale flow.
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Fig. 3. QG MC eigenmode of period T = 7.16 y. Its flow component, of even order m (Section 4), is dominated by an azimuthal wave number m = 2. Mollweide
projection of the flow (A) and the radial magnetic field br/

√
ρμ (B) at the core surface. Equatorial cross-section of the azimuthal flow uφ (C) and magnetic field

bφ/
√
ρμ (D). Both u and b/√ρμ have been normalized to the maximum azimuthal velocity value. Grid lines in the equatorial slices correspond to the grid lines

of the surface projections.

flow, in qualitative agreement with the observations at interannual
periods. QG eigenmodes present a strong cylindrical radial shear
of the z-invariant azimuthal velocity, in particular in the vicinity
of the equator. This translates into a much stronger azimuthal
magnetic field perturbation in the bulk of the core, as we expect
from the scale analysis outlined in the previous section. Deep in
the core, the magnetic field perturbation dominates the velocity
(see equatorial slices in Fig. 3 C and D), with the magnetic energy
|b|2/(2μ) larger than the kinetic energy ρ|u|2/2 by a factor of
≈ 36 (averaged over the volume). This is in agreement with Eq. 2
and the energy ratio anticipated for MC eigenmodes (10). The
distinction between the strength of the perturbation at the surface
and in the bulk is more easily seen in the azimuthal rms values,

〈f 〉 (s , z ) =
√

1

2π

∮
f (s ,φ, z )2 dφ, of the velocity and the mag-

netic field perturbation, evaluated at the core surface (z = H =√
r20 − s2) and in the equatorial plane (z = 0), as shown in Fig. 4.

In the equatorial plane, the dominant component is along the
azimuth, with 〈bφ〉 (s , 0) dominating over 〈br 〉 (s , 0) for s/r0 �
0.5. Except in the vicinity of the equator, where 〈br 〉 (s , 0) and
〈br 〉 (s ,H ) tend to superimpose, the magnetic perturbation is
much stronger in the bulk than at the surface. Deep in the core, the
velocity component of the mode is weaker than the magnetic one
everywhere, with 〈uφ〉 (s) less than 〈bφ〉 (s , 0)/

√
ρμ. Only close

to the surface (and in particular the equator), the kinetic part of
the mode dominates. At the core surface, the magnetic to kinetic
energy ratio of the torsional Alfvén and the QG MC eigenmodes
decreases with their frequency (SI Appendix, Figs. S8 and S9).

3. Discussion

The frequency of rapid MC waves depends on the strength B0,s

of the magnetic field in the cylindrical radial direction when

they have large radial wave number k. With this hypothesis, and
neglecting the subdominant magnetic dissipation, we can derive a
local dispersion relationship (Section 4) and obtain a wave number

k0 =

(
mΩ

VAH 2

)1/3

, [4]

above which only Alfvén waves exist and below which we can
separate inertial (Rossby) waves from MC waves, with

Fig. 4. Latitudinal profiles of the rms azimuthal flow 〈uφ〉 (λ(s)) and mag-
netic field perturbations 〈bφ〉 (λ(s), z = 0)/√ρμ and 〈br〉 (λ(s), z = 0)/√ρμ
in the equatorial plane and 〈br〉 (λ(s), z = ±H)/√ρμ at the core surface. All
profiles have been normalized to the maximum velocity value. The latitude
λ(s) = arctan (H(s)/s) is that of the circle on the spherical surface intersecting
the geostrophic cylinder of radius s. The profiles correspond to the eigenmode
shown in Fig. 3.
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VA(s ,φ) =

√
1

2H

∫ H

−H

1

ρμ
B2

0,s(s ,φ, z ) dz , [5]

the local Alfvén velocity. Here, we have used the plane wave
ansatz u(s ,φ, t)∝ exp (i(mφ+ ks − ωt)). MC waves (for
k ≤ k0) have frequencies

ωMC =−V 2
Ak

4H 2

2mΩ
[6]

where the minus sign means westward propagation. It is because
of their very dispersive nature that QG MC waves can reach
interannual periods. They have a frequency similar to that of
torsional waves when k is not much smaller than k0. Translated to
the core conditions, it gives k0r0 � 30 for B0,s ≈ 3 mT and H =
r0/2, in agreement with the radial complexity of the eigenmodes
that we have calculated (Fig. 3 ; kr0/2π = 5). QG MC waves may
propagate along either the radial or azimuthal directions or present
spiraling patterns at the core surface, depending on their wave
numbers and on the background field. Their phase speed inferred
from patterns in time–latitude and time–longitude diagrams at
the core surface will thus enable us to constrain the quantity
V 2

A(s ,φ). In comparison, torsional waves only give information
on the φ integral of V 2

A(s ,φ) (17). Therefore, the study of MC
waves complements the investigation of torsional waves and will
make it possible to gain knowledge on the geometry of the mag-
netic field in the core interior. The dispersion relation [6], similarly
to that of torsional waves, does not depend on the azimuthal
component of the magnetic field. In this respect, our work differs
from previous analyses of MC waves, which dealt with centennial
or longer time scales (18). In fact, most previous studies used
toroidal zonal fields as background magnetic fields (19), whereas
we find that it is not this part of the background field that mostly
supports rapid MC waves. Finally, the magnetic perturbations at
the core surface are predominantly equatorially symmetric at low
latitudes (SI Appendix, Fig. S6). Our investigations reveal that the
symmetry of MC eigenmodes relates to that of the background
field.

The observed interannual field changes had recently been ex-
plained in terms of Alfvén waves with small radial length scales,
from a series of numerical geodynamo simulations (6, 13). We
favor an alternative interpretation, where the Coriolis acceleration
enters the momentum balance. At the length and time scales
that are accessible today, the importance of the Coriolis force is
inevitable near the equator. It implies that the detection of Alfvén
waves, associated with the dispersion relation [21], would require
an improved spatiotemporal resolution.

Waves carry information on the properties of the medium they
pass through. The physical framework that we propose here to
understand rapid changes in the core surface flow thus offers a
way to map the field B0,s deep in the core, where it cannot be
probed only based on the information brought by observations.
The apparent outward propagation (in opposition to standing os-
cillation) of wave patterns may be related to magnetic dissipation
in the bulk, as for our calculated eigenmodes. Alternatively, it
may also be related to core–mantle coupling, as in the case of
torsional waves (14, 20), or to a superposition of two modes. The
latter scenario cannot be excluded, given the limited frequency
resolution available with only two decades of satellite records. The
description in terms of QG MC dynamics allows us to understand
the relative temporal spectra, SB (ω) and SU (ω), for, respectively,
the magnetic field and the flow. The former is much steeper than
the latter and evolves as SB ∝ ω−4 for periods from about TA

to several decades (21). This observation is compatible with a

magnetic to kinetic energy ratio ∝ SB/SU that increases toward
low frequencies (8, 10). Combined with a magnetic energy mostly
confined below the core surface, this renders the detection of QG
MC waves from the flow easier than from the magnetic field. This
observation calls for further investigations of core surface flow
reconstructions at longer (decadal) periods (22), as inferred from
ground-based and satellite magnetic records.

Finally, we propose a parsimonious interpretation of magnetic
data, where the only required ingredients are the presence of
global rotation and a magnetic field presenting a cylindrical radial
component. Magnetic dissipation plays a secondary role here.
It transpires that only a few modes are needed to explain the
observed wavelike evolution of the velocity and magnetic fields.
Our scenario constitutes an alternative to an explanation based
on waves trapped into a stratified layer at the top of the core
(23). As waves carried by a combination of magnetic, Coriolis,
and buoyancy forces can involve short radial length scales, their
dynamics is potentially compatible with the interannual time scale
of the observed magnetic acceleration (24). The presence of a
stratified layer was motivated by evidences from seismology or
mineral physics (25, 26), which are currently debated (27, 28).
Any information on a stratified layer at the top of the core would
be crucial when building models for the evolution of the Earth
(29, 30). Our analysis of interannual magnetic changes from
satellite records requires no such layer.

4. Methods

A. Geomagnetic Field Models. We use as observations Gauss coefficients from
geomagnetic field models. We consider both CHAOS-7 (11) (1999–2021) and
COV-OBS-x2 (12) (1840–2020). These are built from ground-based and satellite
data, the latter being included in COV-OBS-x2 by means of geomagnetic virtual
observatories (31). Both models are projected in time on splines: of order 4 with
knots spacing 2 y for COV-OBS-x2 and of order 6 with knot spacing 6 mo for
CHAOS-7. Another important difference between the two models is associated
with the prior information used to reduce nonuniqueness. CHAOS-7 is a regu-
larized field model that penalizes the third time derivative plus the second time
derivative near the endpoints, while in COV-OBS-x2, a stochastic prior coherent
with the occurrence of geomagnetic jerks is imposed using temporal cross-
covariances. Also note that near zonal coefficients are more heavily damped in
CHAOS-7, in order to reduce the leakage of unmodeled signals at high latitudes.

B. Reconstruction of Core Surface Flow Motions. The flow models have
been inverted with the pygeodyn data-assimilation algorithm (32). This tool uses
an augmented state-ensemble Kalman filter that forecasts a stochastic model of
the core surface dynamics (22). The latter is anchored to spatiotemporal statistics
derived from the 71%-path geodynamo simulation (13). The core surface flow is
inverted from the radial component of the induction equation at the core surface,

∂Br

∂t
=−∇H ·

(
uBr

)
+ er, [7]

where overlines stand for the projection onto spherical harmonic degrees
l ≤ Lb = 13. The flow is truncated at degree Lu = 18. The last term er in Eq. 7
stands for errors of representativeness, which incorporate all contributions to the
rate of change of the field that involve small length-scale fields (degrees l > Lu

and l > Lb for, respectively, the flow and the magnetic field), plus diffusion. The
separate contributions from er and u to geomagnetic field changes are illustrated
in SI Appendix, Fig. S5 with some examples of Gauss coefficients and in Fig. 2
and SI Appendix, Fig. S4 with predictions to several ground-based observatories.

A first inversion has been performed using as observations Gauss coefficients
that describe the rate of change of magnetic field (or secular variation) from
the COV-OBS-x2 model over 1880–2020. This initial flow model has been used
as the starting state for the inversion of a second model over 1999–2021 from
the CHAOS-7 field model. The obtained solutions thus extend previous models
(22) to more recent epochs. In both cases, secular variation data uncertainties
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are estimated from the spread within the ensemble of COV-OBS-x2 models and
depend on time. Ensembles of 50 realizations have been calculated. The two
decades covered by satellite data limit the period range where flow models are
best resolved to time scales shorter than 10 y. Within this subdecadal range, a
spectral line at T ≈ 7 y has been isolated in ground-based series recorded in
the vicinity of the equator (5). To focus on the source of this interannual signal,
we band-pass filter the obtained flow models for periods between 4 and 9.5 y,
with an order 4 causal Butterworth filter.

C. Computation of the QG MC Eigenmodes. The flow perturbation u over
a mean state [u0 = 0, B0] of an inviscid and electrically conducting planetary
core under rapid rotation can be described by the linearized momentum equation

∂u
∂t

=−2Ω1z × u − 1
ρ
∇p

+
1
μρ

((∇× B0)× b + (∇× b)× B0) , [8]

complemented by the induction Eq. 1. To compute eigenmodes of this system
for nonidealized mean fields and sufficient spatial complexity, we consider fur-
ther simplifications. We exploit the columnarity of magnetohydrodynamic flows
under rapid rotation (33). Then, the flow can be described as QG, so that

u =∇ψ ×∇
( z

H

)
, [9]

with ψ = ψ(s,φ, t) the stream function and H =
√

r2
0 − s2 the half height

of the fluid column. By projecting the three -dimensional (3D) momentum
Eq. 8 onto the subset of QG velocities [9], a reduced model for a fully liquid
core is obtained, where the velocity is described by the evolution of ψ in the
equatorial plane (8). This reduced momentum equation is combined with a 3D
magnetic field that matches a potential field at the core–mantle boundary, i.e.,
the mantle is assumed to be insulating (10). We choose orthonormal velocity
and magnetic field bases for the projection to obtain a standard, instead of a
generalized, eigen problem, substantially improving convergence of the eigen
solver. For the velocity basis, we use the orthogonal QG inertial eigenmodes,
which can be written explicitly (34). The magnetic field basis presented in Gerick
et al. (10) is orthonormalized by using a modified Gram–Schmidt method.

We impose a poloidal background magnetic field B0 designed so that it sat-

isfies geophysical constraints associated with the phase velocity
√〈

V2
A(s,φ)

〉
of (geostrophic) torsional eigenmodes (1, 14):

max
(√

ρμ
〈
V2

A

〉)
� 3 mT [10a]√

ρμ
〈
V2

A

〉
|s=1

� 0.45 mT . [10b]

The background field is defined as

B0 =

0∑
m=−1

1∑
n=0

βl=1,m,nB̂p(l = 1, m, n), [11]

where B̂p(l, m, n) are the basis vectors given by equation A21 in Gerick et al.
(10), normalized to have unit energy. Here, l and m correspond to the spherical
harmonic degree and order, respectively, and n is the radial degree. The coef-
ficients βl,m,n are given by β1,0,0 ≈−2.3, β1,0,1 ≈ 1.45, β1,−1,0 ≈ 2.04,

andβ1,−1,1 ≈−1.77, so that
(∫

B2
0 dV

)1/2 ≈ 12.7 mT. The choice for the
coefficientsβl,m,n, based on the requirements in Eq. 10, results in a period for the
gravest torsional Alfvén mode about 6 y (1). A nonaxisymmetric B0 with m =
−1 is chosen, so that

〈
V2

A

〉
(s) �= 0 everywhere, in particular at s = 0. This

requirement is crucial for the existence of diffusionless torsional Alfvén modes
(35). It seems to be relevant as well for obtaining numerically converged MC
eigenmodes in the interannual period range, with or without diffusion (although
η �= 0 slightly helps for numerical convergence). The background field in Eq. 11
includes the two largest Gauss coefficients in the Earth’s magnetic field exterior

to the core [here, the time-averaged CHAOS-7 model (11)], with the correct ratio
of their amplitude, but nine times larger so that requirement Eq. 10b is met.

Our background field presents point antisymmetry with respect to r = 0:
B0(r) =−B0(−r). As a consequence, the QG modes separate between modes
for which the flow is either symmetrical or antisymmetrical with respect to r = 0
(and vice versa for the magnetic part of the mode). QG flows are furthermore
symmetrical with respect to the equatorial plane [ue(z) = ue(−z), uz(z) =
−uz(z), where ue denotes the equatorial flow component]. As a result, ue is ei-
ther symmetrical with respect to a rotation of angleπ about the axis (ue(s,φ) =
ue(s,φ+ π)) or antisymmetrical (ue(s,φ) =−ue(s,φ+ π)). In the first
(resp., second) instance, the mode presents only odd (resp., even) m. The same
reasoning does not hold for the magnetic part of the mode because it is not
equatorially symmetrical. The flow for the selected eigenmode of period 7.16 y
has only even m.

Higher orders of the background magnetic field are not included here, to
ensure numerical convergence of the eigensolutions. The latter is verified by
requiring a decay in the kinetic and magnetic energy of the eigenmodes as a
function of polynomial degree, shown in SI Appendix, Fig. S11 for the modes
discussed above. In SI Appendix, Fig. S10, we show profiles of

√
ρμVA(s,φ)

at several longitudes and a map of B0,r(θ,φ) at the core surface. Defining

B0 =

(∫
B2

0 dV
)1/2

, the Lehnert number associated to this background

magnetic field is Le = B0/(Ωr0
√
μ0ρ)≈ 4.3 × 10−4. We choose η ≈

3.76 m2/s, within the range of acceptable geophysical values (27, 36), so
that the Lundquist number (the number of Alfvén times per magnetic diffusion
time r2

0/η) is Lu = B0r0/(η
√
μ0ρ)� 105. As a consequence, the calculated

eigenmodes are only secondarily affected by magnetic damping, with decay
times much longer than their period.

We focus on several eigenmodes near the target period of 7 y using the
shift-invert Arnoldi method. Many other modes at longer and shorter periods
exist, but are not of interest in the context discussed here. The calculated QG
MC eigenmodes with interannual periods show quality factors (i.e., the ratio of
their frequency to their decay rate) larger than 10 and therefore propagate before
being damped by Ohmic dissipation.

D. Reduced Dispersion Relation of Interannual QG-MC Waves. We write
the streamfunction as ψ(s,φ) = H3ψ1(s,φ), where ψ1 is regular at s = 1
in order to ensure regularity of u at the equator, where H = 0. We assume
that radial length scales are much shorter than horizontal length scales, or
kr0 � m/(2π). In order to derive the evolution equation for ψ, we project the
momentum equation onto trial functions (8):

− 2
∂

∂t
L2(ψ)− 4Ω

sH2

dH
ds

∂ψ

∂φ
=

1
ρμs

∂

∂s

(
1

sH
∂

∂s

(
s2{BsBφ}

))
.

[12]
Here, we have kept only the highest derivatives in s in the expression of the
magnetic force, in a configuration where the azimuthal field is not significantly
larger than the radial one, as suggested by geodynamo simulations outside of
the geostrophic cylinder attached to the inner core (37). The curly brackets {}
denote the z-integral (38),

{BsBφ}=
∫ H

−H
BsBφdz, [13]

and the operator L2 is defined as

L2(ψ) =∇ ·
(

1
H
∇ψ

)
+

1
3s2H

(
dH
ds

)2
∂2ψ

∂φ2 . [14]

For a spherical core dH/ds =−s/H, so that the momentum Eq. 12, expressed
for ψ1, becomes

H3 ∂

∂t

(
L2(ψ1)

)
− 2Ω

∂ψ1

∂φ
=− 1

2ρμH
∂2

∂s2 {BsBφ}, [15]
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under the condition kH 	 |dH/ds|. The time evolution of the quantity
{BsBφ} is given by the linearized induction equation, where we keep, again,
only the highest derivative in s:

∂

∂t
{BsBφ}=−H2{B2

0,s}
∂2ψ1

∂s2 . [16]

Here, we have neglected magnetic dissipation, as it plays a secondary role for
decadal to interannual geomagnetic field changes (13) and because the calcu-
lated eigenmodes present decay times much longer than their periods. Finally,
by coupling [15] and [16], an evolution equation for ψ1 is obtained. Assuming
that the radial wavelength of the perturbation is much shorter than the length
scale over which the medium (H, s, {B2

0,s}) evolves, we get

∂4ψ1

∂t2∂s2 − 2Ω
H2

∂2ψ1

∂t∂φ
= V2

A
∂4ψ1

∂s4 , [17]

where VA is given by Eq. 5. Under the plane-wave ansatz ψ1 ∝ exp(i(ks +
mφ− ωt)), it gives

ω2 − 2Ωm
(kH)2 ω − V2

Ak2 = 0, [18]

leading to the dispersion relation

ω =
mΩ

k2H2 ±

√(
mΩ

k2H2

)2

+ V2
Ak2 . [19]

This latter can also be written as

ω = VAk
(
(k0/k)3 ±

√
1 + (k0/k)6

)
, [20]

with k0 given by Eq. 4. In the small wavelength limit (k � k0), we have at the
first order in (k0/k)3

ω � VAk
(
±1 + (k0/k)3

)
=±VAk +

mΩ

k2H2 . [21]

Then, the wave frequencyω only weakly departs from the Alfvén wave frequency.
These waves have been found in dynamo simulations, where they have been
called QG Alfvén waves (6, 13).

In the opposite limit k 	 k0, from [19], Rossby waves and MC waves are
clearly separated, with frequencies, respectively,

ωR =
2mΩ

(kH)2 and ωMC =−V2
AH2k4

2Ωm
=−ΩLe2(kH)4

2m
, [22]

where Le = VA/(HΩ) compares the rotation frequency and the Alfvén wave
frequency. The period of MC waves is distinct from that of Rossby or QG Alfvén
waves only for large length scales (k ≤ k0). They have frequencies similar to the
torsional waves frequency kVA if their wave number k does not differ too much
from k0.

Data Availability. The data and codes have been made publicly avail-
able. Flow models and the pygeodyn inversion code are available from
https://geodyn.univ-grenoble-alpes.fr. The eigenmode solver is available
from GitHub (https://github.com/fgerick/Mire.jl). All the data and code
to reproduce the presented results can be found at Zenodo (https://dx.
doi.org/10.5281/zenodo.5084367) (39).
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