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Metabolic signatures associated 
with oncolytic myxoma viral 
infections
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Oncolytic viral therapy is a recent advance in cancer treatment, demonstrating promise as a primary 
treatment option. To date, the secondary metabolic effects of viral infection in cancer cells has not 
been extensively studied. In this work, we have analyzed early-stage metabolic changes in cancer 
cells associated with oncolytic myxoma virus infection. Using GC–MS based metabolomics, we 
characterized the myxoma virus infection induced metabolic changes in three cancer cell lines—small 
cell (H446) and non-small cell (A549) lung cancers, and glioblastoma (SFxL). We show that even at 
an early stage (6 and 12 h) myxoma infection causes profound changes in cancer cell metabolism 
spanning several important pathways such as the citric acid cycle, fatty acid metabolism, and amino 
acid metabolism. In general, the metabolic effects of viral infection across cell lines are not conserved. 
However, we have identified several candidate metabolites that can potentially serve as biomarkers 
for monitoring oncolytic viral action in general.

Cancer prevalence has increased mortality worldwide and in the US, accounting for almost 600,000 deaths each 
year in 2019 and  20201. Current treatment paradigms involve combinations of chemotherapy, radiotherapy, and 
surgery, depending on the specifics of each case. However, treatment options are often limited depending on the 
stage of cancer development leading to a poor  prognosis2. Recent advances in cancer treatment include stem cell 
 therapies3,4 and  immunotherapies5–7, including oncolytic viral  therapy8.

Oncolytic viral therapy (or virotherapy) employs viruses to target and kill tumor cells while also triggering an 
immune response. Oncolytic viruses (OVs) from ten different families belonging to both DNA and RNA viruses 
have been utilized in oncolytic  virotherapy9,10. Virotherapy offers a significant advantage as a therapeutic plat-
form since it enables targeting tumor types that are resistant to chemotherapeutic or other immunotherapeutic 
 approaches11. Furthermore, OVs either exhibit a natural response to attack cancer cells or can be genetically 
altered to confer specificity to attack tumor cells making this approach very attractive for treating different cancer 
types and at various  stages9.

In addition to targeting the viruses directly, several studies have shown that the oncolytic viruses can be 
used in conjunction with other therapeutic agents to promote tumor cell  death12. In one study, herpes simplex 
virus (HSV) was used in combination with 5-fluorouracil to improve survival of animal models of gallbladder 
and colon  cancer13. Similarly, oncolytic measles vaccine virus was used to promote complete cell death post-
treatment with therapy-induced senescence agents such as gemcitabine and doxorubicin, thereby preventing 
regain of proliferation activity in different cancer cell  lines14. Several other combinations involving oncolytic 
viruses and drugs targeting/triggering ER stress (unfolded protein response)15 and re-activation of  apoptosis16 
have been demonstrated.

An important aspect of developing pharmaceutical agents to target the cancer cells in tandem with OVs is 
to gain understanding of the changes caused by the viral infection in the cells that are targeted. Understanding 
the OV infection induced metabolic changes will likely discover biomarkers that can then be used to either use 
existing metabolic modulators and/or develop novel pharmaceutical agents to improve efficacy of treatment 
using OVs. Metabolomics, the systematic study of metabolites involved in various cellular processes, can readout 
changes in cancer metabolism and enables identification of potential  biomarkers17 of treatment efficacy. Gas 
chromatography-mass spectrometry (GC–MS) is widely utilized in biomarker investigation, with ~ 50 years of 
established protocols for examining a wide range of metabolites including sugars, amino acids, organic acids, 
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and fatty  acids18. The unique mass spectral patterns of the molecules recorded with standardized parameters 
have been curated in mass libraries such as US National Institute of Standards and Technology (NIST)19, which 
makes GC–MS a universal tool for metabolomics. The extraordinary sensitivity and high-resolution afforded 
by GC–MS makes it a robust method to identify the metabolites involved in the perturbation of cancer cell 
homeostasis due to infection and/or treatment.

In this study, we have utilized GC–MS based metabolomics to characterize metabolic changes associated with 
myxoma virus infection in three cancer cell lines: lung cancer cells A549 (non-small cell) and H446 (small cell), 
and glioblastoma cells (SFxL). The OVs take advantage of cellular mechanism commonly found in cancer cells 
allowing them to infect and replicate within cancer cells while sparing normal or healthy cells. Therefore, we did 
not utilize normal cells in this study. Lung cancer causes more deaths in the US per capita than any other cancer. 
Glioblastoma has a mortality rate that exceeds almost any other cancer, with a survival expectancy of ~ 5% over 
5 years. As such, the cell lines chosen represent some of the most dangerous cancers that are arguably the most 
important targets for alternative treatments. Multivariate statistical analysis was employed on metabolite data 
sets to identify the key metabolites that exhibit differences between control and myxoma infected cancer cells. 
To the best of our knowledge, this is the first study to examine the global metabolic changes in A549, H446, and 
SFxL cells caused by oncolytic myxoma virus.

Results
GC–MS analysis of the H446, A549, and SFxL cancer cell lines. The GC–MS profile of H446 control 
and infected cells demonstrate the metabolic effects of OV action (Fig. 1). A visual comparison readily shows 
differences in metabolites corresponding to different pathways with several of them present in elevated levels in 
the infected cells. PCA was performed to examine the differences between control and infected H446, A549, and 
SFxL cancer cells at 6 and 12 h post infection (Fig. 2). The two-dimensional (2D) scores plots in Fig. 2A and D 
demonstrate the clear separation between H446 control and infected cells at 6 and 12 h. PC1 and PC2 showed 
variances of 50.9% and 19.5% as well as 69% and 11.8%, respectively. Similarly, 2D scores plots in Fig. 2B,C,E, 
and F show excellent separation between control and infected groups of A549 and SFxL cells at both time points.

To strengthen the separation between control and infected cancer cells and validate the PCA, a supervised 
PLS-DA classification method was utilized. 2D scores plots from PLS-DA analyses at 6 h post infection are shown 
in Fig. 3A,C, and E for H446, A549, and SFxL cells. For all three cell lines (Fig. 3A,C, and E),  R2 and  Q2 were 
similar while values for  R2 was close to unity suggesting both robustness and good predictive accuracy with 2 
components of the PLS-DA model. Even greater separation and robustness was observed in the 2D scores plot 
of all cell lines at 12 h post infection.

The VIP scores for the top 25 metabolites obtained from PLS-DA analyses of H446, A549, and SFxL cells 
indicated robust changes in metabolic profiles at 6 h and 12 h post infection (Fig. 3). At the 6 h time point, SFxL 
and A549 cancer cells showed excellent separation between control and infected groups in both PCA and PLS-
DA scores plot. However, H446 cells displayed less separation between control and infected groups (Fig. 3A). In 
H446 cells, 40% of the top 25 metabolites were common at both time points with similar increases and decreases 
in metabolite levels (Fig. 3A and B). At the 12 h time point, H446 cells contained several fatty acids (only stearic 

Figure 1.  Representative chromatograms of H446 cancer cells: GC–MS profile of H446 control (red) and 
infected (blue) cells. The chromatographic peaks of the metabolites are labeled in the overlaid chromatograms 
of H446 control and infected cells. Qualitatively, levels of lactate, alanine, proline, serine, aspartate, asparagine, 
leucine, and isoleucine are different between control and infected groups.
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acid and palmitic acid were present in the cell culture media) and citric acid cycle intermediates that were higher 
in control while various amino acids were found elevated in infected cells (Fig. 3B). In A549 cells, 32% of the 
top metabolites were found in both 6 and 12 h time points (Fig. 3C and D). Interestingly, metabolites associated 
with energy metabolism were higher in infected A549 cells while metabolites predominantly associated with 
amino acid metabolism were higher in control cells (Fig. 3D). The corresponding VIP scores plot of a PLS-DA 
model of SFxL cells, depicted the higher levels of ethanolamine, glycerol, hypoxanthine, succinate, and few amino 
acids such as histidine, methionine, and asparagine in SFxL MYXV infected cells. Cholesterol, myristic acid, 
oleic acid, vaccenic acid, glutamine, lactate, and (Aminooxy) acetic acid (AOAA) were found at higher levels 
in SFxL control cells, some of which accounted for 36% of VIP scoring metabolites (Fig. 3E and F). Changes in 
metabolite levels due to oncolytic myxoma infection of all three cell lines as identified by VIP scores are shown 
quantitatively in Figures S1–S3.

Classification between control and infected cancer cells. Results from clustering analysis of the 
heatmaps using the top 25 metabolites identified using t-tests in H446 cells shows excellent classification of indi-
vidual samples into control and infected groups at 6 and 12 h time points (Fig. 4A and D). Similar results were 
obtained for A549 cells (Fig. 4B and E) and SFxL cells (Fig. 4C and F) as well, although the SFxL cells showed 
higher biological variability at the 12 h time point.

Metabolite set enrichment analysis. Statistically different metabolites (identified via Student’s T-test) 
between control and infected cells were used for metabolite set enrichment analysis (MSEA). The MSEA results 
demonstrated an overview of perturbed pathways due to MYXV infection in H446, A549, and SFxL cancer cell 
lines (Fig. 5). Based on the enrichment ratio and p-values shown as a bar graph for H446 cells, the pathways 
related to ammonia recycling, Warburg effect, urea cycle, citric acid cycle, and amino acid metabolism such as 
glutamate, arginine, proline, and aspartate were significantly enriched (Fig. 5A). Similarly, enrichment ratio and 

Figure 2.  Unsupervised multivariate analysis of control and infected cells: 2D scores plots of the principal 
component analysis (PCA) from GC-MS data for H446, A549, and SFxL cancer cells at 6 h post infection panels 
(A), (B), and (C), respectively and 12 h post infection panels (D), (E), and (F), respectively. The amount of 
variance explained for PC 1 and 2 are displayed in parentheses. The shaded areas indicate the confidence regions 
(95%) based on the data points for each condition in the PCA models. The unsupervised PCA models suggest a 
powerful effect due to myxoma infection.
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p- values shown for A549 cells suggested that the pathways of ammonia cycling, glutathione, glutamate, and 
aspartate metabolism were significantly enriched. Additionally, Warburg metabolism, urea cycle, glycine and 
serine metabolism, citric acid cycle and alanine metabolism were significantly enriched (Fig. 5B). The overview 
of the top 25 enriched pathways for SFxL cells showed that ammonia cycling and phosphatidylethanolamine 
biosynthesis pathways were enriched significantly with the enrichment ratio > 10 and methyl histidine meta-
bolic pathway is significantly enriched with the enrichment ratio greater > 15 (Fig. 5C). The interactive pathway 
network displayed a global overview of enriched pathways along with metabolic networks for H446, A549, and 
SFxL cancer cell lines (Figures S4−S6).

Common metabolites. Among all the metabolites identified (Table S1) that were significantly different 
(Figure S1–S3), six metabolites were common across all three cell lines. Of these six metabolites (Fig. 6), aspara-
gine, lactate, oleic acid, and serine manifested a similar behavior across all three cell lines and both time points. 
On the other hand, changes in levels of glutamine and glycine were not conserved in response to myxoma infec-
tion. Interestingly, lactate levels were lower in the infected group in all three cells. Similarly, oleic acid pool size 
was also decreased in response to MYXV infection, except in the case of H446 at the 6 h time point. In contrast, 
asparagine and serine levels were found to be increased in the MYXV infected cells. These changes suggest the 
effect of MYXV infection on a range of pathways including the whole of energy metabolism as well as amino 
acid and one-carbon metabolism.

Infectivity. The extent of infection was assessed by fluorescence microscopy imaging of GFP positive cells. 
MYXV was tagged with GFP to allow for the detection of infected cells. Across the span of 24 h all three cell 
lines showed a time dependent increase in the number of infected cells (Fig. 7). Calculated percent infectivity 
values showed that at 6 h H446 had the greatest percent of infectivity at ~ 13%, while A549 and SFxL had per-

Figure 3.  Supervised PLS-DA of control and infected cells: 2D scores plots of PLS-DA and VIP plots for three 
cancer cell lines at 6 h and 12 h post infection—(A,B) H446 cells, (C,D) A549 cells and (E,F) SFxL cells. The 
explained variance for components 1 and 2 are displayed in parentheses on each axis. The shaded areas reflect 
the 95% confidence regions based on the data points for each group in PLS-DA models. VIP scores plots from 
the PLS-DA demonstrating the differences in the level of top 25 cellular metabolites between control and 
infected cancer cells. Abbreviations: AOAA: (Aminooxy)acetic acid, P.C.A.: pyrrolidine 1,2-carboxylic acid.
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cents of ~ 2% and ~ 1.4%, respectively. At 12 h, H446 increased to ~ 16%, A549 to ~ 5.2%, and SFxL to ~ 3.4%. 
The percent infectivity values continued to increase through 24 h to values of ~ 17%, ~ 22%, and ~ 4% for H446, 
A549, and SFxL cells respectively. At 48 h, all living cells reached 100% infectivity, though this time point was 
characterized by extensive cell death.

Extracellular metabolite analysis. Analysis of media samples showed decreases in the amount of glu-
cose consumed in infected A549 and SFxL with no apparent difference in H446 cells (Figure S7). These glu-
cose measurements align with extracellular metabolite analysis, which found significant decreases in the lactate 
excretion of infected A549 and SFxL cells (Figure S8). All infected cell lines showed increases in alanine secre-
tion with significantly higher secretion observed in infected H446 and SFxL cells (Figure S8). Branched chain 
amino acids displayed significantly lower consumption in infected SFxL cells, while no significant differences 
in A549, and only a significant increase in the consumption of isoleucine in infected H446 cells (Figure S8). 

Figure 4.  Demonstration of clustering between control and infected cells: Hierarchical clustering results are 
shown as heatmaps demonstrating the differences in the levels of top 25 metabolites (identified via Student’s 
t-test in Metaboanalyst) between control and infected H446, A549, and SFxL cells at 6 h (A,B, and C, 
respectively) and 12 h (D,E, and F, respectively).
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Figure 5.  Investigation of enriched metabolic pathways: Metabolite Set Enrichment Analysis (MSEA), using 
significantly different metabolites between control and infected cancer cells. Overview of the top 25 enriched 
pathways for H446, A549, and SFxL cells in the panels, (A),(B), and (C), respectively. MSEA investigates if 
a group of functionally or metabolically related metabolites is significantly enriched. It also eliminates the 
requirement of to preselect metabolites based on some cut-off threshold.

Figure 6.  Metabolic signatures between control and infected cancer cells: Percent change in metabolite levels 
between control and MYXV-infected cells at 6 h and 12 h post infection. Percent change calculated as change 
from control to infected. Only those metabolites that were identified as statistically significant by Student’s t-test 
(p < 0.05) across all three cells (A549, SFxL, H446: N = 3) are shown here.
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Extracellular aspartate levels were significantly higher in infected SFxL cells, trended higher in infected A549, 
and had no observable differences between control and infected H446 (Figure S8). There were so no significant 
differences in extracellular glutamine for all cell lines (Figure S8).

Discussion
Myxoma virus (MYXV) has been studied for causing cancer cell death and cell proliferation inhibition in various 
cancer  types8. Previously, it has been shown that the oncolytic activity of MYXV is due to viral induction of pro-
grammed cell death in some cancers, but none of the studies have targeted the metabolic changes due to MYXV 
infection in cancer  cells20–22. In this study, we have investigated the initial metabolic changes due to MYXV 
infection in brain (SFxL), small cell lung cancer (H446), and non-small cell lung cancer (A549). While this panel 
could be expanded to include an even larger swath of cancers, this sampling covers some of the cancers that are 
otherwise most treatment resistant in all of oncology. Previous studies have shown that OVs take advantage of 
dysregulated pathways in cancer cells allowing them to infect and replicate there, while sparing normal  cells23–25. 
This is an investigation of early stage metabolic changes in cancer cells (6 and 12 h post infection) due to myxoma 
infection. After 12 h post infection with MYXV, > 95% cells were alive in culture while cell survival 24 h post 
infection was less than 50% (data not shown) consistent with previous studies which also showed pronounced 
viral replication after 24  h26,27. More specifically, we assessed cell viability in all cell lines by cell counting and 
observed non-significant differences between control and infected cells at 6 h. At 12 h there were ~ 1.4 times 
more control A549 and SFxL cells compared to infected cells, and there were no significant differences observed 
between control and infected H446 cells. As the infection progressed, we observed a significant decrease in cell 
proliferation in all cell lines. Within the 12 h period, we observed a profound change in the metabolite profiles 
of MYXV infected (~ 3–16% infectivity with H446 having the greatest susceptibility to MYXV) cancer cells. We 

Figure 7.  Time course assessment of myxoma virus infectivity: Percent infectivity reported over a 24 h period 
for all three cell lines (H446, A549, SFxL: N = 3). The percent of infected cells was determined by quantitating 
GFP signal captured with fluorescence microscopy. Representative images of FITC (GFP) and Transfluorescent 
(Trans) channels at 24 h are presented. The scale bar represents 50 μm.
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chose these time points as later time points begin to display larger amounts of cell death, which we judged to 
have negative impact on the reproducibility of the metabolomics data.

Unsupervised PCA was employed to gain an overview and assess quality of the GC–MS data of all the sam-
ples and interpret the data set resulting from metabolite profiles of control and MYXV infected cancer cells. For 
all three cell lines, PCA showed excellent separation within small in-group variability suggesting strong group 
effects (Fig. 2), i.e., readily discernable changes in metabolism in all cancer cell lines. Supervised PLS‐DA was 
employed to construct the pattern recognition and classification models of samples between control and MYXV 
infected groups. PLS-DA scores plots of H446, A549 and SFxL (Fig. 3) clearly showed that the profile of control 
and MYXV infected cells are separated from each other based on a relatively limited selection of metabolites. 
The clustering among samples within a group was excellent, which led to accurate descriptors of group mem-
bership based on hierarchical clustering (Fig. 4). The cross-validation approach determined the fitting of model 
and number of components required to build the PLS-DA model. Positive  R2 and  Q2 indicate that the PLS-DA 
model is not overfitted whereas the high  R2 and  Q2 (> 0.60) and the closeness between both parameters in PLS-
DA model indicate that the components 1 and 2 are sufficient to construct a statistical model that correctly clas-
sifies MYXV infected cells versus controls. The most important metabolites on the VIP plot in Fig. 3B, showed 
the levels of both fatty acids and TCA cycle intermediates were higher in H446 control cells, while in SFxL cells 
(Fig. 3F), only fatty acids levels were elevated in control cells. In contrast, levels of metabolites associated with 
energy metabolism were elevated in MYXV infected A549 cells (Fig. 3D). Taken together, it is clear that MYXV 
infection causes strong but disparate changes in pathways associated with energy metabolism at the measured 
infectivities. The significantly different metabolites between control and MYXV infected H446, A549, and SFxL 
cells (Figures S1–S3) were used to construct the metabolic network of the most significant pathways through 
enrichment analysis for individual cancer cell line.

All cancers exhibit altered energy  metabolism28. As such, it is unsurprising that the Warburg effect, an adapta-
tion that supports tumor  proliferation29, is a prominent entry in MSEA for all three cancer cell lines. Small cell 
lung cancers have been shown to exhibit changes in proline (and associated glutamate) metabolism. Specifically, 
it has been shown in H446 cells that proline starvation hinders  tumorigenesis30 .Interestingly, in MYXV infected 
H446 cells, proline levels are higher in the infected cells with concomitant increase in glutamate levels (Figs. 4, 
S1). Similarly, non-small cell lung cancers have been shown to have an adaptation leading to altered glutathione 
 metabolism31. These previous findings are confirmed by MSEA of the significantly different metabolites between 
A549 control and MYXV infected cells, which showed that glutathione metabolism had the greatest enrich-
ment ratio (Fig. 5B) and that significantly lower levels of glycine, glutamate, cysteine, and pyroglutamate in 
infected cells were driving the detection of glutathione metabolism (Figure S2). In SCLC H446 cells, citric acid 
cycle (CAC) metabolites are higher in control versus treatment, whereas in control NSCLC A549 cells, they are 
depleted versus treatment (Fig. 4). Without separate experiments using isotope tracers, up or downregulation 
of the CAC cannot be readily determined. However, energy metabolism is obviously perturbed by myxoma 
infection.

Glioblastoma exhibits altered phospholipid  metabolism32 depending on the specifics of microenvironmental 
conditions. It has been demonstrated that increased phosphatidylethanolamine-binding protein expression is 
a reliable marker of glioma  grade33. Further, lipid accumulation and oxidation has been demonstrated to aid in 
tumor  proliferation34. A comparison between control and MYXV – infected groups of SFxL cells show substantial 
differences in metabolites involved in fatty acid metabolism as evidenced by the significantly lower levels of oleic 
acid and vaccenic acid in infected SFxL cells (Fig. 3 and S3). Further, glioblastoma cells are known to maintain 
elevated levels of  cholesterol35, an aspect that has been suggested as potential therapeutic target. Infection with 
myxoma virus causes a drop in cholesterol levels in SFxL levels (Fig. 4) suggesting a possible mode of oncolytic 
action that could be synergized with interventions targeting cholesterol metabolism.

Although there are major differences between different types of cancers, one of the distinguishing features 
of cancer cells is the metabolic alterations exhibited in comparison with healthy  cells36. Breast cancer biomass 
has been shown to be supported by ammonia recycling via glutamate  metabolism37. Similarly, several cancers 
have been shown to efficiently utilize glutamine as a metabolic adaptation along with the prevalence of Warburg 
 metabolism29. Analysis of metabolites that significantly vary between control and myxoma infected cells across 
all three cell lines show substantial changes in the levels of lactate, amino acids (asparagine, glutamine, glycine, 
and serine) and oleic acid. In congruence with the changes in metabolite levels, MSEA shows that infection by 
myxoma has maximal effect of pathways covering ammonia recycling, glutamate/glutamine metabolism and 
glutathione metabolism (Figs. 5, S4–S6) in all three cell lines.

The role of biomarkers is significant in cancer detection and treatment  monitoring38. As such, an easy to detect 
biomarker reporting on oncolytic changes due to MYXV infection has the potential to inform on the progression 
of oncolytic viral therapies. Ideally, such a biomarker will also be same or similar across different types of cancers. 
In the current study, six metabolites were significantly different across all three cell lines (Fig. 6), of which, four 
metabolites (lactate, oleic acid, asparagine, and serine) showed the same response to myxoma infection. The 
relevance of these metabolites stands to show specific virus infection effects since these metabolites were found to 
be significantly different from the respective control cell lines. Additionally, a cell-line dependent decrease in fatty 
acids, such as myristic, palmitic, stearic acid and vaccenic acid (Fig. 3, S1–S3), suggesting a disruption in fatty 
acid metabolism due to MYXV-infection was also evident. Again, without tracer experiments, it is impossible to 
determine if these decreases are related to uptake or utilization. These six potential biomarkers show modulation 
across diverse pathways such as central energy metabolism, one-carbon, and asparagine metabolism. Further, 
since lactate, oleic acid, asparagine, and serine are stable under normal conditions and easily detected in GC–MS 
(and other analytical techniques), these metabolites are candidates as reliable markers of MYXV inducted changes 
to cancer metabolism. Lactate stands out as a biomarker that can also be imaged using magnetic  resonance39. 
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Further research will need to address the specificity of these biomarkers (e.g. viral and cancer specificity), and, 
in general, confirm the hypothesis that these metabolites could specifically herald oncolytic viral activity.

The six metabolites found to be significantly different between the control and infected cells of all three 
cell lines may play an important role in mitigating tumor cell death induced by MYXV infection. Asparagine 
has been shown to suppress apoptosis and mediate the adaptation to glutamine depletion in cancer  cells40. 
Glutamine has served a primary role in metabolic adaptation in cancer by serving as an essential energy and 
nutrient source, especially for glutamine dependent A549 and SFxL cells which have respectively been shown to 
have a ~ 33% and ~ 50% growth reduction when cultured in glutamine deficient media (the effects of glutamine 
deprivation in H446 are not clear)41–43. Serine has been shown to support cancer cell survival by mediating amino 
acid transport, combating oxidative stress, and promoting nucleotide synthesis. Additionally, serine uptake and 
synthesis has been observed to be upregulated in cancer  cells44. Similar to serine, upregulation of glycine syn-
thesis can potentiate and drive tumorigenesis through one carbon  metabolism45. Oleic acid has been shown to 
promote cell  proliferation46. Lactate production and excretion is a signature of cancer metabolism and serves an 
important role in the acidification of the microtumor environment which promotes invasion and  metastasis47. 
In the context of myxoma infection, the viral machinery may disrupt central metabolic processes to an extent 
that significantly reduces lactate production. While it is difficult to dissect the relevance of these metabolites to 
cancer metabolism or myxoma virus infection, we believe that the already dysregulated metabolic processes in 
cancer may be disrupted by myxoma infection to allow for tumor cell death. All six of the common metabolites 
identified in this study are involved in potentiating cancer cell survival, so it makes sense that some may be 
upregulated to combat the negative effects of infection, while others may already be downregulated by infection 
preceding eventual cell death.

Another significant variable is the change in metabolism as a function of the level of infectivity. To address 
the infectivity dependent changes in metabolite levels through the course of infection, we plotted changes in the 
levels of metabolites ranked in the top 25 by VIP scores and conserved between 6 and 12 h post infection (Fig. 8). 
The metabolite levels were normalized to control so that the effects of infection would be highlighted across time. 
Comparing the differences in the metabolite profiles of each cell line at 6 and 12 h showed that in infected H446 
cells glutamine levels drastically decreased while asparagine and proline increased from 6 to 12 h, indicating 
that greater susceptibility to infection marks greater changes in the metabolite profile. Both A549 and SFxL cells 
showed more subtle changes in their metabolite profiles from 6 to 12 h and interestingly both cell lines shared 
similar trends for glycine, one of the biomarkers identified (Fig. 6). An overall comparison of the full metabolite 
profiles of 6 and 12 h post infection cells showed that more fatty acids were detected at 12 h. As fatty acids were 
one of our identified biomarkers, we hypothesize that MYXV infection leads to a greater dysregulation of fatty 
acid metabolism over time. However, we note that our FBS was not dialyzed which could contribute to such 
changes. We plan on using dialyzed FBS for future studies.

When comparing our data to previous studies with oncolytic adenovirus infection, we observe a different 
effect in glucose uptake and lactate  production48. This difference is likely due to differences in the mechanisms of 
myxoma and oncolytic adenovirus infections, an important control for viral metabolic effects. Our study shows 
that glucose uptake and lactate secretion is reduced in myxoma virus infected cells, whereas Dyer et al. show 
that glucose uptake and lactate secretion is  increased48. Additionally, it is difficult to directly compare myxoma 
infection with oncolytic adenovirus given that they have different effects on cell viability over time. In our study 
there was a drastic decrease in cell viability after 24 h. Moreover, previous work on oncolytic viruses and fatty acid 

Figure 8.  Metabolic profiles between 6 and 12 h post infection: Radar plots demonstrating the extent of 
changes observed in metabolite levels across 6 and 12 h of infection. The metabolites presented were selected 
based on the top 25 VIP scores and conservation across time points. The scale of the plots were kept the same 
to highlight the range of changes between the two time points for all three cells (H446, A549, SFxL). Note that 
H446 cells had the highest measured infectivity, as well as the greatest change in the metabolic profile versus 
control cells at both time points.
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metabolism shows that β-oxidation of palmitate is required to fuel the TCA cycle and overall energy production 
for viral  infection49. While our focus was not strictly on β-oxidation, our data suggests some common findings 
such as an elevation in fatty acids in control H446 and SFxL cells, indicating that β-oxidation may be upregulated 
in the respective infected cells. We also observed that TCA cycle intermediates were elevated in control H446 
cells, which is consistent with previous reports of changes in TCA cycle metabolism on  infection49. Additionally, 
we found that metabolites associated with energy metabolism were elevated in A549 infected cells, which may 
point to increased energy demands during viral  infection50. Similar to Teferi et al.50 our data shows that glucose 
consumption in myxoma infected cells is not significantly different than control cells.

Overall, we have shown that several dramatic changes occur in cancer metabolism at an early stage of onco-
lytic myxoma virus infection. Although carrying out this work in cell culture has enabled us to characterize 
changes in metabolism that are specific to cancer cells, this aspect is also the primary limitation of this study. 
Future work will need to address more complex aspects of cancer such as utilizing hypoxic environment and 
tumors implanted in animal models along with biochemical characterization of signaling pathways. Ideally, future 
experiments will be executed using matched levels of infectivity instead of a standardized time point, but a real 
time method for estimating infectivity was not available to our lab at the beginning of our experimental paradigm.

Conclusions
In conclusion, we have broadly identified global changes in metabolism caused by myxoma infection in three 
different cancer cell lines. In order to obtain mechanistic insights into MYXV targeting of cancer cells, further 
studies using stable isotope tracers will need to be performed. Since cancer cells are able to utilize a wide range 
of substrates, they are amenable to study using various 13C51 or 2H stable  isotope52,53 tracers. These studies could 
also be carried out with the addition metabolic modulators or other existing therapeutic agents. Experiments 
utilizing 13C enriched substrates utilizing a combination of NMR spectroscopy and GC–MS are already underway.

Materials and methods
Cell lines, chemicals, and media. Lung carcinoma (A549) cell line was procured from American Type 
Culture Collection (Manassas, VA, US). H446 (small cell lung cancer) was provided by Dr. Maria Zajac-Kaye, 
University of Florida. Glioblastoma SFxL cell line was received as a gift from Dr. Ralph Deberardinis, University 
of Texas Southwestern Medical Center. Dulbecco’s Modified Eagle Medium was purchased from Millipore Sigma 
(St. Louis, MO, US), Phosphate Buffered Saline and trypan blue were acquired from Fisher Scientific (MA, US) 
and Fetal Bovine Serum was bought from Atlas Biological (Fort Collins, CO, US). Methoxamine hydrochloride 
(MOX) and N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) with tertbutyldimethylchlo-
rosilane (TBDMS) for derivatization were procured from Thermo Fisher Scientific, (Waltham, MA, US).

Cell culture and myxoma virus infection. H446, A549, and SFxL cell lines were maintained in a growth 
medium containing Dulbecco’s Modified Eagle Medium, 10% v/v FBS, penicillin and streptomycin (50 µg/mL 
each), and 10 µg/mL neomycin. Cell lines were incubated at 37 °C in air (95%) and  CO2 (5%) atmosphere in 
an incubator (Heracell Vios 160i). Growth media was replenished every 3 days and once cells reached at 80% 
confluence, cells were subcultured (1:10) into six 100 mm OD (culture area = 56.7  cm2) culture plates. For viral 
infection, the cell monolayers grown to ~ 70% confluency. Cells were washed with warm PBS and incubated with 
DMEM (control group) and wildtype myxoma virus in DMEM (infected group) for 2 h. The stocks of myxoma 
virus were generated using published  procedures54 and a multiplicity of infection (MOI) of 5:1 was utilized. The 
MOI was based on the viral titer of MYXV infected rabbit kidney epithelial cells (RK-13)55, which were used to 
propagate the MYXV stocks. In order to minimize the possibility of changes in metabolism due to cell death and 
virus replication as opposed to viral mediated changes in  metabolism56,57, 6 and 12 h infection time points were 
chosen. After 2 h of the Myxoma virus infection, cells were washed once with warm media to remove excess 
virus and incubated for 6 and 12 h. After the incubation, media was collected, and cells were trypsinized, resus-
pended in DMEM with FBS (10 mL total volume) and counted on a standard hemocytometer using trypan blue. 
Cells were pelleted by centrifugation (350×g) at 4 °C. Residual media was removed by washing three times with 
ice-cold PBS and subsequent centrifugation each time. Cell pellets were stored at − 80 °C until analysis.

GC–MS sample preparation. Cell pellets were extracted with 1  mL of Acetonitrile:Isopropanol:Water 
(3:3:2, v:v:v), and centrifuged for 15 min at 10,000×g. The supernatant containing metabolites was transferred 
into a new tube and dried down completely. Dried cell extract was dissolved in 0.5 mL of Acetonitrile:Water (1:1, 
v:v) and centrifuged for 5 min at 10,000×g. The supernatant from the second step was transferred into GC reac-
tion vial (Reacti-vial) and dried down under  N2 gas air flow. Media samples were directly loaded (10 μL) to GC 
reaction vials and dried. Fifty microliters of MOX was added to dried cell extracts and dried media in GC vials 
and incubated at 30 °C for 1.5 h on a heating block. MTBSTFA + TBDMS reagent (50 µL) was added to each vial 
and again incubated for 1 h at 60 °C. Finally, reaction vials were centrifuged and the supernatant was transferred 
into the insert for GC–MS analysis.

Gas chromatography–Mass spectrometry (GC–MS) analysis. GC–MS data was acquired with Sin-
gle Quadrupole Mass Spectrometer and Gas Chromatograph (Trace 1310) (Thermo Fisher Scientific, USA). 
The GC column was 30 m long dimethyl (95%)/diphenyl polysiloxane (5%) RTX-5MS with 0.25 mm ID, film of 
0.25 µm, and guard column (10 m) (Restek, PA, USA). Starting temperature of GC oven was 60 °C for 60 s and 
the temperature increased to 325 °C (@10 °C/min) and final hold time was 5 min. The MS ion source tempera-
ture was 230 °C. Helium acts as carrier gas.
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Peak integration and metabolite identification. Metabolites in cell samples were identified using 
NIST mass spectral library with Xcalibur software (version 4.1). Total ion current (TIC) chromatogram based 
peak areas of identified metabolites were extracted for each of the samples and combined in a tabular form for 
statistical analysis. Peak areas were integrated using Xcalibur software library batch processing method with ICIS 
peak fitting, height cutoff at 5.0% of the peak, and a S/N cutoff threshold of 3.0.

Statistical analysis. The peak intensity of metabolites was imported to online MetaboAnalyst 5.0 and nor-
malized by the sum of intensities followed by generalized log10 transformation and pareto scaling to provide 
equivalent weight among the variables. The web-based MetaboAnalyst 5.058 was employed to perform t-tests, 
unsupervised principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) (a 
supervised method), and Hierarchical Clustering  analysis58. The  Q2 and  R2 values. were calculated to assess the 
robustness of PLS-DA model. The Variable Importance in Projection (VIP) obtained from PLS-DA was utilized 
to extract the importance of various metabolite to the model. Compounds with a VIP scores > 1 is considered 
to be influential in PLS-DA. The significantly different metabolites between control and infected cells were plot-
ted using in-house python scripts and similar metabolites were used for Metabolite Set Enrichment Analysis 
(MESA). P ≤ 0.05 was considered significant for individual metabolites as well as MSEA.

Percent infectivity analysis. Myxoma virus infectivity was assessed over a 24 h period. Cells were han-
dled exactly as in the cell culture and Myxoma virus infection section. Cells were imaged on a Revolve hybrid 
microscope obtained from ECHO (CA, US). Images were captured at 0 h, 6 h, 12 h, and 24 h using a FITC and 
transfluorescent module. Cell counts were performed on ImageJ (NIH, MD, US) to determine the number of 
GFP positive cells and the number of total cells present in each respective image. Cell numbers were used to 
calculate percent infectivity at each time point.

Glucose consumption measurement. An Evencare G2 glucose meter was utilized to measure the glu-
cose level in media samples. Amounts of residual glucose in control and infected cell media samples were deter-
mined by subtracting the raw glucose measurement from time zero samples.

Data availability
Data generated or analyzed in this study are included in this manuscript and its Supporting Information.
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