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We set out a generalized linear model framework for the syn-
thesis of data from randomized controlled trials. A common
model is described, taking the form of a linear regression for
both fixed and random effects synthesis, which can be imple-
mented with normal, binomial, Poisson, and multinomial
data. The familiar logistic model for meta-analysis with bino-
mial data is a generalized linear model with a logit link func-
tion, which is appropriate for probability outcomes. The same
linear regression framework can be applied to continuous out-
comes, rate models, competing risks, or ordered category out-
comes by using other link functions, such as identity, log,
complementary log-log, and probit link functions. The com-
mon core model for the linear predictor can be applied to
pairwise meta-analysis, indirect comparisons, synthesis of
multiarm trials, and mixed treatment comparisons, also

known as network meta-analysis, without distinction. We
take a Bayesian approach to estimation and provide Win-
BUGS program code for a Bayesian analysis using Markov
chain Monte Carlo simulation. An advantage of this approach
is that it is straightforward to extend to shared parameter
models where different randomized controlled trials report
outcomes in different formats but from a common underlying
model. Use of the generalized linear model framework allows
us to present a unified account of how models can be com-
pared using the deviance information criterion and how good-
ness of fit can be assessed using the residual deviance. The
approach is illustrated through a range of worked examples
for commonly encountered evidence formats. Key words: gen-
eralized linear model; network meta-analysis; indirect evi-
dence; meta-analysis. (Med Decis Making 2013;33:607–617)

Meta-analysis of randomized controlled trials is
widely used in the medical research litera-

ture,1–3 and methodology for pairwise meta-analysis
is well developed.4–9 Recently, meta-analysis meth-
ods have been extended to indirect and mixed
treatment comparisons, also known as network
meta-analysis (NMA), which combine data from

randomized comparisons, A v. B, A v. C, B v. D,
etc., to deliver an internally consistent set of esti-
mates while respecting the randomization in the evi-
dence.10 NMA is particularly useful in decision-
making contexts.11–21 We present a single unified
approach to evidence synthesis of aggregate data from
randomized controlled trials, specifically, but not
exclusively, for use in probabilistic decision making.22

To cover the variety of outcomes reported in trials and
the range of data transformations required to
achieve linearity, we adopt the framework of gener-
alized linear modeling (GLM).23 This provides for
normal, binomial, Poisson, and multinomial likeli-
hoods, with identity, logit, log, complementary log-
log, and probit link functions, and common core
models for the linear predictor in both fixed effects
(FE) and random effects (RE) settings. Our common
core models can synthesize data from pairwise
meta-analysis, multiarm trials, indirect com-
parisons, and NMA without distinction. Indeed,
pairwise meta-analysis and indirect comparisons
are special cases of NMA.
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We take a Bayesian Markov Chain Monte Carlo
(MCMC) approach using the freely available software
WinBUGS 1.4.3.24 We include an extensive web
appendix with fully annotated WinBUGS code for
all models to run a series of worked examples. This
code is also available at www.nicedsu.org.uk.25

DEVELOPMENT OF THE CORE MODELS: BINO-
MIAL DATA WITH LOGIT LINK

We begin by presenting the standard Bayesian
MCMC approach to pairwise meta-analysis for binomial
data, based on Smith et al.,9 and develop our approach
to assessment of goodness of fit, model diagnostics,
and comparison, based on Spiegelhalter et al.26 This
approach can then be easily applied to other outcome
types and to meta-analysis of multiple treatments.

Consider a set of M trials comparing two treatments, 1
and 2, in a prespecified target patient population, which
are to be synthesized in a meta-analysis. An FE analysis
assumes that each study generates an estimate of the
same parameter d12, subject to sampling error. In an RE
model, each study i provides an estimate of the study-
specific treatment effects di,12, which are assumed not
to be equal but instead ‘‘similar’’ in a way that assumes
that the information that the trials provide is indepen-
dent of the order in which they were carried out
(exchangeable), over the population of interest.27,28

The exchangeability assumption is equivalent to saying
that the trial-specific treatment effects come from a com-
mon distribution with mean d12 and variance s2

12.
The common RE distribution is usually chosen to

be a normal distribution, so that

di;12;Nðd12;s
2
12Þ:

It follows that the FE model is a special case of this,
obtained by setting the variance to zero.

Note that for pairwise meta-analysis, the sub-
scripts in d, d, and s are redundant since only one
treatment comparison is being made. We shall drop
the subscripts for s but keep the subscripts for d

and d, to allow for extensions to multiple treatments.

Worked Example: Binomial Likelihood, Logit Link
(Appendix: Example 1)

We consider a meta-analysis of 22 trials of beta-
blockers to prevent mortality after myocardial infarc-
tion.28,29 The data available are the number of deaths
in the treated and control arms, out of the total num-
ber of patients in each arm, for all trials (Table 1).

Model specification. Defining rik as the number of
events (deaths), out of the total number of patients in
each arm, nik, for arm k of trial i, we assume that the
data generation process follows a binomial likelihood:

rik;Binomialðpik;nikÞ; ð1Þ

where pik represents the probability of an event in
arm k of trial i ( i = 1, . . . , 22; k = 1, 2).

Since the parameters of interest, pik, are probabilities
and therefore can take only values between 0 and 1,
a transformation (link function) is used that maps these
into a continuous measure between plus and minus
infinity. For a binomial likelihood, the most commonly
used link function is the logit (Table 2). We model the
probabilities of success pik on the logit scale:

logitðpikÞ5mi1dikIfk6¼1g; ð2Þ

where

Ifug5
1 if u is true

0 otherwise

(
;

Table 1 Blocker Example: Number of Events and
Total Number of Patients in the Control and Beta-

Blocker Groups for the 22 Trials29

Control Treatment

Study i
No. of

Events (ri1)
No. of

Patients (ni1)
No. of

Events (ri2)
No. of

Patients (ni2)

1 3 39 3 38
2 14 116 7 114
3 11 93 5 69
4 127 1520 102 1533
5 27 365 28 355
6 6 52 4 59
7 152 939 98 945
8 48 471 60 632
9 37 282 25 278

10 188 1921 138 1916
11 52 583 64 873
12 47 266 45 263
13 16 293 9 291
14 45 883 57 858
15 31 147 25 154
16 38 213 33 207
17 12 122 28 251
18 6 154 8 151
19 3 134 6 174
20 40 218 32 209
21 43 364 27 391
22 39 674 22 680
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mi are trial-specific baselines, representing the log-
odds of the outcome in the ‘‘control’’ treatment (i.e.,
treatment 1), and di;12 are trial-specific log-odds ratios
of success for the treatment group (indexed 2) com-
pared to control (indexed 1). We can write equation
2 as

logitðpi1Þ5mi

logitðpi2Þ5mi1di;12

;

where, for an RE model, the trial-specific log-odds
ratios come from a common distribution:
di;12;Nðd12;s

2Þ. For an FE model, we replace equa-
tion 2 with

logitðpikÞ5mi1d12Ifk6¼1g;

which is equivalent to setting the between-trial het-
erogeneity s2 to zero, thus assuming homogeneity of
the underlying true treatment effects.

An important feature of all the models presented
here is that no assumptions are made about the tri-
al-specific baselines mi. They are regarded as nui-
sance parameters that are estimated in the model.
An alternative is to place a second hierarchical model
on the trial baselines or to put a bivariate normal
model on both.30,31 However, unless this model is
correct, the estimated relative treatment effects will
be biased. Our approach is therefore more conserva-
tive and in keeping with the widely used frequentist
methods in which relative effect estimates are treated
as data and baselines eliminated entirely. Baseline
models are discussed by Dias et al.32

Model fit and model comparison. To check for-
mally whether a model’s fit is satisfactory, we will
consider an absolute measure of fit: the overall resid-
ual deviance, �Dres. This is the posterior mean of the
deviance under the current model, minus the

deviance for the saturated model,23 so that each
data point should contribute about 1 to the posterior
mean deviance.26,33 We can then compare the value
of �Dres to the number of independent data points to
check if the model fit can be improved. For binomial
likelihoods, each trial arm contributes 1 indepen-
dent data point, and the residual deviance is calcu-
lated (for each iteration of the MCMC simulation) as

Dres5
X

i

X
k

2 rik log
rik

r̂ik

� �
1ðnik � rikÞ log

nik � rik

nik � r̂ik

� �� �
5
X

i

X
k

devik

;

ð3Þ

where r̂ik5nikpik is the expected number of events in
each trial arm, based on the current model, and devik

is the deviance residual for each data point. This is
then summarized by the posterior mean: �Dres.

Leverage statistics are used in regression analysis
to assess the influence that each data point has on
the model parameters. In a Bayesian framework, the
leverage for each data point, leverageik, is calculated
as the posterior mean of the residual deviance minus
the deviance at the posterior mean of the fitted values.
For a binomial likelihood, letting ~rik be the posterior
mean of r̂ik, and devik the posterior mean of devik,

pD5
X

i

X
k

leverageik5
X

i

X
k

devik � gdevik

h i
;

where gdevik is calculated by replacing r̂ik with ~rik in
equation 3.

The deviance information criterion (DIC)26 is the
sum of the posterior mean of the residual deviance,
�Dres, and the leverage, pD, (also termed the effective
number of parameters). The DIC provides a measure
of model fit that penalizes model complexity—lower

Table 2 Commonly Used Link Functions and Their Inverse With Reference to Which Likelihoods
They Can Be Applied

Link Link Function,u5gðgÞ Inverse Link Function,g5g�1ðuÞ Likelihood

Identity g u Normal
Logit ln g=ð1� gÞ

� �
expðuÞ

11 expðuÞ
Binomial
Multinomial

Log lnðgÞ expðuÞ Poisson
Complementary log-log (cloglog) ln � lnð1� gÞf g 1� exp � expðuÞf g Binomial

Multinomial
Reciprocal link 1=g 1=u Gamma
Probit F�1ðgÞ FðuÞ Binomial

Multinomial
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values of the DIC suggest a more parsimonious model.
The DIC can be used to compare different models for
the same likelihood and data—for example, FE v. RE
models or FE models with and without covariates.
�Dres should also be consulted to ensure that overall
fit is adequate.

WinBUGS will automatically calculate the poste-
rior mean of the deviance for the current model �D
but not �Dres. The former can be useful for model com-
parison purposes only and not to assess the fit of a sin-
gle model. Further, the pD, and therefore the DIC,
calculated in the way that we suggest, is not precisely
the same as that calculated in WinBUGS, except in
the case of a normal likelihood. The reason is that
WinBUGS calculates the fit at the mean value of the
parameter values, while we propose the fit at the
mean value of the fitted values.34 The latter is more
stable in highly nonlinear models with high levels
of parameter uncertainty.

Examining the contribution of each data point to
pD in leverage plots can help identify influential
and/or poorly fitting observations.25,26 However,
deciding between FE or RE models can be highly
dependent on the impact of sparse data and choice
of prior distributions. In NMA there are additional
issues regarding consistency among evidence sources
on different contrasts that need to be taken into
account.35

WinBUGS implementation and illustrative re-
sults. In comparison of the fit of the FE and RE mod-
els (Table 3), the posterior mean of the residual
deviance indicates that although the RE models is
a better fit to the data, with �Dres= 41.9 against 46.8
for the FE model; this is achieved at the expense of
more parameters (pD is higher in the RE model).

The DIC suggests that there is little to choose
between the two models—differences of less than 3
or 5 are not considered important—and the FE
model may be preferred since it is easier to interpret
(Table 3). The posterior median of the pooled log
odds ratio of beta-blockers compared to control in
the FE model is 20.26 with 95% credible interval
(CrI; 20.36, 20.16), indicating a reduced mortality
in the treatment group. The posterior medians of
the absolute probability of mortality on the control
and treatment groups are 0.10 and 0.08, respectively
(CrIs in Table 3). Results for the RE model are
similar.

The logit model assumes additivity of effects on
the logit scale.36 Choice of scale can be guided by
goodness of fit or by lower between-study heteroge-
neity, but there are seldom enough data to make this
choice reliably, and logical considerations may play
a larger role.37 Quite distinct from choice of scale
for modeling is the issue of how to report treatment
effects. Thus, while one might assume linearity of
effects on the logit scale, given information on the
absolute effect of one treatment, it is possible to
derive treatment effects on other scales, such as risk
difference, relative risk, or numbers needed to treat.
This is illustrated in the appendix. An advantage of
Bayesian MCMC is that appropriate distributions
and, therefore, CrIs are automatically generated for
all these quantities.

GENERALIZED LINEAR MODELS

We now extend our approach to models for other
data types. The core models remain the same, but
the likelihood and the link function change to reflect

Table 3 Blocker Example

Fixed Effects Model Random Effects Model

Mean s Median CrI Mean s Median CrI

d12 –0.26 0.050 –0.26 –0.36, –0.16 –0.25 0.066 –0.25 –0.38, –0.12
T1 0.11 0.055 0.10 0.04, 0.25 0.11 0.055 0.10 0.04, 0.25
T2 0.09 0.045 0.08 0.03, 0.20 0.09 0.046 0.08 0.03, 0.20
sa — — — — 0.14 0.082 0.13 0.01, 0.32
�Dres

b 46.8 41.9

pD 23.0 28.1
DIC 69.8 70.0

Note: Posterior mean, standard deviation (s), median, and 95% credible interval (CrI) for both the fixed and random effects models for the treatment effect
d12, absolute effects of the placebo (T1) and beta-blocker (T2) for a mean mortality of 22.2 and precision 3.3 on the logit scale; heterogeneity parameter s

and model fit statistics. Results are based on 20,000 iterations on 3 chains, after a burn-in of 10,000.
aBased on a Uniform(0,5) prior distribution.
bCompare to 44 data points.
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the nature of the data (continuous, rate, categorical)
and the sampling process that generated them (nor-
mal, Poisson, multinomial, etc.). In GLM theory,23

a likelihood is defined in terms of some unknown
parameters g, while a link function, g(�), maps the
parameters of interest onto the plus/minus infinity
range. Our meta-analysis model for the logit link in
equation 2 now becomes a GLM where

gðgÞ5uik5mi1di;bkIfk6¼1g ð4Þ

is an appropriate link function (e.g., the logit link)
and uik is the linear predictor, usually a continuous
measure of the treatment effect in arm k of trial i
(e.g., in log-odds form); mi is defined as before, and
di,bk is the trial-specific treatment effect of the treat-
ment in arm k relative to the control treatment in
arm b (we assume b = 1 throughout) so that for an
RE model

di;1k;Nðd1k;s
2Þ: ð5Þ

Table 2 has details of the most commonly used
likelihoods and link and inverse link functions, and
Table 4 provides the formulae for the residual devi-
ance and the predicted values needed to calculate
�Dres and pD for different likelihoods.

Whatever the type of outcome data and GLMs used
to analyze them, the basic model for meta-analysis
remains the same (equations 4 and 5); however, in
a Bayesian framework, specification of the range for
the prior for the heterogeneity parameter requires
care.

Rate Data: Poisson Likelihood and Log Link
(Appendix: Example 2)

Defining rik as the number of events occurring in
arm k of trial i during the trial follow-up period, Eik

as the exposure time in person-years, and lik as the

rate at which events occur in arm k of trial i, we can
write the likelihood as

rik;PoissonðlikEikÞ:

The parameter of interest is the hazard, the rate at
which the events occur in each trial arm, and this is
modeled on the log scale. The linear predictor in
equation 4 is therefore on the log-rate scale:

uik5 logðlikÞ5mi1di;1kIfk6¼1g:

The key assumption of this model is that in each
arm of each trial, the hazard is constant over the fol-
low-up period, implying a homogeneous population
where all patients have the same hazard rate.

These models are also useful for repeated event
data. Examples include (1) a model for the total num-
ber of accidents in each arm where each individual
may have more than one accident and (2) observa-
tions repeated in space rather than time, such as the
number of teeth requiring fillings. Using the Poisson
model for repeated event data makes the additional
assumption that events are independent, so that, for
example, an accident is no more likely in an individ-
ual who has already had an accident than in one who
has not.38–40

Rate Data: Binomial Likelihood and Cloglog Link
(Appendix: Example 3)

In some meta-analyses, each trial reports the pro-
portion of patients reaching an endpoint at a specified
follow-up time, but the trials do not all have the same
follow-up time. By defining rik as the number of
events in arm k of trial i, with follow-up time fi, the
likelihood for the data-generating process is bino-
mial, as in equation 1.

One way to take the length of follow-up in each
trial into account in the analysis is to assume an

Table 4 Formulae for the Residual Deviance and Model Predictors for Common Likelihoods

Likelihood Model Prediction Residual Deviance

rik;Binomialðpik;nikÞ r̂ik5nikpik
P

i

P
k

2 rik log rik

r̂ik

� �
1ðnik � rikÞ log nik�rik

nik�r̂ik

� �� �
rik;PoissonðlikEikÞ r̂ik5likEik

P
i

P
k

2 r̂ik � rikð Þ1rik log rik

r̂ik

� �� �
yik;N �yik; se2

ik

� �
seik assumed known

�yik
P

i

P
k

yik��yikð Þ2
se2

ik

� �
ri;k;1:J ;;Multinomialðpi;k;1:J ;nikÞ r̂ikj5nikpikj

P
i

P
k

2
�P

j

rikj log
rikj

r̂ikj

� ��
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underlying Poisson process for each trial arm, with
a constant event rate lik. The linear model becomes

uik5cloglogðpikÞ5 logðfiÞ1mi1di;1kIfk6¼1g;

with the treatment effects di;1k representing log-haz-
ard ratios. The assumptions made in this model are
as for the Poisson rate models—namely, that the haz-
ards are constant and homogeneous in each trial.
Relaxation of this assumption is possible when suit-
able data are available.25

Logit models for probability outcomes in studies
with different follow-up times are also possible.
One option is to assume that all outcome events
that are going to occur will have occurred before the
observation period in the trial has ended, regardless
of variation between studies in follow-up time.
Another is to assume a proportional odds model,
which implies a complex form for the hazard rates.41

The clinical plausibility of these assumptions should
be discussed and supported either by citation of rele-
vant literature or by examination of evidence on
changes in outcome rate over the period of follow-up.

Competing Risks: Multinomial Likelihood and
Log Link (Appendix: Example 4)

A competing risk analysis is appropriate where
multiple, mutually exclusive endpoints have been
defined and patients leave the risk set if any one of
them is reached. For example, in trials of treatments
for schizophrenia,42 observations continued until
patients relapsed, discontinued treatment due to
intolerable side effects, or discontinued for other rea-
sons. Patients who remain stable to the end of the
study are censored.

Trials report rikj, the number of patients in arm k of
trial i reaching each of the mutually exclusive end-
points j = 1, 2, . . . J, at the end of follow-up in trial
i, fi. In this case, the responses rikj will follow a multi-
nomial distribution,

ri;k;j51;;J;Multinomialðpi;k; j51;...;J ;nikÞ with
XJ

j51

pi;k; j51;

ð6Þ

and the parameters of interest are the rates (hazards)
at which patients move from their initial state to any
of the endpoints j, likj. Note that the Jth endpoint rep-
resents the censored observations—that is, patients
not reaching any of the other endpoints before end
of follow-up.

If we assume constant hazards likj acting over the
period of observation fi in years, weeks, etc., the prob-
ability that outcome j has occurred by the end of the
observation period for arm k in trial j is

pikjðfiÞ5
likjPJ�1

u51 liku

½1� expð�fi

XJ�1

u51
likuÞ�; j51; 2; 3; . . . ;J � 1:

The probability of remaining in the initial state
(i.e., being censored) is

pikJðfiÞ51�
XJ�1

u51
pikuðfiÞ:

The hazards, likj, are modeled on the log scale:

uikj5 logðlikjÞ5mij1di;1k;jIfk6¼1g:

The trial-specific treatment effects di,1 k,j of the
treatment in arm k relative to the control treatment
in arm 1 of that trial for outcome j is assumed to follow
a normal distribution:

di;12;j;Nðd12j;s
2
j Þ:

The between-trials variance of the RE distribution,
s2

j , is specific to each outcome j. Different models for
s2

j can be considered.25

These competing risks models share the same
assumptions as the cloglog models presented above to
which they are closely related: constant hazards over
time, implying proportional hazards, for each outcome.
A further assumption is that the ratios of the risks
attaching to each outcome must also remain constant
over time (proportional competing risks). Extensions
where the assumptions are relaxed are possible.43

Continuous Data: Normal Likelihood and Identity
Link (Appendix: Example 5)

With continuous outcome data, meta-analysis is
often based on the sample means, yik, with standard
errors seik. As long as the sample sizes are not too small,
the central limit theorem allows us to assume that, even
in cases where the underlying data are skewed, the
sample means are approximately normally distributed
so that the likelihood can be written as

yik;N uik; se2
ik

� �
: ð7Þ

The parameter of interest is the mean, uik, of this
continuous measure, which is unconstrained on the
real line. The identity link is used (Table 2), and the
linear model can be written as
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uik5mi1di;1kIfk6¼1g: ð8Þ

Before/after studies: Change from baseline meas-
ures. In cases where the original continuous trial
outcome is measured at baseline and at a prespeci-
fied follow-up point, meta-analysis can be based
on the mean change from baseline and an appropri-
ate measure of uncertainty (e.g., the variance or stan-
dard error), which takes into account any within-
patient correlation. It is preferable to use the mean
of the final reading, having adjusted for baseline
via regression/ANCOVA, if available.8

The likelihood for the mean change from baseline
in arm k of trial i, yik, with change variance se2

ik is
given in equation 7, and uikis modeled on the natural
scale as in equation 8. Various workarounds are com-
monly used when information on the change vari-
ance is lacking.8,25,44–46

Treatment Differences (Appendix: Example 7)

Trial results are sometimes available only as over-
all, trial-based summary measures, for example, as
mean differences between treatments, log-odds
ratios, log-risk ratios, log-hazard ratios, risk differen-
ces, or some other trial summary statistic and its sam-
ple variance. In this case, we can assume a normal
distribution for the continuous relative measure of
treatment effect of arm k relative to arm 1 in trial i,
yik, with variance Vik, k � 2, such that

yik;N uik;Vik

� �
:

This is overwhelmingly the most common form of
meta-analysis, especially among frequentist meth-
ods. The case where the yik are log-odds ratios and
an inverse-variance weighting is applied, with vari-
ance based on the normal theory approximation,
remains a mainstay in applied meta-analytic studies.

The parameters of interest are the trial-specific
mean treatment effects uik. An identity link is used,
and since no trial-specific effects of the baseline or
control treatment can be estimated, the linear predic-
tor is reduced to uik5di;1k.

Standardized mean differences. There are a series
of standardized mean difference measures com-
monly used with psychological or neurological out-
come measures. These can be synthesized in exactly
the same way as any other treatment effect summary.
The idea is that the two scales are measuring essen-
tially the same quantity and that results from

differences can be placed on a common scale if the
mean difference between the two arms in each trial
is divided by its standard deviation. The best-known
standardized mean difference measures are Cohen’s
d47 and Hedges’s adjusted g.48

However, dividing estimates through by the sam-
ple standard deviation introduces additional hetero-
geneity and distortion49 and produces results that
some find less interpretable.8 A procedure that would
produce more interpretable results would be to
divide all estimates from a given test instrument by
the standard deviation obtained in a representative
population sample, external to the trial.

Standardized mean differences are sometimes
used for noncontinuous outcomes. However, this is
not recommended; use of the appropriate GLM is
likely to reduce heterogeneity.39

Ordered Categorical Data: Multinomial Likelihood
and Probit Link (Appendix: Example 6)

In some applications, the data generated by the trial
may be continuous but the outcome measure catego-
rized, using one or more predefined cutoffs. Examples
include the PASI (Psoriasis Area Severity Index) and
the ACR scale (American College of Rheumatology),
where it is common to report the percentage of patients
who have improved by more than certain benchmark
relative amounts. Thus, ACR-20 represents the pro-
portion of patients who have improved by at least
20% on the ACR scale. Trials may report ACR-20,
ACR-50, and ACR-70 or only one or two of these end-
points. A coherent model that makes efficient use of
such data is obtained by assuming that the treatment
effect is the same regardless of the cutoff.

Trials report rikj, the number of patients in arm k of
trial i belonging to different, mutually exclusive cate-
gories j = 1, 2, . . . J, where these categories represent
the different thresholds (e.g., 20%, 50%, or 70%
improvement), on a common underlying continuous
scale. The responses for each arm k of trial i in cate-
gory j will follow a multinomial distribution as
defined in equation 6, and the parameters of interest
are the probabilities, pikj, that a patient in arm k of tri-
al i belongs to category j. We use the probit link func-
tion, the inverse of the normal cumulative
distribution function F, to map pikj onto the real
line (Table 2). The model is written as

uikj5F�1ðpikjÞ5mij1di;1kIfk6¼1g:

The pooled effect of taking the experimental treat-
ment instead of the control is to change the probit
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score (or Z score) of the control arm, by di,1k standard
deviations.

The model assumes that there is an underlying
continuous variable that has been categorized by
specifying different cutoffs, zij, which correspond to
the point at which an individual moves from one cat-
egory to the next in trial i. Several options are avail-
able regarding the relationship between outcomes
within each arm. Rewriting the model as

pikj5Fðmi1zij1di;1kIfk6¼1gÞ;

we can consider the terms zij as the differences on the
standard normal scale between the response to cate-
gory j and the response to category j-1 in all the arms
of trial i. One option is to assume a ‘‘fixed effect’’
zij = zj for each of the j-1 categories over all trials i or
a ‘‘random effect’’ in which the trial-specific terms
are drawn from a distribution but are the same for
each arm within a trial, taking care to ensure that the
zj are increasing with category (i.e., are ordered).
Choice of model can be made on the basis of DIC.
Unless the response probabilities are very extreme,
the probit model will be indistinguishable from the
logit model in terms of model fit or DIC. Choice of
link function can be based on the data generating pro-
cess and on the interpretability of the results.

Other Link Functions and Shared Parameter Mod-
els (Appendix: Example 8)

Risk differences and relative risks are usually mod-
eled by using the difference-based methods described
previously. However, an arm-based analysis can be
performed with a binomial likelihood.50

The WinBUGS platform makes it particularly easy
to implement different GLMs that include a ‘‘shared
parameter.’’ For example, some trials might report
time at risk and number of events, while others report
only the hazard ratios.

Extension to NMA (Appendix: Examples 3–8)

We now show how the core GLMs for pairwise
meta-analysis are immediately applicable to indirect
comparisons, multiarm trials, and NMA, without fur-
ther extension.

We have defined a set of M trials over which the
study-specific treatment effects of treatment 2 com-
pared to treatment 1, di,12, were exchangeable with
mean d12 and variance s2

12. We now suppose that,
within the same set of trials (i.e., trials relevant to
the same research question), comparisons of treat-
ments 1 and 3 are also made. To carry out a pairwise
RE meta-analysis of treatment 1 v. 3, we would now

assume that the study-specific treatment effects of
treatment 3 compared to treatment 1, di,13, are also
exchangeable such that di;13;N d13;s

2
13

� �
. It follows

from the transitivity relation, di;235di;13 � di;12, that
the study-specific treatment effects of treatment 3
compared to 2, di,23, are also exchangeable51:

di;23;N d23;s
2
23

� �
:

It can further be shown that this implies

d235d13 � d12 ð9Þ

and

s2
235s2

121s2
13 � 2r

ð1Þ
23 s12s13;

where r
ð1Þ
23 represents the correlation between the rel-

ative effects of treatment 3 compared to treatment 1
and the relative effect of treatment 2 compared to
treatment 1 within a trial.51 For simplicity, we
assume equal variances in all subsequent methods
so that s2

125s2
135s2

235s2, which implies that the cor-
relation between any two treatment contrasts in
a multiarm trial is 0.5.17 For heterogeneous variance
models, see Lu and Ades.51

The exchangeability assumptions regarding the
treatment effects di;12 and di;13 make it possible to
derive indirect comparisons of treatments 3 v. 2,
from trials of 1 v. 2 and 1 v. 3, and also allows us to
include trials of treatments 2 v. 3 in a coherent syn-
thesis with the 1 v. 2 and 1 v. 3 trials.

Note the relationship between the standard sump-
tions of pairwise meta-analysis and those required
for NMA. For an RE pairwise meta-analysis, we
need to assume exchangeability of the effects di;12

over the 1 v. 2 trials and also exchangeability of the
effects di;13 over the 1 v. 3 trials. For NMA, we must
assume the exchangeability of both treatment effects
over both 1 v. 2 and 1 v. 3 trials. The theory extends
readily to additional treatments where, in each case,
we must assume the exchangeability of the d’s across
the entire set of trials. Then the within-trial transi-
tivity relation is enough to imply the exchangeabil-
ity of all the treatment effects di;XY and the
consistency equations19:

d235d13 � d12

d245d14 � d12

..

.

dðs�1Þ;s5d1s � d1;ðs�1Þ

are also therefore implied, where s . 2 is the number
of treatments being compared. These assumptions are
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required by indirect comparisons and NMA, but
given that we are already assuming that all trials are
relevant to the same research question, they are not
additional assumptions.

While consistency of the treatment effects must
hold for a given patient population, inconsistency
in the evidence can be created by trial-level effect
modifiers. Evidence consistency needs to be checked
in all networks.35

Now that several treatments are being compared,
the notation needs to be clarified. The trial-specific
treatment effects of the treatment in arm k, relative
to the treatment in arm 1, are drawn from a common
RE distribution:

di;1k;Nðdti1 ;tik
;s2Þ;

where dti1;tik
represents the mean effect of the treat-

ment in arm k in trial i, tik, compared to the treatment
in arm 1 of trial i, ti1, and s2 represents the between-
trial variability in treatment effects (heterogeneity).
For trials that compare treatments 1 and 2,
dti1;tik

5d12, for 2 v. 3 trials, dti1;tik
5d23, and so on.

The pooled treatment effect of treatment 3 compared
to treatment 2, d23, is obtained from equation 9.

Incorporating Multiarm Trials

Suppose that we have a number of trials with more
than two arms (multiarm trials) involving the treat-
ments of interest. Among commonly suggested strat-
agems for synthesis are (1) combining all active arms
into one, (2) splitting the control group between all
relevant experimental groups, and (3) ignoring all
but two of the trial arms,8 but none of these are
satisfactory.

Based on the same exchangeability assumptions
above, a single multiarm trial will estimate a vector
of correlated RE di, so a three-arm trial will produce
two RE and a four-arm trial, three. Assuming, as
before, homogeneous between-trial variance, s2, we
have

di5

di;12

..

.

di;1ai

0B@
1CA;Nai�1

dti1ti2

..

.

dti1;tiai

0B@
1CA; s2 s2=2 . . . s2=2

..

. ..
. . .

. ..
.

s2=2 s2=2 � � � s2

0B@
1CA

0B@
1CA;
ð10Þ

where di is the vector of RE, which follows a
multivariate normal distribution; ai represents the
number of arms in trial i (ai = 2, 3, . . . ); and
dti1tik

5d1;tik
� d1;ti1

. Equivalently, the conditional

univariate distributions for the random effect of arm
k . 2, given all arms from 2 to k – 1, are as follows52:

di;1kj
di;12

..

.

di;1ðk�1Þ

0B@
1CA;N

 
d1;tik

� d1;ti1

� �
1

1

k

Xk�1

j51

di;1j � d1;tij
� d1;ti1

� �� 	
;

k

2ðk� 1Þs
2

!
: ð11Þ

Either the multivariate distribution in equation 10
or the conditional distributions in equation 11 must
be used to estimate the RE for each multiarm study
so that the between-arm correlations are taken into
account.

This formulation provides another interpretation
of the exchangeability assumptions. We may con-
sider a connected network of M trials involving s
treatments to originate from M s-arm trials but that
some of the arms are missing at random. (Note: Miss-
ing at random does not mean that the choice of arms
is random but that the missingness of arms is unre-
lated to the efficacy of the treatment.)

The WinBUGS code provided in the appendix is
based on equation 11. It therefore exactly instantiates
the theory behind NMA that relates it to pairwise
meta-analysis. The code provided will analyze pair-
wise meta-analysis, indirect comparisons, and NMA
with and without multiarm trials without distinction.

When results from multiarm trials are presented as
(continuous) treatment differences relative to the
control arm (arm 1), a correlation between the treat-
ment differences is induced, since all differences
are taken relative to the same control arm. Unlike
the correlations between the relative effect para-
meters, this correlation is inherent in the data and
so requires an additional adjustment to the
likelihood.25,53

DISCUSSION

We have presented a single unified account for evi-
dence synthesis of aggregate data from randomized
controlled trials. To cover the variety of outcomes
that are reported and the range of data transforma-
tions required to obtain approximate linearity, we
have set this within the familiar framework of GLM.
This leads to a modular approach: different likeli-
hoods and link functions may be employed, but the
‘‘synthesis’’ operation, which occurs at the level of
the linear predictor, takes the exact same form in
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every case. Furthermore, the linear predictor is
a regression model with K-1 treatment effect parame-
ters for any K treatment network, offering a single
model for pairwise meta-analysis, indirect compari-
sons, NMA, and synthesis of multiarm trials in any
combination. This has all been presented in a Bayes-
ian MCMC context and supported by code for Win-
BUGS that allows us to take full advantage of the
modularity implied by GLMs.

The conceptual and practical advantages of
Bayesian MCMC in the context of probabilistic deci-
sion making are well known,54–57 although alterna-
tive software can be used.25 However, there are
a series of technical issues that need careful atten-
tion, including convergence, Monte Carlo error,
and parameterization.25 Two particular issues that
always deserve care are zero cells and choice of prior
distributions. Generally, no special precautions
are needed for zero cells, but in sparse data sets,
they may result in instability. One solution is to
put informative priors on the between-trial variance
in RE models, although this may not always suf-
fice.25 We have recommended vague uniform priors
for the heterogeneity standard deviation, but with
sparse data this may result in clinically unrealistic
posterior distributions for between-study variation
and treatment effects. One option is to formulate
priors based on clinical opinion or on other meta-
analyses with similar outcomes.17,25 However, it
may be preferable to use informative priors,
perhaps tailored to particular outcomes and disease
areas, based on studies of many hundreds of meta-
analyses,58 and this is currently an active research
area.
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