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Simple Summary: Solvent-Accessible Surface Area (SASA) as the one dimensional structure property
of the protein considers as the measuring the exposure of an amino acid residue to the solvent in one
protein. It is an important structural property as the active sites of proteins are mostly located on the
protein surfaces. The aim of this paper is to provide the clear information on different Amycolatopsis
eburnea lipases based on the SASA patterns. This information could help in recognizing the structural
stability and conformation as well as precise clustering them for revealing lipase evolution.

Abstract: The wealth of biological databases provides a valuable asset to understand evolution at a
molecular level. This research presents the machine learning approach, an unsupervised agglom-
erative hierarchical clustering analysis of invariant solvent accessible surface areas and conserved
structural features of Amycolatopsis eburnea lipases to exploit the enzyme stability and evolution.
Amycolatopsis eburnea lipase sequences were retrieved from biological database. Six structural con-
served regions and their residues were identified. Total Solvent Accessible Surface Area (SASA) and
structural conserved-SASA with unsupervised agglomerative hierarchical algorithm were clustered
lipases in three distinct groups (99/96%). The minimum SASA of nucleus residues was related to
Lipase-4. It is clearly shown that the overall side chain of SASA was higher than the backbone in all
enzymes. The SASA pattern of conserved regions clearly showed the evolutionary conservation areas
that stabilized Amycolatopsis eburnea lipase structures. This research can bring new insight in protein
design based on structurally conserved SASA in lipases with the help of a machine learning approach.

Keywords: Amycolatopsis eburnea; conserved accessible solvent area; enzyme; lipase; protein stability;
structural biology analysis

1. Introduction

Hydrophobic forces in proteins play a vital role in the stability, folding and protein–
protein interaction [1,2]. The residues comprised in hydrophobic areas, their interactions and
the form packing could be useful for studying the protein structure and protein-substrate
binding [3,4]. The residues involved in core stability of proteins are hydrophobic residues.
Therefore, finding protein and enzyme Solvent Accessible Surface Area (SASA) [5,6] and hy-
drophobic areas of total and conserved residues and clustering them could provide unique
features in comparing the proteins and enzymes [7]. Furthermore, these residues, their
interaction and classification could extrapolate the protein contact map by emphasizing the
role of each specific residue in protein stability and conformation [8]. This paper provides
insight on SASA patterns in Amycolatopsis eburnea lipases and clustering of conserved
structural-SASA with the help of the unsupervised agglomerative hierarchical method
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(machine learning approach) toward identification of hot spot structures for protein stability
and conformation. The results will help in the design and engineering of new enzymes.

Glycerol ester hydrolase or triacylglycerol acylhydrolase is (E.C.3.1.1.3), a fat split-
ting enzyme which is also called Lipase [9]. The products of the enzymatic reaction (as a
catalyzer) (hydrolyses triglycerides) are glycerol and fatty acids. Applications of lipase in-
clude food, dairy, flavor, pharmaceuticals, biofuels, leather, cosmetics, detergent, and many
chemical industries [10–12]. This is the third most significant enzyme in the industry after
proteases and amylases [13]. This enzyme can hydrolyze triglycerides in both aqueous and
non-aqueous media [14,15]. It should be mentioned here that lipase substrates are insoluble
in water. Lipase loses its functionality in different organic solvents [16]. Structurally, lipases
contain a/b hydrolase folds [17]. Triad of Ser, Asp (Glu) and His residues in their active
site were considered as their specific structural characterization [18,19].

It is clearly established that around seventy medicinal and agricultural microbial
products are from the Actinobacteria phylum. The famous ones are different antibiotics
produced by the Amycolatopsis genus [20,21]. This genus is very remarkable in producing
antibiotics such as balhimycin, vancomycin, as well as immuno-suppressants, anti-cancer
agents and many other secondary metabolites [22–25]. Their significant position in the
medicine and agriculture market is due to the diversity of vital compounds and the amount
of production [21]. This substantial position, besides the innumerable structure in their com-
pound and eventually their genomes, provides a great prospect for researchers to discover
valuable insight for future applications. Therefore, Amycolatopsis species require study to
find the details of structure and diversity of important enzymes such as lipases [26–30]. It
was recently reported that Amycolatopsis eburnea, one of the species in the Amycolatopsis
genus, has a symbiotic relationship with mycorrhizal fungi; however, the details of this
mechanism need to be investigated.

Computational characterizations of enzymes with the help of machine learning algo-
rithms offer a great opportunity to speed up the systematic classifications [31,32]. They
can help routine scientific proposals to engineer better enzymes with superior activity.
Additionally, computational analysis offers a clearer way to understand the mechanisms of
each reaction from a structural point of view. Lipase enzymes with very wide applications
can get much more benefit from these computational approaches [33]. Moreover, design-
ing the most efficient experiments in the lab requires clear computational and structural
information [31,33].

The lipases with microbial origin can be isolated from different cellular compartments,
either extracellular, peripheral protein or intracellular enzymes [34–36]. It is accepted
that structural features of enzymes are the key indicators for protein evolution despite
the sequence differences. The folding and stability of proteins in general and enzymes in
particular are highly dependent to their structure and environment. The structural plasticity
of enzymes in different environments is the key to functionality efficiency. As no significant
sequence similarity was observed in the conserved folding in many enzymes, the regions
with particular structure that were conserved in the enzyme would play a critical role for
plasticity and eventually functionality. On the other hand, not all residues of enzymes were
involved in determination of folding and stability. For detecting the sequence necessity for
particular fold and stability and their role in enzyme evolution, Solvent Accessible Surface
Area was applied. This feature is based on the fact that hydrophobic residues have less/no
SASA [37].

The lack of information on structural stability of lipase from the Amycolatopsis eburnea
with their inevitable place in industry is noticeable. Therefore, the aim of this research
paper is to provide insight and clear information on different Amycolatopsis eburnea li-
pases based on the SASA. This information can help in recognizing the lipases structural
stability and conformation. The clear information of each amino acid in the structure
could help in designing the new lipase enzyme with better functionality. Furthermore,
this precise clustering of specific amino acids can demystify the lipase evolution and even
enzyme functionality.
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2. Methods

The sequence data were retrieved from the National Center for Biotechnology Infor-
mation (NCBI) database for Amycolatopsis eburnea lipases. The physiochemical parame-
ters and 3-D homology models were calculated with the help of bioinformatics-server
(https://www.expasy.org/) (accessed on 1 February 2020) [38]. Furthermore, for confirma-
tion and comparison of 3D-models, the deep learning de novo modeling was performed for
all lipases. In this method, after generating the multiple sequence alignment, the prediction
for distance and orientation distribution was done, followed by coarse grained structure
modeling by energy minimization, full atom structure refinement and finally generating
the models. The percentage of similarity and structural identity were also calculated for
all models [39]. The phylogenetic relationship of sequences were presented with MegaX
software [40]. The secondary structure predictions were performed with the help of Chou
& Fasman secondary structure prediction [41]. The clustering of SASA determined with
the hierarchical clustering method that groups together the more close or similar SASA.
In this paper, the agglomerative approach which the bottom-up of each SASA data (as
the observation) was considered as one cluster and merged with the closer cluster as one
moved up the hierarchy. In order to calculate the distance between the SASA (proteins),
Euclidean distance and Ward method were applied.

Solvent Accessible Surface Area (SASA)

The solvent accessible surface area of each enzyme was calculated according to
Fraczkiewicz and Braun [42]. The Cartesian coordinates of protein atoms stored in PDB
models were used to calculate the SASA for each residue [43]. The solvent associable
surface area of residues was calculated for two environments: the nucleus and surface for
each enzyme. The area contacts between solvent and the atoms as the points located on a
sphere interaction radius surrounding them were identified as SASA. For this calculation,
the interaction is the coverage of van der Waals radius of each atom type, plus the radius of
a water molecule. The individual protein chain and the similar coverage of each enzymes
area were calculated and compared. For categorizing the residues of proteins as nucleus or
surface, the side-chain solvent surface accessibility is divided by the specific accessibility
value for each residue. The specific accessibility value is the average solvent accessible
surface area in the tripeptide Gly-X-Gly in an ensemble of 30 random conformations. Thus,
residues with ratio value more than 50% were considered as in surface environment and
alternatively the residues with less than 20% marked as nucleus or core environment.

Total average SASA =
Nucleus SASA + Sur f ace SASA

Total amino acids
Structurally conserved regions (SCR) for each enzyme were identified with the help

of Chimera with defaults parameters [44] and solvent accessible surface areas of each
SCR were calculated as mentioned above. The SCR-SASA is herein considered as the new
conserved fingerprint descriptor for Amycolatopsis eburnea lipases. The cluster analyses of
SASA patterns of lipases were performed with unsupervised agglomerative hierarchical
clustering method as a machine learning approach with the help of python 3.9 programming
language (http://www.python.org) (accessed on 21 August 2021).

3. Results

Physiochemical features of Amycolatopsis eburnea lipases showed in Table 1. The
numbers of amino acids for lipases were in the range of 252 to 436. The average molecular
weight was around 38 kDa. The minimum and maximum of MW were 24 kDa and 44 kDa,
respectively. The negatively charged amino acid were in the range of 19 to 47. However,
the positively charged amino acids were lower than them. The pI of lipases was more
than 4.52 with a maximum of 6.23. This showed that all of them were in the range of
acidic pH condition. Therefore, we need to find out if these enzymes performed their
function in acidic environments. Furthermore, buffer preparation for purifying them

https://www.expasy.org/
http://www.python.org
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should receive great attention with these value indexes. The aliphatic indexes (thermal
stability of enzymes) were in the range of 73 to 97. The hydrophobicity of lipases presented
with the Grand Average of hydropathicity (GRAVY) values in the range of −0.110 to 0.280.
The average of GRAVY was 0.7.

Table 1. Physiochemical and SASA features of Amycolatopsis eburnea lipases.

Lipase NAA MW pI Asp + Glu Arg + Lys AI GRAVY TPS TAS TSA SCS BBS

1 388 40,097.38 5.75 32 28 85.90 0.096 4790.13 9644.99 14,435.12 1476 1187
2 394 41,410.78 5.29 35 29 80.84 −0.028 5317.97 9602.71 14,920.67 1488 1247
3 436 44,666.35 5.27 34 27 87.82 0.120 5554.14 10,311.73 15,865.87 1582 1279
4 404 42,150.78 5.73 38 31 90.97 0.111 5406.49 10,157.69 15,564.18 1526 1286
5 288 29,214.18 6.13 19 16 89.90 0.280 3386.73 7358.97 10,745.70 1003 793
6 252 24,997.27 4.52 24 12 97.26 0.222 3612.33 6175.37 9787.69 874 666
7 419 44,089.24 6.23 29 26 73.89 −0.097 4917.24 9462.03 14,379.28 1310 867
8 380 40,419.88 5.96 47 39 95.87 −0.110 7165.27 12,160.81 19,326.07 1719 1104

Number of amino acids (NAA), molecular weight (MW), isoelectric point (pI), total number of negatively charged
residues (Asp + Glu), total number of positively charged residues (Arg + Lys), aliphatic index (AI), grand average
of hydropathicity (GRAVY), Total–Polar SASA (TPS), Total Apolar SASA (TAS), Total SASA (TSA), Side Chain
SASA (SCS), BackBone SASA (BBS) of lipases (SASA = Å2).

The three-dimensional structure of the enzymes was modeled with homology model-
ing with the help of Swiss institute of bioinformatics-server (Figure 1). All models were
then evaluated for stereo chemical quality with Ramachandran Map (Ramachandran and
Sasisekharan 1968), as well as qmean for model confirmation (Tables 2 and 3). Amycolatop-
sis eburnea lipase sequences were again modeled with deep learning de novo modeling
as described by Yang and coworkers [39]. The results (models) provided by de novo
modeling were also confirmed with Ramachandran and qmean methods. The quality of
models significantly improved (Table 3). Ramachandran map showed that less than 1.92%
(A0A3R9DV90) of residues were in the outlier section; thus, the models are fully accept-
able. The favorite region residues were more than 91% which showed the high quality
of modeling in comparison to homology modeling performed earlier. The information
provided confirmed the models for further analysis. All lipase models were homodimer.
Ramachandran results showed that maximum residues in the favored region were 96.85%
(A0A3R9EQB2). The indexes for qmean were more than −1.98 and considered acceptable
for all models (de novo).
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Figure 1. Lipase topology diagram with the strands indicated by arrow and helices by cylinder
(A) Surface model representation of Amycolatopsis eburnea lipase 1 alone. (i) total SASA (ii) and
Structurally conserved SASA in red (iii) (B) Amycolatopsis eburnea lipases modelled with deep learning
de novo (C) (structurally conserved SASA in red, ribbon representation of lipases structures in blue).

Table 2. Lipase Models properties were predicated for homology modeling and deep learning de
novo. The properties for deep learning de novo are shown with *.

Lipase Entry Oligo
State Ligand GMQE QMEAN Cβ Solvation Torsion Seq

Identity
Seq

Similarity Coverage Range QSQE Template

1 A0A3R9KNJ9 Monomer None 0.64 −4.02
0.69 *

−1.96
−0.48 *

−1.46
0.06 *

−3.32
0.82 * 29.49% 0.35 0.92 25–388 0.00 2veo.1.A

2 A0A3R9DUJ4 Monomer None 0.63 −3.77
0.20 *

−1.98
−0.73 *

−0.85
−0.53 *

−3.27
0.53 * 27.22% 0.34 0.91 29–394 0.16 3zpx.1.A

3 A0A427T6P4 Monomer None 0.56 −4.02
−0.06 *

−3.87
−2.60 *

−1.01
0.32 *

−3.14
0.36 * 26.60% 0.33 0.86 28–422 0.12 3zpx.1.A

4 A0A3R9KMI2 Monomer None 0.63 −3.74
1.04 *

−3.15
−1.18 *

−1.82
0.26 *

−2.73
1.25 * 30.41% 0.35 0.90 22–403 0.00 3guu.1.A

5 A0A3R9EQB2 Monomer None 0.66 −2.24
0.84 *

−1.75
−1.67 *

−2.49
−0.52 *

−1.12
1.46 * 44.80% 0.40 0.87 33–282 0.00 5h6g.1.A

6 A0A3R9F8T1 Monomer None 0.50 −2.54
1.63 *

−2.32
−1.73 *

−1.60
−0.69 *

−1.48
2.34 * 26.39% 0.32 0.86 34–251 0.00 5h6b.1.A

7 A0A3R9DV90 Monomer None 0.31 −5.78
−1.98 *

−3.28
−2.13 *

−3.35
−3.36 *

−4.24
−0.58 * 20.95% 0.31 0.60 99–390 0.00 4bvj.1.A

8 A0A427T2R3 Monomer None 0.59 −4.36
1.34 *

−3.28
−0.91 *

−2.69
−0.38 *

−3.03
1.74 * 32.33% 0.35 0.87 4–378 0.00 3skv.1.A
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Table 3. Ramachandran plot information for the 3-D structures of lipases (HM = Homology Modeling,
DM = Deep learning de novo Modeling).

Lipase Sequences
Number of Residues in Favored

Region
Number of Residues in Outlier

Region

HM (%) DM (%) HM (%) DM (%)

1 A0A3R9KNJ9 90.61 95.85 3.31 1.30
2 A0A3R9DUJ4 90.93 96.68 2.47 0.77
3 A0A427T6P4 89.82 96.77 2.80 0.92
4 A0A3R9KMI2 90.79 96.02 2.89 0.25
5 A0A3R9EQB2 96.77 96.85 0.40 0.00
6 A0A3R9F8T1 93.06 98.40 2.31 0.40
7 A0A3R9DV90 88.28 91.13 4.48 1.92
8 A0A427T2R3 87.40 96.03 4.29 0.00

The Amycolatopsis eburnea lipases showed less frequency of His, Met and Cys and Trp
compared to other residues (Table 4). The secondary structure in lipases is shown in Table 5.
The percentages of helices in the structure of lipases were higher than beta sheets and turn
loops. At least 53.7% (A0A3R9DV90) of the lipases structure was helices.

Table 4. Amino acid compositions of the Amycolatopsis eburnea lipases.

Lipase Entry Length Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

1 A0A3R9KNJ9 388 62 21 4 22 4 10 10 48 5 11 37 7 2 12 33 21 26 8 16 29
2 A0A3R9DUJ4 394 58 13 10 24 4 18 11 39 4 9 34 16 4 16 30 20 29 5 18 32
3 A0A427T6P4 436 65 18 13 22 2 9 12 50 5 14 40 9 5 11 33 33 34 5 19 37
4 A0A3R9KMI2 404 69 20 8 20 4 11 18 39 9 14 38 11 3 14 28 24 21 3 17 33
5 A0A3R9EQB2 288 45 8 7 14 6 7 5 37 7 9 28 8 3 9 17 18 22 3 11 24
6 A0A3R9F8T1 252 44 9 3 10 4 13 14 31 3 4 26 3 2 0 20 11 20 3 3 29
7 A0A3R9DV90 419 51 19 13 20 4 20 9 52 8 13 31 7 7 15 25 39 27 10 19 30
8 A0A427T2R3 380 54 34 8 26 2 6 21 38 14 10 48 5 2 11 30 8 26 3 5 29

Table 5. The secondary structure of Amycolatopsis eburnea lipases sequences.

Lipase Entry Helix (%) Sheet (%) Turn (%)

1 A0A3R9KNJ9 60.8 33.0 13.1
2 A0A3R9DUJ4 62.7 37.8 13.7
3 A0A427T6P4 51.4 34.4 11.0
4 A0A3R9KMI2 68.3 50.5 12.4
5 A0A3R9EQB2 56.2 60.8 9.7
6 A0A3R9F8T1 59.9 51.6 10.7
7 A0A3R9DV90 53.7 37.7 11.5
8 A0A427T2R3 67.9 35.8 10.3

The total SASA of the enzymes was applied to cluster the Amycolatopsis eburnea lipases.
The overall similarity of lipases was 99.96%. The dendogram result showed lipase 4 and
lipase 3, with lipase 2 had more than 99.99% similarity. This similarity percentage was
also observed with lipase 6 and lipase 8. However, the similarity of these two mentioned
clusters was around 99.94%. Three distinct clusters were observed and categorized the
lipases overall. A clear identification of SASA clustering is one of the great advantages of
this grouping even in lipases with very high sequence similarity (Figures 2 and 3).
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The total solvent accessible surface area and average of solvent accessible for two
environments (nucleus and surface) in each enzyme is shown in Table 6. The maximum
SASA of nucleus residues was related to lipase 4; however, the maximum SASA of surface
residues was related to lipase 8. The average solvent accessibility areas of enzymes were
between 39.65 to 51.53 Å2. The overall side chain of solvent accessibility areas both in the
nucleus and surface environments were higher than backbones. This trend was observed
in individual enzymes as well. The results showed that lipase 4 had more of a chance to
interact with solvent. Furthermore, results showed more accessibility for side chains of the
enzymes to interact with solvent and eventually substrate compared to enzyme backbones.

Hierarchical clustering of structurally conserved regions-SASA of Amycolatopsis eburnea
lipases is shown in Figure 4. Lipases 1, lipase 2, lipase 3, and lipase 4 showed the similarity
approximately the same as the lipase 5, lipase 6, lipase 7, and lipase 8. Lipase 1 and lipase
2 with the minimum dissimilarity showed the more conserved SASA compared to other
lipases. On the other hand, the lipase 8 and lipase 7 are totally different compared to lipase
3 or lipase 4. Overall, dendogram showed more clear similarity features compared to
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the whole enzyme SASA. The structurally conserved regions-SASA could provide more
flexibility to select the lipase for specific substrate based on the contact area to the solvent.

Table 6. Nucleus and Surface solvent accessible surface area (SASA) and average of total solvent
accessible area for two environments (nucleus and surface). The data presented in angstrom (Å2).

Lipase SASA Total Apolar Backbone Sidechain Total Ave SASA

1
nucleus 1612.05 1105.63 592.96 1019.10

39.65surface 9087.30 6239.72 1796.53 7290.70

2
nucleus 1535.62 975.20 514.03 1021.70

40.76surface 9201.62 5956.73 1673.27 7528.28

3
nucleus 1513.82 889.97 570.11 943.72

40.16surface 10,211.71 6650.06 2225.90 7985.83

4
nucleus 1897.73 1227.46 601.65 1295.97

40.74surface 10,134.94 6760.98 1846.70 8288.26

5
nucleus 839.39 498.14 390.68 448.79

42.98surface 7280.09 5114.07 1544.76 5735.31

6
nucleus 941.66 630.22 411.88 529.76

44.89surface 6561.57 4139.78 1521.13 5040.43

7
nucleus 1295.47 805.00 517.81 777.68

49.24surface 9195.57 5912.66 2367.46 6828.11

8
nucleus 1686.72 1006.49 686.57 1000.18

51.53surface 13,554.21 8567.14 2587.99 10,966.29
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The structurally conserved regions (Figure 5) showed the correlation in the SASA
(Table 7). Lipase 5 and lipase 6 had the highest correlation, followed by lipase 1 and lipase
2; however, the residues involving the structure were not the same. The lowest SASA
correlation was related to lipase 5 and lipase 3, followed by lipase 4 and lipase 7. The SASA
correlation of different structurally conserved regions showed the overall high correlation
between Amycolatopsis eburnea lipases. The conserved regions SASA might indicate the
minimum SASA which was essential for stability of the protein and folding.
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Figure 5. The proteins sequences were aligned using Chimera with defaults parameters. Structurally
conserved regions are shown in blue.
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Table 7. Correlation matrix of structurally conserved regions-SASA.

Correlation Matrix Lipase 1 Lipase 2 Lipase 3 Lipase 4 Lipase 5 Lipase 6 Lipase 7 Lipase 8

Lipase 1 1.00
Lipase 2 0.91 1.00
Lipase 3 0.54 0.72 1.00
Lipase 4 0.65 0.63 0.36 1.00
Lipase 5 0.64 0.78 0.88 0.33 1.00
Lipase 6 0.55 0.69 0.85 0.48 0.92 1.00
Lipase 7 0.60 0.72 0.60 0.36 0.80 0.83 1.00
Lipase 8 0.75 0.74 0.50 0.55 0.78 0.78 0.81 1.00

The similarity of SASA in conserved regions could shed light on the conserved and
preferences of residues for the stability of Amycolatopsis eburnea lipases. It was observed that
GLY and Val are the most frequent residues in conserved regions with 28 and 27 repeats.
Different residues were shown in Figure 6. Three residues of CYS, MET and TRP were not
observed in the structurally conserved region of Amycolatopsis eburnea lipases.
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4. Discussion

There is an increased concern for lipase as the third most important enzyme in the
market for hydrolyzing triglycerides in different media [14,19,45–48]. The enzyme markets
are food, dairy, flavor, detergent, pharmaceuticals, biofuels and cosmetics industries. The
demand of more than 1000 tons of lipases for the detergent industry has been reported [49,50].

The large applications of Lipases in many fields from food to medicine are due to their
functionality to work in different media; these diverse applications are the reason for a
huge demand in the market [51].

Different sources of lipases were reported in the past; however, the bacterial sources
are more suitable and get the better chance for industrial applications [52]. Applications
of lipase from microbial origin, as well as functionality in various environments, provide
the ease of lipase usage in many industries. The significant part of lipase production is
to introduce significant species or strain of the microbe. Thus, microorganisms play a
dynamic role in lipase production. The bacterial sources have a better chance for industrial
lipase production [53,54]. High GC-content bacteria within the family Pseudonocardiaceae
(Amycolatopsis eburnea) provided a noble prospect to work on for understanding the lipase
production. This genus (Amycolatopsis) of bacteria showed many antibiotic productions in
different conditions [55,56]. Therefore, providing the lipase structural investigations beside
their antibiotic properties can help in introducing them for industrial application more
easily than others [57].
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Recently published genetic diversity of lipase in bacteria showed great differences in
lipase characterizations. However, they revealed a conserved sequence which contained
penta-peptide (Gly-X-Ser-X-Gly) [52]. Seven groups (Group A-G) of bacterial lipases
classified. The computational analysis of new enzymes from bacteria such as Amycolatopsis
eburnea can provide clearer information for lipase classification and even help to introduce
more clear understanding of lipase evolution. As lipases are water soluble and their
substrates are mostly insoluble, their structures should dictate the specific functional
activity [16]. Functional activity of this ubiquitous enzyme is very efficient in energy
consuming point of view and environmental friendly in comparison to other catalyzers [58].

We should also mention that lipases are substrate specific, as well as structurally
chemo-, region- and stereo- specific. Three most recognized groups of lipases can mention
here as non-specific lipases, 1, 3-specific lipases and acid-specific lipases based on their
catalyzing activity on triglycerides substrate in different systems. The preferred lipases for
industry should have a low reaction time and remain resistant to various pH beside the
activity in non-aqueous media [59]. The priority and preference of lipases with microbial
origin beside the ease of their production with cheap growth media provide the better
opportunity to work on their genetic manipulation towards achieving the ideal lipases [60].

In our research, the role of interacting hydrophobic residues in conserved structural
regions was clearly presented. The lipases presented here clearly showed that they are
homologous and the structural homology features are recognizable based on their similarity
and phylogenetic dendongram. However, the need for finding structural similarity was
necessary to establish a common ancestry. This structural conservation presented here
clearly showed the surface plasticity in Amycolatopsis eburnea lipases. This structural
conservation contained GLY and Val with higher percentage residues that imposed the
stability and folding functionality to Amycolatopsis eburnea lipases. SASA features of these
regions also deduced the hydrophobic contact information from the hydrophobic residues
in lipase structures. The secondary structure length and loops in Amycolatopsis eburnea
lipases were exactly related and substantially conserved. The conserved SASA could be a
result of selective pressure on molecular conservation. Here, we identified 8 clusters, of
which their mean of the SASA were very close. These 6 conserved regions were great tools
for describing the stability and surface plasticity of lipases in different environments and
their substrate specificity [61–63].

The finding of the role of these residues in folding or function could even be clearly
answered as most of the amino acids in conserved regions are considered hydrophobic
residues to some extent. Therefore, they would act in stability and folding conservation
of lipases. This research could support the results and hypotheses in finding the specific
residues to develop the better enzyme with mutation approaches. Furthermore, it clearly
could help in sequence- structure correlation, role of individual residues in folding, stability
and function.

It is important to mention here that the results clearly showed that there were specific
structural constraints with specific residues SASA features conserved in Amycolatopsis
eburnea lipases. This pattern of SASA/hydrophobic positions was observed and clearly
conserved. The results showed the compensating amino acids residues that might occur
during evolution were conserved in SASA features. It should be noted that amino acids
mutation could be detected in conserved regions also. Thus, the only conserved feature in
the conserved structure was SASA and hydrophobic features. Then the results showed the
specific SASA conservation pattern to impose the native folding in homologous lipases from
Amycolatopsis eburnea. Therefore, the significant correlation between sequences, conserved
structural regions and SASA features was observed. This information could extend lipase
structural information and describe the algorithms to predict SASA protein contact map
in future.

Microbial lipase production needs to introduce better microbes and optimize more
suitable environmental conditions. The lipase structure identification is the essential part
of the system to find the better source of microbe for their production. Therefore, microbial
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sources can play the vital role in this selection. Traditionally many microbial sources
selected for industrial production based on their amount of lipase production. However,
the functionality of lipases and their efficiency can improve significantly by finding the
better structure [17,50,64].

These days with the help of huge bioinformatics data in protein databases and compu-
tational analysis, finding the better lipase structure for industry is more feasible. On the
other hand, as the structure of enzyme was proved to be species specific therefore working
on lipases from specific species is more reasonable and practical. It should be mentioned
here that working on lipase structural analysis would be a great help in finding the evo-
lution of enzyme specially to find the essential residues to track the homology relation.
On the other hand, different environments could play substantial roles in functionality of
lipases. Soil usually provides the vital habitat for lipase microbe alone and in interaction
with plants and other biofilm. Thus, research on lipases with soil microbe origin such as
Amycolatopsis eburnea for industry and evolution purpose is inevitable [57].

Bacterial lipases with soil origin had shown huge diversity and variation in molecular
and biochemical characterization. However, the conserved structural area such as residues
related to active site (serine residue enclosed with conserved penta-peptide (Gly-X-Ser-X-
Gly)) was conserved in all lipases [52]. In order to cluster the lipases many enzyme features
and factors considered however the solvent accessibility of enzyme as the outstanding
factor always missed. Solvent accessibility has an important impact on enzyme stability
and substrate activity [65]. Even finding the hydrophobic contact area that is the opposite
of SASA can provide the shed light to find the stability factor in structural evolution. In
this study clearly showed the SASA of the lipases from Amycolatopsis eburnea had specific
conserved hydrophobic contact area. This feature robustly categorized the lipases in two
clusters. There was another report of lipases categorizing with other features that found
seven groups, however the SASA feature didn’t considered for categorizing [66].

Furthermore, designing the new lipase as well as new primer and probe could get
great help from finding the conserved SASA feature [64,67]. Purification of lipases as an
important factor in industry especially for mass production could gain the benefit with
conserved SASA feature too. Enzyme formulation for market and even wet lab experiments
could be more approachable with knowing the conserved SASA feature [66,68].

Lipase showed the molecular mass from 19 (Bacillus stratosphericus) to 70 kDa [69]
with activity in pH from 5 (Pseudomonas gessardii) to 10.8 (Enterococcus faecium) [70] and
temperature activity from 15 (Acinetobacter sp. XMZ (Zheng et al. 2011) to 80 ◦C (Janibacter
sp. R02) [71]. Our results showed that the range of molecular weight of Amycolatopsis
eburnea lipases was diverse and from 24 kDa to 44 kDa however the average conserved
SASA area of lipases is around 43 Å2.

It is important to mention that all modification of lipases from chemical modification
to immobilization and UV and gamma ray irradiations as well as amino acid modification
and mutagenesis need great investigate to find the effect of them on conserved SASA
of lipases [72,73]. The information provided here as the SASA of Amycolatopsis eburnea
lipases can apply as the great asset for precise engineering of lipases for agricultural and
industrial purposes.

The 3-D structures of lipases with α/β-hydrolase fold architecture provided here can
be an outstanding tool for protein modeling and engineering the lab experiments [74,75].
The hydrolyzing fold of this enzyme was assumed to be unrelated to specific residues,
however, with activity in diverse environment. As different residues are involved in
the structure folding of lipases, the structural conservation and their features need to
classify and investigate in more details to understand the mechanisms of lipase action. It is
noteworthy to mention that parallel β-sheet of eight strands play the great role in folding
structure of lipases [76].
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5. Conclusions

It is clearly shown that lipases from Amycolatopsis eburnea with great impact on agri-
cultural and industrial sectors have specific structural patterns. Therefore, for developing
and designing the new lipases the substantial insight on Amycolatopsis eburnea lipase struc-
ture, hotspots were presented with a machine learning approach. Structural landscapes of
lipases with specific conserved SASA features from Amycolatopsis eburnea showed the better
potential to be the model to design and develop synthetic lipases with an unsupervised
agglomerative hierarchical method. Finding the conserved SASA of Amycolatopsis eburnea
lipases showed a clear need for having the specific residues with specific SASA be in the
structure/sequence of the enzyme for its stability and conformation. This pattern in the
enzyme structure can help in the design of the synthetic lipase and even provide a great
asset to find the homology of this enzyme from an evolutionary point of view. Amycolatopsis
bacteria with symbiotic relationship with mycorrhiza can even be good examples for soil-,
bacteria- and fungi-plant interactions research, and the SASA patterns in the structure of
lipase enzymes can help to investigate and understand this symbiosis in future research.
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