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Abstract 20 

Characterization of protein complexes, i.e. sets of proteins assembling into a single larger 21 

physical entity, is important, as such assemblies play many essential roles in cells such as gene 22 

regulation. From networks of protein-protein interactions, potential protein complexes can be 23 

identified computationally through the application of community detection methods, which flag 24 

groups of entities interacting with each other in certain patterns. Most community detection 25 

algorithms tend to be unsupervised and assume that communities are dense network subgraphs, 26 

which is not always true, as protein complexes can exhibit diverse network topologies. The few 27 

existing supervised machine learning methods are serial and can potentially be improved in terms 28 

of accuracy and scalability by using better-suited machine learning models and parallel algorithms.  29 

Here, we present Super.Complex, a distributed, supervised AutoML-based pipeline for 30 

overlapping community detection in weighted networks. We also propose three new evaluation 31 

measures for the outstanding issue of comparing sets of learned and known communities 32 

satisfactorily. Super.Complex learns a community fitness function from known communities using 33 

an AutoML method and applies this fitness function to detect new communities. A heuristic local 34 

search algorithm finds maximally scoring communities, and a parallel implementation can be run 35 

on a computer cluster for scaling to large networks. On a yeast protein-interaction network, 36 

Super.Complex outperforms 6 other supervised and 4 unsupervised methods. Application of 37 

Super.Complex to a human protein-interaction network with ~8k nodes and ~60k edges yields 38 

1,028 protein complexes, with 234 complexes linked to SARS-CoV-2, the COVID-19 virus, with 39 

111 uncharacterized proteins present in 103 learned complexes. Super.Complex is generalizable 40 

with the ability to improve results by incorporating domain-specific features. Learned community 41 

characteristics can also be transferred from existing applications to detect communities in a new 42 

application with no known communities. Code and interactive visualizations of learned human 43 

protein complexes are freely available at: https://sites.google.com/view/supercomplex/super-44 

complex-v3-0.  45 

 46 

Keywords 47 

protein complex, overlapping community detection, supervised machine learning, protein-48 

interaction network, graph mining 49 

Introduction 50 

A protein complex is a group of proteins that interact with each other to perform a particular 51 

function in a cell, the basic biological unit of all living organisms. Some examples include the 52 

elaborate multiprotein complexes of mRNA transcription and elongation helping with gene 53 

regulation and key cytoskeletal protein complexes, such as microtubules with their trafficking 54 

proteins which help establish major structural elements of cells. Extensive biological experiments 55 

have investigated the physical interactions between proteins, and these have been modeled via 56 

weighted protein-protein interaction (PPI) networks, where a protein-protein edge weight 57 

corresponds to the strength of evidence for the protein-protein interaction. Disruption of protein-58 

protein interactions often leads to disease, therefore identifying a complete list of protein 59 

complexes allows us to better understand the association of protein and disease. All experimental 60 

protocols for detecting complexes (such as AP/MS, affinity purification with mass spectrometry, 61 

and CF/MS, co-fractionation with mass spectrometry) have a tendency to miss interactions (false 62 

negatives) and may also predict extra interactions (false positives). Proteins may also participate 63 
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in more than one complex, potentially blurring the boundaries of otherwise unrelated protein 64 

communities. Computational analysis of protein-protein interaction networks can therefore be very 65 

useful in identifying accurate protein complexes and will help augment and direct experimental 66 

methods.  67 

The weighted PPI network or graph G can be represented as pairs of nodes and edges (V, 68 

E), where the set of nodes or vertices V represents the proteins, and the set of weighted edges E 69 

represents the strengths of evidence for interactions between proteins. Any group of nodes and 70 

edges that can be characterized as a protein complex can be referred to as a community; community 71 

detection methods can be used in turn to identify protein complexes.  72 

A standard guideline for defining communities [1] is that a community should have more 73 

interactions or connectivity among the community than with the rest of the network. This can be 74 

modeled for example by the community fitness function in Equation 1, mapping a subgraph, C, 75 

i.e. a group of nodes and edges from the full graph, to a scalar value representing a score, where a 76 

higher score indicates more community resemblance. 77 

𝑓(𝐶)  =  𝛿𝑖𝑛𝑡 (𝐶)  −  𝛿𝑒𝑥𝑡 (𝐶)    (1) 78 

The intra-cluster density 𝛿𝑖𝑛𝑡 (𝐶) and inter-cluster density 𝛿𝑒𝑥𝑡 (𝐶) are given by 79 

  𝛿𝑖𝑛𝑡 (𝐶)   =
# 𝑖𝑛𝑡𝑟𝑎−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠

# 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
=  

𝑚𝑐

𝑛𝑐(𝑛𝑐−1)/2
 (2) 80 

𝛿𝑒𝑥𝑡 (𝐶)   =
# 𝑖𝑛𝑡𝑒𝑟−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠

# 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑡𝑒𝑟−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠
=  

# 𝑖𝑛𝑡𝑒𝑟−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑑𝑔𝑒𝑠

𝑛𝑐(𝑛−𝑛𝑐)
 (3) 81 

Here, 𝑛𝑐 and 𝑚𝑐 are the numbers of nodes and edges in subgraph C, respectively, and n is the 82 

number of nodes in graph G. 83 

However, there exist many communities that do not follow this criterion but can be 84 

identified by different properties they exhibit. One such example is a star-like topology, where one 85 

central node interacts with several nodes in yeast protein-interaction networks [2], as, for example, 86 

in the case of a molecular chaperone that acts on a number of separate protein clients. In the case 87 

of human protein complexes, we also observe different topologies such as clique, linear, and hybrid 88 

between linear and clique, as shown Fig 1. These human protein complexes represent proteins 89 

known to belong to experimentally characterized gold-standard protein complexes from CORUM 90 

3.0 (the comprehensive resource of mammalian protein complexes) [3] with edge weights taken 91 

from hu.MAP [4], a human protein interaction network with interactions derived from over 9,000 92 

published mass spectrometry experiments. 93 
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 94 
Fig 1. Different topologies are exhibited by human protein complexes. a. Clique (Commander/CCC 95 
complex), b. Hybrid with different edge-weights (BLOC-1 (biogenesis of lysosome-related organelles 96 
complex 1)), c. Hybrid (NRD complex (Nucleosome remodeling and deacetylation complex), d. Linear 97 
(Ubiquitin E3 ligase (CUL3, KLHL9, KLHL13, RBX1)). These are experimentally characterized 98 
complexes from CORUM [3] with protein interaction evidence obtained from hu.MAP [4]. 99 

 100 

Existing community detection methods have primarily tried to optimize for high scores of 101 

community fitness functions, such as that of equation 1 [5]. These include unsupervised methods, 102 

such as implemented by MCL- Markov Clustering [6], MCODE - Molecular COmplex DEtection 103 

[7], CFinder [8], SCAN- Structural Clustering Algorithm for Networks [9], CMC - Clustering 104 

based on Maximal Cliques [10], COACH - COre- AttaCHment based method [11], GCE - Greedy 105 

Clique Expansion [5], and ClusterONE - clustering with overlapping neighborhood expansion 106 

[12], as well as semi-supervised machine learning algorithms such as COCDM - Constrained 107 

Overlapping Complex Detection Model [13].  108 

When there are sufficient data available on known communities, rather than applying a 109 

generic community fitness function to the problem, it can be more accurate to learn a community 110 
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fitness function directly from known communities. Then, new communities detected with the 111 

learned community fitness function can be expected to better resemble known communities in the 112 

field. Supervised machine learning methods are well suited for this purpose, and a few methods 113 

have been used to learn a community fitness function from constructed community embeddings, 114 

i.e., community representations in vector space, obtained by extracting topological and domain-115 

specific features from communities. The community fitness function learned can then be used to 116 

select candidate communities from the network and evaluate them. Since finding maximally 117 

scoring communities in a network is an NP-hard (non-deterministic polynomial-time hard) 118 

problem [2], heuristic algorithms have been used to find candidate communities. A common 119 

strategy is to select a seed (such as a node or a clique) and grow it into a candidate community by 120 

iteratively selecting neighbors to add to the current subgraph using heuristics such as iterative 121 

simulated annealing until a defined stopping criterion is met for the growth process. This process 122 

is repeated with different seeds to generate a set of candidate communities. 123 

Existing supervised methods use different machine learning methods to learn the 124 

community fitness function after extracting different features and use different heuristic algorithms 125 

to select candidate communities. The first supervised method [2] used a support vector machine 126 

(SCI-SVM) and a Bayesian network (SCI-BN) with 33 features with a greedy heuristic, followed 127 

by iterative simulated annealing. Stopping criteria for the growth of a seed include limiting the 128 

rounds of growth, checking for score improvement over multiple iterations, and checking for 129 

overlap with learned candidate communities so far. A second approach [14] recursively trained a 130 

two-layer feed-forward neural network model, NN for the classifier using 43 features. This greedy 131 

heuristic sequentially grows seeds of the highest degree with similar stopping criteria as [2]. 132 

Supervised learning protein complex detection SLPC [15] uses a regression model (RM) with 10 133 

topological features, solved by gradient descent. A modified cliques algorithm finds and grows 134 

maximal cliques using a random but exhaustive neighbor selection followed by a greedy growth 135 

heuristic. The algorithm stops when no node addition can yield a higher score, after which they 136 

merge some pairs of overlapping complexes with an overlap greater than a threshold. ClusterEPs, 137 

short for cluster emerging patterns [10] uses a score function based on noise-tolerant emerging 138 

patterns (NEPs) which are minimal discriminatory feature sets using 22 features, along with an 139 

average node degree term. Like [14], the heuristic for this method also grows the highest degree 140 

seed nodes sequentially. The neighboring node that shares the maximum number of edges with the 141 

current subgraph is selected as a candidate for growth in each iteration and a greedy growth 142 

heuristic is used, stopping when the score is greater than 0.5. ClusterSS, short for clustering with 143 

supervised and structural information [16] uses a neural network with one hidden layer and 17 144 

features, along with a traditional structural score function from [12]. A greedy heuristic grows seed 145 

nodes, also considering deletion of any existing subgraph nodes, with an optimization step of 146 

considering only the top k nodes by degree. The stopping criterion is when the new score is less 147 

than a factor times the old score. Both ClusterEPs and ClusterSS merge pairs of communities with 148 

overlap greater than a threshold at the end.  149 

Regarding scalability, the above methods have generally only been implemented on small 150 

yeast protein complex datasets, except for ClusterEPs, which trains on yeast data and tests on 151 

human PPIs. [17] implement the regression model of [15] on a human PPI network re-weighted 152 

by breast-cancer specific PPIs extracted from biomedical literature to detect disease-specific 153 

complexes. However, these methods employ serial candidate community sampling, negatively 154 

impacting their scalability to large networks such as hu.MAP [4], a human protein-interaction 155 

network with ~8k nodes and ~60k edges.  156 
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In this work, we present Super.Complex (short for Supervised Complex detection 157 

algorithm), an end-to-end highly scalable (to large networks that fit on a disk), distributed, and 158 

efficient community detection pipeline that explores multiple supervised learning methods with 159 

AutoML (Automated Machine Learning) to learn the most accurate community fitness function 160 

from known communities. Super.Complex then samples candidate subgraphs in parallel by 161 

seeding nodes or starting with maximal cliques and growing them with an epsilon-greedy heuristic, 162 

followed by an additional heuristic such as iterative simulated annealing or pseudo-metropolis 163 

using the learned community fitness function. On a yeast PPI network, Super.Complex 164 

outperforms all 6 existing supervised methods, as well as 4 unsupervised methods. Three novel 165 

evaluation measures are proposed to overcome certain shortcomings of existing metrics. We apply 166 

Super.Complex to hu.MAP, a human protein-protein interaction network with ~8k nodes and ~60k 167 

edges to yield 1028 protein complexes, including high-scoring previously unknown protein 168 

complexes, potentially contributing to new biology, and make all data, code, and interactive 169 

visualizations openly and freely available at https://sites.google.com/view/supercomplex/super-170 

complex-v3-0. 171 

Materials and Methods 172 

Overview of Super.Complex 173 

The pipeline Super.Complex comprises two main tasks, first, learning a community fitness 174 

function with AutoML methods, and second, using the community fitness function to intelligently 175 

sample overlapping communities from a network in parallel. As shown in Fig 2, each task is 176 

subdivided into different steps, described in brief in this section, with all details in the following 177 

sections of Materials and Methods. For the first task, we perform a pre-processing step, Data 178 

Preparation, where known communities are cleaned and split into non-overlapping training and 179 

testing sets, followed by construction of training and testing negative community data. In (i) 180 

Topological Feature Extraction, topological characteristics for all communities are computed to 181 

construct training and testing feature matrices. AutoML (ii) then compares different ML (Machine 182 

Learning) pipelines to select the best one, followed by training and testing the best ML pipeline, 183 

thus learning the community fitness function as the binary classifier distinguishing positive 184 

communities from negatives. Having learned the community fitness function, Super.Complex then 185 

uses it in its heuristic algorithm for the second task of searching for candidate communities in the 186 

network in parallel. For (iii) intelligent sampling, the algorithm can start with either single nodes 187 

or maximal cliques as seeds. We note that all nodes of the network were used as seeds in our 188 

experiments (this is quite fast due to Super.Complex’s parallel implementation), allowing us to 189 

work without any estimate of the number of expected communities. These seeds are grown using 190 

a 2-stage heuristic, e.g.𝜖￼𝜖￼𝜖￼￼-greedy + iterative simulated annealing. This is followed by a 191 

(iv) post-processing step of merging highly overlapping communities. Finally, in the last step, 192 

evaluation, the learned communities are compared with known communities. The steps of the 193 

pipeline are fairly independent and can be improved on their own with methods to test the 194 

accuracy/performance of each of the steps.  195 
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 196 
Fig 2. Super.Complex identifies likely protein complexes within a PPI network using a distributed 197 
supervised AutoML method. 198 
Task 1:  Learning a community fitness function:    199 
(i) Topological feature extraction: Topological features are extracted from known communities to build 200 
community embeddings (feature vectors, which are representations of communities in vector space) 201 
 (ii) Supervised learning with AutoML: A score function for communities, the community fitness function, 202 
is learned from the community embeddings as the decision function for binary classification of a network 203 
subgraph as a community or a random walk (illustration on the right). The best score function is selected 204 
after training multiple machine learning models with TPOT [18], an AutoML pipeline. 205 
Task 2: Searching for candidate communities in the network:  206 
(iii) Intelligent sampling: Multiple communities are sampled in parallel from the network. To build each 207 
candidate community, a seed edge is selected and grown using a 2-stage heuristic. First, we use an epsilon-208 
greedy heuristic to select a candidate neighbor, and then we use a pseudo-metropolis (constant probability) 209 
or iterative simulated annealing heuristic to accept or reject the candidate neighbor for growing the current 210 
community. An iteration of neighbor selection using a greedy heuristic is shown (illustration on the left), 211 
starting from a seed edge {F, I}. The edge is grown to the subgraph {F, I, E} as adding node E yields a 212 
higher community fitness function than adding any other neighbor of F and I. The seed edge {B, C} is 213 
grown in parallel (not shown) 214 
(iv) Merging overlaps: The candidate communities are merged such that the maximum overlap between 215 
any 2 communities is not greater than a specified threshold. 216 

Data Preparation 217 

First, the weighted network under consideration is cleaned by removing self-loops, as we 218 

do not consider interactions with oneself as a feature of communities. For scalability, the graph is 219 

stored on disk as a set of files, each corresponding to a node and containing a list of the node’s 220 

neighbors via weighted edges.  221 
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Positive communities. Super.Complex takes sets of nodes comprising known communities and 222 

obtains their edge information from the induced subgraph of these nodes on the weighted network. 223 

Nodes in communities that are absent from the network are removed. Communities with fewer 224 

than 3 nodes, communities that are internally disconnected, and duplicate communities are also 225 

removed. Constructing the final set of positive communities involves 2 main steps: (i) merging 226 

similar communities, and (ii) splitting them into non-overlapping train and test sets. Note that if 227 

independent train and test sets of communities are known in advance, these steps can be skipped. 228 

In the first step, using a merging algorithm we devised, we merge highly similar 229 

communities to yield a final list of communities, where no pair of communities have a Jaccard 230 

score (S1 File equation 3) greater than or equal to j. We recommend users to set this value based 231 

on domain knowledge of observed redundancy in the set of known communities.   232 

Multiple solutions exist that achieve this goal, however, we want a solution with a large 233 

number of communities, i.e., with only a small number of merges performed on the original set of 234 

known communities. This is especially important in applications with limited data, such as the 235 

human and yeast protein complex experiments in this work. Our algorithm was designed with this 236 

objective in mind, and works as follows. The iterative algorithm makes multiple passes through 237 

the list of communities performing the merging operation until the specified criterion is achieved.  238 

In a single pass of the list of communities, each community is considered in order and merged with 239 

the community with which it has the highest overlap (if greater than or equal to j) and the list is 240 

updated immediately by removing the original 2 communities and adding the merged community 241 

to the end of the list, so that the updated list is available for the next community in consideration. 242 

This merging algorithm achieves a lesser number of merges than a trivial merging solution which 243 

would merge random pairs of communities that do not satisfy the required criteria until 244 

convergence. In practice, the proposed algorithm quickly converges to a solution (i.e. the final set 245 

has no communities that overlap more than the specified value j).  246 

In the second step, the communities are split into non-overlapping training and testing 247 

datasets, to emphasize their independence. We obtain sets with equal size distributions and a 70-248 

30 train-test split, as recommended for machine learning algorithms with a small amount of data. 249 

Previous algorithms such as [4] and Super.Complex v2.0 [31] discard test communities with sizes 250 

greater than a threshold, thus losing out on information from some known communities and which 251 

also, in practice, do not yield train-test splits that are close to the recommended 70-30 split. 252 

Therefore, we propose the following algorithm. Here, we first make the recommended 70-30 253 

random split into train and test communities. Then we perform iterations of transfers between the 254 

two sets until they become independent. In each iteration, we perform two directions of transfers, 255 

from train to test and vice-versa, and if the 70-30 split is disturbed, we remove the communities at 256 

the end of the list which have extra communities and add them to the other list. In each direction 257 

of transfer, for instance, from train to test, we go through the training communities in one pass and 258 

if a training community has an overlap (at least one edge) with any of the test communities, it is 259 

immediately transferred to the test set, making the updated test set available for comparison with 260 

subsequent training set communities. In practice, for many random splits, the algorithm converges 261 

fast enough to a solution that is non-overlapping. If for an initial random split, convergence is not 262 

achieved after a few iterations, we recommend restarting the algorithm with a different random 263 

split.  264 
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Negative communities. Negative communities, or non-communities are represented by random 265 

walks sampled from the network by growing random seeds, adding a random neighbor at each 266 

step. The number of steps ranges from the minimum size to the maximum size of positive 267 

communities, with a total number of random walks equal to the number of positive communities 268 

multiplied by a scale factor > 1. The random walks are split almost equally across all the sizes, by 269 

splitting equally across the different number of steps to be taken for a random walk, to yield an 270 

almost uniform size distribution for negative communities. We say almost uniform size 271 

distribution, as random walks with the same number of steps need not yield the same sizes, given 272 

that the random walk as defined here can revisit edges it has already visited. To achieve random 273 

walks of the same size, the algorithm attempts an extra number of random walks and an extra 274 

number of steps to achieve the desired random walk size.  275 

The size distribution of positive communities is taken into consideration while training the 276 

machine learning model when using a uniform distribution for negatives. We also explore using 277 

almost the same size distribution as the positive communities to construct the negative 278 

communities. For this, for each size of the positive communities, we construct the negatives by 279 

sampling a number of random walks equal to the scale factor times the number of positive 280 

communities of this size. However, in this case, we find that there are quite a few missing sizes 281 

due to limited positives which may affect the scoring of subgraphs of the missing sizes. Using a 282 

uniform distribution would provide more information to learn a more accurate community fitness 283 

function that can recognize negatives at sizes missing for positives. In the following feature 284 

extraction step, random walks resembling communities are removed. The final number of negative 285 

communities is close to the number of positive communities, as we have sampled a slightly higher 286 

number of random walks via the scale factor. 287 

Topological Feature Extraction 288 

As communities exhibit different topological structures on the graph, these can be learned 289 

by considering useful topological features of communities. Based on graph theory, we extract 18 290 

topological features, detailed in S1 File Methods (Topological features) for each of the 291 

positive/negative communities to construct the final train and test data feature matrices, i.e. the 292 

positive and negative community embeddings.  293 

Learning the community fitness function with AutoML 294 

A community fitness function is learned as the decision function of a binary machine 295 

learning classifier trained to distinguish the community and non-community embeddings 296 

constructed in the previous feature extraction step. For this, we use an AutoML algorithm, TPOT 297 

[18], a genetic algorithm that yields the best model and parameters. It evaluates several 298 

preprocessors along with ML models and yields cross-validation scores on the training dataset for 299 

each pipeline, which itself is usually a combination of several preprocessors followed by the 300 

machine learning model. We configure the algorithm to run in a distributed setting, exploring 301 

several combinations of several preprocessors and ML models.  302 

We specify 6 pre-processors that scale the feature matrix. These are - (i) Binarizer, which 303 

sets a feature to 0 or 1 based on a threshold, (ii) MaxAbsScaler, which divides the feature by the 304 

maximum absolute value of the feature, (iii)  MinMaxScaler, which subtracts the minimum of the 305 

feature from the feature vector and divides by the range of the feature, (iv) Normalizer, which 306 
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divides the feature vector by its norm to get a unit norm, (v) RobustScaler, which makes a feature 307 

robust to outliers by scaling using the interquartile range and (vi) StandardScaler, which 308 

standardizes to the Z-score by subtracting the mean and dividing by the standard deviation of the 309 

feature. 310 

We include four feature selecting pre-processors, which are additionally important as we 311 

incorporate 6 additional preprocessors that construct combined features. The additional 312 

preprocessors include - (i) Decomposition: PCA (Principal Component Analysis), FastICA 313 

(Independent Component Analysis), (ii) Feature Agglomeration, (iii) Kernel Approximation 314 

methods: Nystroem, Radial Basis Function RBFSampler, (iv) Adding Polynomial Features, (v) 315 

Zero counts: Adds the count of zeros and non-zeros per sample as features and (vi) OneHotEncoder 316 

for numeric categorical variables. The feature selecting preprocessors include - (i) 317 

SelectPercentile, which selects the highest-scoring percentage of features based on 3 univariate 318 

statistical tests, FPR - False Positive Rate, FDR - False Discovery Rate and FWE - Family-wise 319 

error rate; (ii) VarianceThreshold which removes low variance features, (iii) RFE (recursive 320 

feature elimination) using ExtraTrees and (iv) SelectFromModel using ExtraTrees based on 321 

importance weights. The ML models included are - (i) Naive Bayes methods using Gaussian, 322 

Bernoulli, and Multinomial distributions (ii) Decision Trees, (iii) Ensemble methods of 323 

ExtraTrees, Random Forest, Gradient Boosting and XGB (XGBoost), (iv) K-nearest neighbors, 324 

(v) Linear SVMs and (vi) Linear models for Logistic Regression.   325 

The population size and number of generations are provided as parameters for the genetic 326 

algorithm of the AutoML pipeline. In practice for our application, giving a value of 50 for each 327 

yielded good results. There is an option for a warm start, where you can run additional generations 328 

and with additional population sizes starting from the latest results, if the results are unsatisfactory. 329 

Additionally, several other machine learning models and preprocessors can also be incorporated 330 

into this pipeline, including neural networks. Note that in our experiments, we also obtained 331 

pipelines that stack different ML models. We run the pipeline in a distributed manner, setting the 332 

number of jobs as the number of processes that run in parallel on a single computer. All the 333 

processes on the computer can be used for maximum utilization, however, the documentation notes 334 

that memory issues may arise for large datasets. In practice, we set the number of jobs as 20 on a 335 

Skylake compute node (Intel Xeon Platinum 8160 with 48 cores @2GHz clock rate). 336 

Evaluation. By default, 5-fold cross-validation is performed, although this can be modified by a 337 

parameter. The pipelines with high cross-validation average precision scores (area under the PR 338 

curve) are evaluated on the test dataset to find the best pipeline for our data, to use this for the 339 

community fitness function. A one hidden-layer perceptron is also available for training, and 340 

comparison with the AutoML output to select the best model. We evaluate the performance of the 341 

ML binary classifier using accuracies, precision-recall-f1 score measures, average precision score, 342 

and PR curves for the test sets while also evaluating these measures for the training set to compare 343 

with the test measures and check the bias and variance of the algorithm to make sure it is not 344 

underfitting or overfitting the data. We also plot the size-wise accuracies of the model to 345 

understand how a model performs w.r.t to the size of the subgraph it is evaluating.  346 

Candidate community search 347 

Finding a set of maximally scoring candidate communities in a network is an NP-hard 348 

problem, as proved by [2] by reducing it to the problem of finding maximal cliques. Since this is 349 
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an NP-hard problem, algorithms based on heuristics are required to solve it.  We explore seeding 350 

and growth strategies.  351 

Design and distributed architecture. First, we need to select seeds. Options for seeds include 352 

specifying all the nodes of the graph (recommended for best accuracy), all the nodes of the graph 353 

present in known communities, a specified number of nodes that will be selected randomly from 354 

the graph, or maximal cliques. In the distributed setting using multiple compute nodes, the 355 

specified seeds are partitioned equally across compute nodes, and each compute node deals only 356 

with the task of growing the seeds assigned to it. In practice, the partitioning is done by a main 357 

compute node which partitions the list of seeds and stores the partitioned lists as separate files on 358 

the file server. Then it launches one task per compute node (including itself) using the launcher 359 

module [32], where a task instructs a compute node to read its respective file containing the seed 360 

nodes and run the sampling algorithm starting with each of the seed nodes. On each compute node, 361 

we take advantage of all the cores by employing multiprocessing with the joblib python library. 362 

Each process intelligently grows a single seed node into a candidate community and writes it to 363 

the compute node’s temporary storage. For this, we need the graph and parameters of the 364 

community fitness function, which we store on temporary disk space of each compute node to 365 

optimize RAM as it is impractical to store large networks and machine learning models in memory. 366 

Each process reads the model into its memory and uses it to evaluate the neighbors, to pick the 367 

neighbor to add to the current subgraph in the growth process from the seed node. The neighbors 368 

of the subgraph under consideration at each step of the growth are read from disk on-demand and 369 

stored in memory only until they have been evaluated by the fitness function. In this way, we 370 

ensure that the processes have a low memory footprint, which can otherwise quickly become a 371 

bottleneck for large graphs. We also minimize disk storage by storing each resulting candidate 372 

community compactly using only its nodes, as its edges can be inferred if/when necessary by 373 

inducing the nodes on the graph. After all the child processes of growing seeds complete on a 374 

compute node, the compute node reads the set of learned community files it had stored on its disk 375 

and compiles them into a list of candidate communities before writing the list to the file server. 376 

The same code also runs in a distributed setting with only one multi-core compute node.  There 377 

also exists a serial option to run the code without invoking parallel constructs, useful for running 378 

on a single core.  379 

Intelligent sampling - Heuristics. Only for the first step of growth, we add the neighbor connected 380 

with the highest edge-weight. We provide 2 options for growing the subgraph at each step- an 381 

exhaustive neighbor search that is suitable for graphs that are not very large, and an option that 382 

optimizes performance by evaluating only a subset of neighbors. In the latter, using a large user-383 

defined threshold 𝑡1, if the number of neighbors of the current subgraph is greater than the 384 

threshold, a random sample of the neighbors equal to the provided threshold is chosen for 385 

evaluation. Now, of the neighbors, first, an 𝜖-greedy heuristic is used to select the neighbor to add 386 

to the subgraph. In an 𝜖- greedy heuristic, with 𝜖 probability, a random neighbor is added instead 387 

of the maximum scoring neighbor.  388 

In the non-exhaustive search case, in the event of 1-𝜖 probability, if the number of 389 

neighbors is greater than a 2nd user-defined threshold 𝑡2, a 2nd optimization of cutting down the 390 

number of neighbors is applied before evaluating each of the neighbors for choosing the greedy 391 

neighbor, as follows. Here, the 𝑡2highest neighbors are chosen for evaluation, where the order is 392 
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decided by sorting the neighbors in descending order based on their maximum edge weight (i.e. 393 

the highest edge weight among all the edges connecting a neighbor to the subgraph). Note how the 394 

first threshold 𝑡1ensures that the sorting complexity 𝑂(𝑡1𝑙𝑜𝑔(𝑡1))does not blow up.  395 

Note that for efficient constant-time 𝑂(1) lookup of the maximum edge weight of a 396 

neighbor, we store the neighbors of the subgraph as a hash map, where looking up a neighbor 397 

yields its maximum edge weight. This hash map also stores, for each neighbor, a list of edges 398 

connecting it to the subgraph and was constructed efficiently when the neighbors of each of the 399 

subgraph nodes were read from the corresponding file. After selecting the neighbor to add to the 400 

subgraph in the current iteration, this hash map is also used to efficiently add the neighbor to the 401 

subgraph by providing constant-time lookup to the edges that need to be added.  402 

Instead of the base 𝜖-greedy heuristic, we also have a simple base heuristic option, termed 403 

greedy edge weight, where we add the neighbor with the highest maximum weight edge at each 404 

step of the iteration. Note that since the ML model is not used at each stage of the growth, this is 405 

fast enough and does not require the optimization steps used in the 𝜖- greedy approach where 406 

subsets of neighbors were selected for evaluation by the community fitness function. 407 

For both base heuristics, in any iteration, if no neighbors for the subgraph exist, the growth 408 

process terminates. If the community score of the subgraph in any iteration is less than 0.5, the 409 

node last added is removed and the growth process terminates. We provide additional heuristics 410 

that can be applied on top of the base 𝜖-greedy heuristic. Based on the scores of the current and 411 

previous iterations of the subgraph, we accept or reject the latest node addition using the user-412 

defined heuristic - iterative simulated annealing (ISA), or a variant of ISA, termed pseudo-413 

metropolis in which the acceptance probability (equation 9) is a constant, i.e. 𝑃(𝑆𝑛𝑒𝑤, 𝑆𝑜𝑙𝑑)  =  𝑘. 414 

In ISA, at each stage of growth of the current subgraph, its maximum scoring neighbor is added, 415 

except in the case when the new community score of the subgraph 𝑆𝑛𝑒𝑤is lesser than 𝑆𝑜𝑙𝑑, the value 416 

before adding the new node (i.e. 𝑆𝑛𝑒𝑤 <  𝑆𝑜𝑙𝑑). In this case, the new node addition is accepted with 417 

a probability of, 418 

 𝑃(𝑆𝑜𝑙𝑑,𝑆𝑛𝑒𝑤,𝑇)  =  𝑒
(𝑆𝑛𝑒𝑤 − 𝑆𝑜𝑙𝑑)

T    (9)  419 

here, starting with hyperparameters 𝑇0 and 𝛼, we update the temperature as 𝑇 ←  𝛼𝑇 after every 420 

iteration.  421 

When ISA or pseudo-metropolis heuristics are applied, we also evaluate an additional 422 

heuristic where the algorithm terminates if it has been 10 (or can be user-defined) number of 423 

iterations since the score of the subgraph has increased.  424 

In the implementation, we provide four options to the user - greedy edge weight,𝜖-greedy, 425 

𝜖-greedy + ISA and 𝜖-greedy + pseudo-metropolis. In all options, the algorithm terminates after a 426 

number of steps equal to a user-specified threshold. The default threshold provided is the 427 

maximum size of the known communities, and we also provide a smart option for when a few 428 

communities have a large number of nodes, where it is set to choose the maximum size after 429 

ignoring outliers. This number can also be improved by visual inspection of a boxplot of 430 

community sizes that is generated. Future work can also explore greedy edge weight + ISA and 431 

greedy edge weight + pseudo-metropolis heuristic algorithms and observe their performance. Note 432 

how there are 2 possibilities for exploration in the 3 algorithms other than the greedy edge weight 433 

heuristic algorithm. In the 1st stage, we pick a neighbor at random with low probability. In the 2nd 434 

stage, we accept the neighbor we picked in the 1st stage with low probability, if it yields a lower 435 

score than the original subgraph.  436 
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Post-processing (merging overlaps) and cross-validation. Communities with only 2 nodes are 437 

removed. Note that communities with 2 nodes are rarely found, and while dimers are biologically 438 

valid, since they do not have topological variation, we do not consider them in this work focused 439 

on higher order assemblies with different topologies as a key feature.  We then merge communities 440 

that have a Jaccard similarity greater than a specified overlap threshold employing the merging 441 

algorithm discussed in the data cleaning section. The only difference is while merging, for two 442 

overlapping communities, the final community retained out of the 2 communities or the merged 443 

variant is the one that obtains the highest score with the community fitness function. In another 444 

variant of the merging algorithm, instead of the Jaccard similarity threshold (S1 File equation 3), 445 

we use Qi’s overlap measure (S1 File equation 10).  446 

The parameters 𝜖in the 𝜖-greedy heuristic, k in pseudo-metropolis, 𝑇0and 𝛼in iterative 447 

simulated annealing, and the overlapping threshold in the post-processing step are varied in 448 

parameter sweeps to select the best ones that work using the Qi et al F1 score (S1 File equation 8).  449 

After parameter sweeps, the results of different heuristics are examined and the one that 450 

yields the best F1 score is chosen. Additional details regarding evaluation are outlined in S1 File 451 

Methods (Evaluation with existing measures).   452 

Results and Discussion 453 

Contributions of Super.Complex - a scalable, distributed supervised AutoML-based 454 

community detection method 455 

Super.Complex implements an original distributed architecture and an efficient pipeline, 456 

scaling to large networks such as hu.MAP with ~8k nodes and ~60k edges. With an AutoML 457 

method, which also includes automated feature selection, and four 2-stage heuristic options for 458 

candidate community search, the pipeline finds accurate community fitness functions and high 459 

quality communities. Unlike some existing methods that remove nodes in the process of growth 460 

(e.g. such as Louvain [19] and ClusterSS), we note in S1 File Results (Algorithm guarantees) that 461 

our method guarantees properties such as internal connectivity of communities. Further, the 462 

merging algorithm we employ guarantees that no two communities overlap more than a specified 463 

threshold. In the case of non-overlapping communities (obtained by specifying a merging 464 

threshold of 0 overlap), there is an additional guarantee that no two communities can be merged 465 

to yield a higher scoring community. To our knowledge, epsilon-greedy heuristics in conjunction 466 

with other heuristics such as iterative simulated annealing have not been applied in the past for 467 

community detection. This allows the pipeline to leverage advantages of both heuristics by adding 468 

an additional layer of stochasticity allowing better exploration in the candidate community search 469 

stage. Super.Complex has a cross-validation pipeline to select the heuristic and parameters that 470 

work best for the application at hand. Minimal hyper-parameter selection is required in our 471 

algorithm with default parameters provided when smart hyperparameters cannot be inferred.  472 

Since the number of known communities can be limited, we emphasize the preservation of 473 

known communities when splitting them into train-test sets while also ensuring (i) independence 474 

- i.e., no edge overlap between a train and test community on the network, (ii) similar size 475 

distributions for both sets, and (iii) 70-30 ratios in train-test sets. Similarly, a minimal number of 476 

merges is attempted in the merging algorithms devised to maintain a high number of learned 477 

protein complexes. Further, unlike existing supervised methods, which evaluate the performance 478 

of their algorithms on a reduced network with only nodes present in known communities, we 479 
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evaluate our algorithm on the full network for more accurate evaluation. Finally, we note that 480 

Super.Complex uses only topological features of networks, and can be applied to community 481 

detection on networks from various fields, with the possibility of including domain-specific 482 

features to learn more accurate domain-specific community fitness functions. Our methods are 483 

also applicable in domains with limited or no knowledge by transferring community fitness 484 

functions from other domains, such as the defaults we provide for human protein complex 485 

detection.  486 

Three novel evaluation measures to compare learned communities with known 487 

communities 488 

Comparing sets of learned and known communities accurately is an outstanding issue. Poor 489 

evaluation measures do not satisfactorily identify the quality of learned communities and make it 490 

difficult to evaluate a community detection algorithm. Sets of learned communities achieving high 491 

scores with existing evaluation measures have been observed to have a lot of redundancies, e.g. 492 

multiple learned communities are very similar with high overlaps [20]. Known big communities 493 

were also observed to be split into several learned communities while still achieving good scores 494 

on evaluation measures. While it is undesirable to have many false negatives, having many false 495 

positives is more hurtful, as wet-lab experiments for biological validation tend to be quite 496 

expensive and time-consuming to perform. Therefore, we concentrate on including precision-like 497 

measures that compute false positives. Further, evaluation measures that are not sensitive to 498 

changes in the sets of learned communities limit our abilities to iterate successfully over algorithm 499 

modifications to improve algorithms. We examine the specific shortcomings of different 500 

evaluation measures and propose new measures to help overcome the issues discussed and 501 

construct robust yet sensitive measures.  502 

 503 

F-similarity-based Maximal Matching F-score (FMMF).  An issue with many measures such 504 

as Qi et al F1 score (S1 File equation 8) and SPA (S1 File equation 9) is that they don’t penalize 505 

redundancy, i.e. if we learn multiple same or very similar communities which are each individually 506 

high scoring, we will get a high value of precision-like measures. This is because in many cases, 507 

many to one matches are being made between learned communities and known communities. To 508 

deal with such issues, it is best to make one-to-one matches. The MMR (Maximal Matching Ratio) 509 

is one such good measure, however, it only calculates a recall-like measure by dividing the sum of 510 

the weights of edges (in a maximal sum of one-to-one edge weights) by the total number of known 511 

communities. Taken alone this cannot account for precision, for instance, if we learn a series of 512 

random subgraphs, these have low weights and will be ignored, while a high MMR score can be 513 

obtained from only a small number of high quality learned communities. Therefore, we define the 514 

precision equivalent for MMR, 𝑃𝐹𝐹𝑀 in Fig 3c. 515 
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 516 
Fig 3. Proposed evaluation measures - FMMF, CMFF, and UnSPA are sensitive metrics. a. Bipartite 517 
graph, where each edge weight corresponds to the F-similarity (𝑠𝑖𝑚𝐹(𝐶𝑘, 𝐶𝑙)) between 𝐶𝑘, a known 518 

community from 𝐾, the set of known communities and 𝐶𝑙 , a learned community from 𝐿, the set of learned 519 
communities.  b. The F-similarity score combines precision (𝑃(𝐶𝑘 , 𝐶𝑙)) and recall (𝑅(𝐶𝑘, 𝐶𝑙)) measures, 520 

computed as fractions of the number of common nodes w.r.t the number of nodes in a community. |𝐶|is the 521 
number of nodes in community C and | 𝐶1 ∩  𝐶2 | is the number of nodes common to both communities. c. 522 

F-similarity-based Maximal Matching F-score (FMMF) combines precision (𝑃𝐹𝐹𝑀) and recall (𝑅𝐹𝐹𝑀) 523 
measures computed for a maximal matching, 𝑀 of the bipartite graph in Fig 3a d. Community-wise 524 

Maximum F-similarity based F-score (CMFF) combines precision (𝑃𝐶𝑀𝐹) and recall (𝑅𝐶𝑀𝐹) measures, 525 
averaging over the maximum F-similarity score for a community in a particular set (e.g. known 526 
communities) w.r.t to a community of the other set (e.g. learned communities) e. UnSPA is an unbiased 527 
version of Sn-PPV accuracy (SPA), computed as the geometric mean of unbiased PPV (𝑃𝑃𝑉𝑢) and unbiased 528 
Sensitivity (𝑆𝑛𝑢), computed similar to precision and recall measures in CMFF, only, instead of the F-529 
similarity score, precision and recall similarity scores are used respectively f. Sensitivity of different 530 
evaluation measures w.r.t. (maximum pairwise Jaccard coefficient) overlap between communities shows 531 
that FMMF, CMFF, UnSPA, and existing measures Qi et al F1 score (S1 File equation 8), and SPA (S1 532 
File equation 9) are sensitive metrics, with FMMF, CMFF, and Qi et al F1 score following the desired 533 
trend. Here, each data point on the plot corresponds to a measure evaluating an individual run of 534 
Super.Complex’s merging algorithm with a maximum Jaccard overlap threshold set to the x-axis value.  535 
 536 

In Fig 3c, M is a set of weights of a set of maximal one-to-one matches, found using Karp’s 537 

algorithm [21]. The weight w that we use is the F-similarity score (Fig 3b), also described in the 538 

next section, Community-wise Maximum F-similarity based F-score (CMFF), unlike the 539 

neighborhood affinity used in the original MMR. Correspondingly we can define an F-score,  540 

FMMF, as the harmonic mean of the precision 𝑃𝐹𝐹𝑀and recall 𝑅𝐹𝐹𝑀, also shown in Fig 3c.  541 

By doing a one-to-one match, we are also indirectly penalizing cases where the benchmark 542 

community is split into multiple smaller communities in the learned set of communities, since the 543 
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measure considers the weight of only one of the smaller learned communities that comprise the 544 

known community, ignoring the rest. Thus only the small weight of the matched community is 545 

considered, penalizing this case, unlike one-to-many measures that aggregate the contributions 546 

from each of the smaller communities to finally achieve a high score.  547 

Community-wise Maximum F-similarity-based F-score (CMFF). [5] compute F1 scores at the 548 

individual known community-learned community match level and look at the histograms of these 549 

scores for all known communities. While their work does not state the exact formulation of their 550 

F1 score, we are inspired by them to define an F1 score at the match level, i.e. an F-similarity 551 

score, by comparing the nodes of a learned and a known community. Our F-similarity score is a 552 

combination of the recall (of the nodes of the known community) and the precision (of the nodes 553 

of the learned community), as shown in Fig 3b.  554 

Our F-similarity score can be compared with a threshold to determine a match, and then 555 

the overall precision, recall, and F1 scores for the set of predictions can be computed as in S1 File 556 

equations 6-8. Alternatively, our F-similarity score can be used to determine the best matches for 557 

communities and overall measures can be defined that can be investigated to reveal the 558 

contributions at the individual match level as well. For interpretability at the match level, similar 559 

to the unbiased sensitivity and PPV metrics (as discussed in the next section, Unbiased Sn-PPV 560 

Accuracy (UnSPA)), we can define precision and recall measures that evaluate, for each 561 

community, the closest matching community in the other set using a similarity metric. Using the 562 

F-similarity score as the similarity metric here, we define precision and recall-like measures, and 563 

combine them into the F1-like measure, CMFF - Community-wise Maximum F-similarity based 564 

F-score, as shown in Fig 3d. We detail a general framework to construct similar measures in the 565 

next paragraph, drawing inspiration from modifications to the Qi et al F1 score. This framework 566 

also gives another method of constructing the CMFF.  567 

In the Qi et al measures from [2], (S1 File equations 6-8), a binary indication of a possible 568 

match is used, i.e. as long as there exists a possible match, it is used as a 1 or 0 count towards the 569 

aggregate precision or recall measures. Having a measure that provides matches between learned 570 

and known communities allows easy identification of previously unknown communities. One to 571 

many matches such as Qi et al precision-recall (PR) measures that do not use an explicit matching 572 

between learned and known communities can be modified to obtain a matching. In the modified 573 

measure, for each community, we choose the most similar community in the other set in order to 574 

give the matching. While measures that use a threshold such as Qi et al F1 score (S1 File equation 575 

8) have the advantage of being robust, until a match crosses a threshold, the measure will not 576 

change, making it insensitive to small variations in predictions. Measures with low sensitivity 577 

make it difficult to compare algorithms and select parameters. Weighted measures are more 578 

sensitive, giving different values based on the quality of matches, and are more precise when 579 

compared to summing binary values of match existence. Accordingly, a more sensitive and precise 580 

version of the Qi et al F1 score can be obtained by summing up weights indicating the similarity 581 

scores. For instance, instead of the Qi overlap measure (S1 File equation 8), the neighborhood 582 

affinity similarity measure (S1 File equation 4) can be used to construct a more precise and 583 

sensitive measure. 584 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑟 =
∑ 𝑚𝑎𝑥

𝐶𝑙𝜖 𝐿
 𝑠𝑖m(𝐶𝑙,𝐶𝑘𝐶𝑘 𝜖 𝐾  )

| 𝐾 |
, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑝 =

∑ 𝑚𝑎𝑥
𝐶𝑘𝜖 𝐾

 𝑠𝑖m(𝐶𝑙,𝐶𝑘)𝐶𝑙 𝜖 𝐿 

| 𝐿|
, 𝐹1 =  

2∗𝑝∗𝑟

𝑝+ 𝑟
 (5) 585 
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Here, 𝑠𝑖𝑚(𝐶1, 𝐶2)is a similarity measure between communities 𝐶1and 𝐶2, with |𝐶1|is the number 586 

of nodes in 𝐶1. 𝐶𝑘 is a known community from 𝐾, the set of known communities and 𝐶𝑙is  a learned 587 

community from 𝐿, the set of learned communities. 588 

 Different similarity measures (S1 File equations 3-5), such as the Jaccard coefficient can 589 

be used to construct different F1 measures. We recommend the F-similarity measure in Fig 3b, as 590 

it can be broken down into a precision-based and recall-based measure at the level of comparing a 591 

known and learned community, and use it to construct the CMFF score. 592 

 593 

Unbiased Sn-PPV Accuracy (UnSPA). Consider the precision-like positive-predictive value 594 

(PPV), recall-like Sensitivity (Sn), and their combined Sn-PPV accuracy (SPA) [22], also given in 595 

S1 File equation 9. In Sensitivity, the numerator is a sum of the maximal number of recalled nodes 596 

for each community and the denominator is a sum of the number of nodes in each community. 597 

Measures like these do not give equal importance to each of the known communities and assign 598 

higher values for recalling larger communities when compared to recalling smaller communities. 599 

For instance, an algorithm that perfectly recalls numerous smaller communities and does not recall 600 

much of a few bigger communities can get a worse sensitivity score when compared to an 601 

algorithm that does the opposite, i.e. recalls most of the big community and does not recall much 602 

of any of the smaller communities. Rather than inducing bias into a measure that decides which 603 

communities should be weighted higher, it may be a better idea to have a measure that gives equal 604 

weights to all communities. We define an unbiased sensitivity 𝑆𝑛𝑢in Fig 3e, by dividing by the 605 

total number of known communities. 606 

In PPV, the denominator sums, for each learned community, the sum of the subset of nodes 607 

in the learned community shared by all known communities. This does not contribute accurately 608 

to a precision-like measure, as nodes that are absent in known communities are ignored. For 609 

instance, a learned community that has all the nodes in a known community, but also includes a 610 

lot of possibly spurious nodes will be scored in the same way as a learned community which is an 611 

exact match to the known community. Further, in PPV, nodes in a learned community shared by 612 

multiple known communities get counted an extra number of times in the denominator. So if we 613 

share a set of nodes with multiple known communities we get penalized more than (i) if we share 614 

the set with only a few known communities, or (ii) if nodes of our community are shared with 615 

different known communities in a disjoint manner. The reasoning for allowing such behavior is 616 

again biased and does not support the detection of overlapping known communities. For example, 617 

a learned community that has a high overlap with 2 known communities (ex: a learned community 618 

with 10 nodes that shares all of its nodes with each of the known communities) will contribute 619 

lesser (0.5) to a PPV score than a learned community which overlaps lesser with one known 620 

community (ex: 6 nodes in a learned community with 10 nodes overlapping with only one known 621 

community, giving a 0.6 contribution to the PPV). To overcome these issues, we propose an 622 

unbiased PPV, 𝑃𝑃𝑉𝑢 in Fig 3e, where we divide by the total number of learned communities. The 623 

corresponding unbiased accuracy is obtained by taking the geometric mean of the 𝑃𝑃𝑉𝑢 and 𝑆𝑛𝑢 624 

as shown in Fig 3e. 625 

From the sensitivity of measures plot in Fig 3f, we find that the FMMF score, the Qi et al 626 

F1 score (S1 File equation 8), and CMFF score are most sensitive to the pairwise overlap between 627 

communities, giving high values at the overlap coefficient yielding the best results, determined via 628 

visual inspection of the learned results, as follows. We observed highly overlapping, repetitive, 629 

and large numbers of similar learned protein complexes in our experiment on hu.MAP, such as 630 

several resembling the ribosome complexes at the high overlap threshold of 0.5 Jaccard coefficient, 631 
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whereas, at low overlaps, we obtain a total small number of learned complexes, 84 learned 632 

complexes after removing proteins absent from known complexes. As we would like a high 633 

number of good quality complexes, we find that intermediate values of overlap Jaccard coefficient 634 

yield satisfactory results, for instance, at 0.25 Jaccard coefficient, we obtain 121 complexes after 635 

removing proteins absent from known complexes, with a high recall of known complexes and 636 

good observed quality, i.e. low numbers of very similar overlapping learned complexes. The 637 

clique-based measures from [4] - F-grand K-clique and F-weighted K-clique do not vary much 638 

with overlap, and the UnSPA, like the SPA, increases with increasing overlap threshold. However, 639 

the rate of increase of SPA w.r.t increasing overlap values is greater than UnSPA, yielding 640 

comparatively higher scores at undesirable high overlaps. In other words, instead of the desired 641 

decreasing trend from 0.25 to 0.5 Jaccard coefficient overlap, we have a highly increasing trend 642 

for SPA, compared to the almost constant trend for UnSPA - an improvement over SPA that can 643 

possibly be attributed to the unbiasing modification we have introduced. Therefore, for accurate 644 

evaluation in which redundancy (high overlap) is penalized, we recommend UnSPA over SPA, 645 

and primarily recommend the FMMF score, CMFF score, and the existing Qi et al F1 score (S1 646 

File equation 8).  647 

Super.Complex applied to a human protein interaction network to detect protein complexes 648 

Experiment details. We first test and ensure that the pipeline achieves perfect results on a toy 649 

dataset we construct comprising disconnected cliques of varying sizes, each corresponding to a 650 

known community, where we use all nodes as seeds for growth during the prediction step.  651 

To learn potentially new human protein complexes, we apply Super.Complex on the human 652 

PPI network hu.MAP [4] using a community fitness function that is learned from known 653 

complexes in CORUM [3]. The network available on the website 654 

(http://hu1.proteincomplexes.org/static/downloads/pairsWprob.txt)  has 7778 nodes and 56,712 655 

edges, after an edge weight cutoff of 0.0025 was applied to the original 64,048 edges. There are 656 

188 complexes after data cleaning, a set we term as ‘refined CORUM’, out of the original 2916 657 

human CORUM complexes, which underscores the importance of minimizing any losses in the 658 

merging and splitting steps of the pipeline. In the data cleaning process, overlapping complexes 659 

with a Jaccard coefficient j greater than 0.6 are removed, as this value was used in the experiments 660 

of hu.MAP 2-stage clustering. Note that of the complexes from CORUM that were removed, there 661 

were over 1000 complexes that had fewer than 3 members, and the remaining removed complexes 662 

consisted of duplicates and disconnected complexes with edges from hu.MAP. Note, however, that 663 

hu.MAP was the highest confidence human protein interaction network integrating 3 large 664 

previous human protein-interaction networks, all built using high confidence data from large-scale 665 

(~9000) laboratory experiments. The edge weights of hu.MAP were trained using an SVM based 666 

on features obtained from experiments.  667 

 668 

Experiment results. The best results, following different parameter sweeps from the experiment 669 

on hu.MAP are given in Fig 4 with the best parameter values given in Table 1. From Fig 4e, we 670 

verify that the size distributions of the train and test sets are similar. In Fig 4a, we can see that we 671 

get a good precision-recall curve on the test set for the subgraph classification task as a positive or 672 

negative community, achieving an average precision score of 0.88 with a logistic regression model 673 

(which is the final ML model stacked on a set of other ML models and processors, output as the 674 
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best model trained on the training set with 5-fold cross-validation and achieving a cross-validation 675 

score of 0.978).  676 

 677 
Fig 4. Learned human protein complexes with Super.Complex achieve good PR curves and 678 

follow similar size distributions as known complexes. a. PR curve for the best model 679 

(community fitness function) from the AutoML pipeline on the test dataset, for the task of 680 

classifying a subgraph as a community or not. b. Co-complex edge classification PR curve for 681 

final learned complexes. c & d. Best F-similarity score distributions per known complex and per 682 

learned complex. e. The size distributions of train, test, and all known complexes, learned 683 

complexes, and learned complexes after removing known complex proteins. 684 

 685 
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Table 1. Best parameters found and used in each of the experiments.  686 

PPI Network 

 

Hu.MAP Yeast Yeast Yeast 

Experiment train: CORUM, 

test: CORUM 

(independent) 

1. train: TAP, test: 

MIPS 

2. train: MIPS, 

test: TAP 

3. train: MIPS, test: 

MIPS 

Seeds All nodes All nodes All nodes All nodes 

No. of negatives 

sampled  

10x positives 

 

1.1x positives 1.1x positives 

 

1.1x positives 

 

Size (no. of nodes) 

distribution for 

negatives 

Uniform Uniform 

 

Uniform 

 

Uniform 

 

Candidate sampling 

Method 

𝜖- greedy + 

iterative 

simulated 

annealing 

𝜖- greedy + 

iterative simulated 

annealing 

𝜖- greedy + 

pseudo-

metropolis 

𝜖- greedy + 

iterative simulated 

annealing 

𝜖 0.01 0.01 

 

0.01 

 

0.01 

 

Sampling method 

parameters 

T0 =  1.75 and 𝛼 

= 0.005 

T0 = 0.88 and 𝛼 = 

1.8 

Probability p = 

0.1 

T0 = 0.88 and 𝛼 = 

1.8 

No. of steps (specified or 

inferred from known 

complexes) 

20 4 9 10 

Neighbors considered 

for growth 

All neighbors 

 

All neighbors All neighbors 

 

All neighbors 

 

Merging method and 

parameter 

Qi overlap 

measure = 0.375 

Qi overlap measure 

= 0.1 

Qi overlap 

measure = 0.3 

Qi overlap measure 

= 0.9 
   687 

We use Fig 4e to set the maximum number of steps taken in the candidate complex growth 688 

stage as 20 and learn a total of 1028 complexes. On removal of non-gold standard proteins from 689 

these complexes for evaluation purposes, we obtain 131 complexes We get a good PR curve for 690 

the prediction of co-complex edges in comparison with known complex edges, as shown in Fig 4b. 691 

From Fig 4c, we can see that the best learned complex matches for known complexes have high 692 

F-similarity scores. Also, from Fig 4d, we can see that the best known complex matches for 693 

learned complexes have high F-similarity scores. Note that there may be unknown but true 694 

complexes that are learned by the algorithm that contribute to false positives. 695 

In Fig 4e, we can see that learned complexes have a similar size distribution as known 696 

complexes. The small peak at size 20 is an artifact of our threshold on the maximum number of 697 

steps that can be taken in growing the complex. This means that either of our stopping criteria was 698 

not reached for these complexes, i.e. the criteria of a score less than 0.5 or no observed score 699 

improvement over a specified number of steps (here, 10).  700 

Evaluation measures comparing learned complexes on hu.MAP by Super.Complex w.r.t 701 

known complexes from CORUM are given in Tables 2 and S1 File Table 1, along with the 702 

measures computed on the protein complexes comprising hu.MAP obtained from a 2 stage 703 

clustering method with the unsupervised ClusterONE algorithm applied first, followed by the 704 

unsupervised MCL algorithm. We observe that Super.Complex does better in terms of precision, 705 
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as can be seen with the higher FMM precision value, while ClusterONE+MCL does better in terms 706 

of recall. This can be attributed to more number of complexes learned by ClusterONE+MCL 707 

(~4000 compared to ~1000 by Super.Complex) including a few highly overlapping complexes (the 708 

maximum pairwise overlap observed was 0.97 Jaccard coefficient), compared to the strict low 709 

overlap among complexes learned by Super.Complex (the maximum pairwise overlap observed 710 

was 0.36 Jaccard coefficient). We observe 4152 pairs of complexes learned by ClusterONE + MCL 711 

having an overlap greater than 0.36 Jaccard coefficient, the maximum pairwise overlap observed 712 

in learned complexes from Super.Complex. Note that while the values of F1 evaluation measures 713 

are similar, the results from ClusterONE+MCL were achieved by the authors after significant 714 

cross-validation, while Super.Complex was faster as detailed in S1 File Results (Performance).  715 

 716 

Table 2. Evaluating learned complexes on hu.MAP w.r.t ‘refined CORUM’ complexes. 717 

Refined CORUM comprises 188 complexes after cleaning original CORUM complexes. 718 

Method 

FMM 

CMF 

F1 score 

Unbiased 

Sn-PPV 

accuracy 

Qi et al 

F1 Score 

(t=0.5) 

F-Grand 

k-Clique 

F-weighted 

k-Clique Precision Recall F1 score 

Super.Complex 0.767 0.534 0.63 0.783 0.888 0.739 0.785 0.972 

hu.MAP  

(ClusterONE + MCL) 0.471 0.686 0.559 0.797 0.911 0.764 0.77 0.967 

State of the art comparison: Super.Complex achieves good evaluation measures and 719 

performance 720 

To compare our method with published results from existing methods, we perform 721 

experiments on the data used by these methods in their experiments - a yeast PPI network, DIP -722 

Database of Interacting Proteins [23] with known protein complexes from MIPS - Munich 723 

Information Center for Protein Sequence [24] and TAP- Tandem Affinity Purification [25]. 724 

Specifically, for an accurate comparison, we use the same PPI network (projection of DIP yeast 725 

PPI network on MIPS + TAP proteins) and known protein complexes, available from the 726 

ClusterEPs software website. The results from Table 3 show that our method outperforms all 6 727 

supervised as well as 4 unsupervised methods (by achieving the highest F1 score and precision 728 

values) in the yeast experiments. Specifically, Super.Complex achieves the highest F1 score value 729 

(87% higher on average, 63% higher by median) when compared to the 10 other methods, highest 730 

precision value (110% higher on average, 72% higher by median) when compared to the 10 other 731 

methods, higher recall (92 % higher on average, 45% higher by median) when compared to 8 other 732 

algorithms with lower recall values (30% lower on average and by median) when compared to 733 

only 2 methods (ClusterSS and ClusterEPs, considered next best as per the F1 score, a metric 734 

which gives a better notion of the performance of an algorithm than just the recall or precision 735 

measure taken alone). When comparing with the 2 algorithms where Super.Complex has lower 736 

recall, it makes up for this by significantly outperforming the precision measure (55% higher on 737 

average and by median) to achieve higher F-1 scores (12% higher on average and 14% higher by 738 

median). Also, as we have noted earlier, for this application of detecting protein complexes, 739 

validation of results usually involves time-taking and expensive biological experiments, therefore, 740 
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an algorithm like Super.Complex yielding a low number of false positives (translating to high 741 

precision) is more desirable (even with lower recall) than an algorithm that is able to identify many 742 

existing communities but with high false positive rates (translating to higher recall but low 743 

precision). From Table 3, similar to observations of metrics from the experiments on hu.MAP in 744 

Tables 2 and S1 File Table 1, we obtain high precision values with Super.Complex, suggesting 745 

that many of the learned protein complexes are of high quality. On performance, we discuss the 746 

time complexity of Super.Complex in the S1 File Methods (Time complexity). The whole pipeline 747 

was completed in an order of minutes with Super.Complex (including the AutoML step executed 748 

on a single Skylake compute node, along with parameter-sweeps for the candidate community 749 

sampling step executed on 4 Skylake compute nodes - each with 48 cores @2GHz clock rate). We 750 

attempted to run other algorithms on hu.MAP as well, but were unsuccessful due to unavailability 751 

of code or limited scalability, as detailed in S1 File Results (SOTA availability). 752 

 753 

Table 3. Comparing our method with 6 supervised and 4 unsupervised methods on a yeast 754 

PPI network. Precision, recall, and F-measures are from Qi et al. Parameters for each of the 755 

Super.Complex experiments are given in Table 1. 756 

 Train Test Precision Recall F-measure 

Super.Complex  TAP MIPS 0.841 0.629 0.72 

ClusterSS TAP MIPS 0.526 0.807 0.636 

ClusterEPs TAP MIPS 0.606 0.664 0.633 

RM TAP MIPS 0.489  0.525  0.506 

SCI-BN TAP MIPS 0.219  0.537  0.312 

SCI-SVM TAP MIPS 0.176  0.379  0.240 

ClusterONE  MIPS 0.428 0.435 0.431 

COACH  MIPS 0.364 0.495 0.419 

CMC  MIPS 0.46 0.38 0.416 

MCODE  MIPS 0.4 0.1 0.16 

Super.Complex  MIPS TAP 0.718 0.581 0.642 

ClusterSS MIPS TAP 0.477  0.864  

 

0.614 

ClusterEPs MIPS TAP 0.424  0.782  0.548 

RM MIPS TAP 0.424  0.433  0.429 

SCI-BN MIPS TAP 0.312  0.489  0.381 
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Learned human protein complexes from Super.Complex, and applications to COVID-19 and 757 

characterizing unknown proteins 758 

We provide interactive lists and visualizations of the 1028 learned human protein 759 

complexes by Super.Complex, along with refined and original CORUM complexes as a resource 760 

on https://sites.google.com/view/supercomplex/super-complex-v3-0. The high precision values 761 

obtained by Super.Complex in Table 2 suggest that many of the learned complexes are of high 762 

quality, since the ones with proteins from known complexes match individual known complexes 763 

closely. We provide individual community fitness function scores for each of the learned 764 

complexes, and rank the list of learned complexes by this score to help identify good candidates 765 

for investigation for various applications. In this section, we analyze learned human protein 766 

complexes by Super.Complex, aiming to provide easily accessible resources for two biological 767 

applications that can be investigated further by researchers in the future. We highlight learned 768 

complexes with uncharacterized proteins to provide experimental candidates for functional 769 

characterization.  In the second application, we construct an interactive map of SARS-CoV-2 770 

protein interactions with 234 learned human protein complexes from Super.Complex using 771 

protein-interaction information between SARS-CoV-2 proteins and human proteins [26]. We also 772 

provide a list of complexes interacting with SARS-CoV-2 proteins ranked by their possible 773 

importance, which can be used to determine potential COVID-19 drug targets (S1 Fig & S1 File 774 

Results (SARS-CoV-2 affected protein complexes)). 775 

 776 

Uncharacterized proteins and their complexes. 111 uncharacterized proteins (Uniprot [27] 777 

annotation score unknown or less than 3) and their corresponding learned 103 complexes are 778 

presented on the website (https://meghanapalukuri.github.io/Complexes/* where * is 779 

Protein2complex_annotated.html and Complex2proteins_annotated.html). Three examples of 780 

uncharacterized proteins (C11orf42, C18orf21, and C16orf91) along with their corresponding 781 

complexes are highlighted in Fig 6. C11orf42 could potentially be related to trafficking, as it is a 782 

part of a complex with 30% similarity to the retromer complex, (i.e. with 0.3 Jaccard similarity to 783 

the known CORUM retromer complex), with additional evidence available from the Human 784 

Protein Atlas (HPA) [28] (available from http://www.proteinatlas.org) showing subcellular 785 

localization to vesicles, similar to other proteins of the complex. C18orf21 also has evidence from 786 

HPA, localized to the nucleoli and interacting with other proteins of a complex with 50% similarity 787 

to the Rnase/Mrp complex with most members in the nucleoli/nucleoplasm. Further evidence from 788 

SCI-SVM MIPS TAP 0.247  0.377  0.298 

ClusterONE  TAP 0.480 0.46 0.47 

COACH  TAP 0.387 0.533 0.449 

CMC  TAP 0.447 0.353 0.395 

MCODE  TAP 0.422 0.127 0.195 

Super.Complex  MIPS MIPS 0.552 0.733 0.63 

NN MIPS MIPS 0.333 0.491 0.397 
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[29] also independently supports C18orf21 as a cellular component of the ribonuclease MRP 789 

complex and a participant in ribonuclease P RNA binding as it exhibits significant co-essentiality 790 

across cancer cell lines with the POP4, POP5, POP7, RPP30, RPP38, and RPP40 proteins. 791 

C16orf91 could potentially be localized to mitochondria like other proteins of the COX 20-792 

C16orf91-UQCC1 complex, with independent experimental evidence from [30].  793 

 794 
Fig 5. Examples of complexes with proteins having low annotation scores. a. C11orf42 constitutes the  795 
Retromer complex (SNX1, SNX2, VPS35, VPS29, VPS26A), potentially related to trafficking, with 796 
C11orf42  localized in cells to vesicles, similar to the other proteins of the complex (SNX1, SNX5, and 797 
VPS29) b. C16orf91 constitutes the COX 20-C16orf91-UQCC1 complex, potentially localized to 798 
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mitochondria like COX20. c. C18orf21 constitutes the Rnase/Mrp complex, with C18orf21, localized to 799 
nucleoli, closely interacting with nucleoplasm proteins of the complex such as  RPP25, POP5, RPP14, 800 
NEPRO, RPP30, IBTK, RPP25L, and NPM1. The images of subcellular localization are available from 801 
v20.1 of proteinatlas.org, as https://v20.proteinatlas.org/ENSG00000*/cell, where * is 180878-C11orf42, 802 
028528-SNX1, 089006-SNX5, 111237-VPS29, 167272-POP5, 163608-NEPRO, 148688-RPP30, and 803 
181163-NPM1. Note that localizations were measured in varying cell types, including HeLa, HEL, U2OS, 804 
and U-251 MG cells, across the highlighted proteins. 805 

Data and Code Availability 806 

We make interactive visualizations of our learned protein complexes freely available as a resource 807 

at https://sites.google.com/view/supercomplex/super-complex-v3-0, which includes 808 

downloadable sets of interactions and complexes, including the 234 complexes that are potentially 809 

linked to COVID-19 and SARS-CoV-2 infection, and the set of 111 uncharacterized proteins 810 

implicated in 103 complexes. Our code is available at 811 

https://github.com/marcottelab/super.complex. To simplify reanalysis, the full interactome 812 

datasets are additionally deposited in Zenodo, DOI: http://doi.org/10.5281/zenodo.4814944 813 
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