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ABSTRACT The aminoglycosides are highly effective broad-spectrum antimicrobial agents. However, their efficacy is dimin-
ished due to enzyme-mediated covalent modification, which reduces affinity of the drug for the target ribosome. One of the most
prevalent aminoglycoside resistance enzymes in Gram-negative pathogens is the adenylyltransferase ANT(2�)-Ia, which confers
resistance to gentamicin, tobramycin, and kanamycin. Despite the importance of this enzyme in drug resistance, its structure
and molecular mechanism have been elusive. This study describes the structural and mechanistic basis for adenylylation of ami-
noglycosides by the ANT(2�)-Ia enzyme. ANT(2�)-Ia confers resistance by magnesium-dependent transfer of a nucleoside mono-
phosphate (AMP) to the 2�-hydroxyl of aminoglycoside substrates containing a 2-deoxystreptamine core. The catalyzed reaction
follows a direct AMP transfer mechanism from ATP to the substrate antibiotic. Central to catalysis is the coordination of two
Mg2� ions, positioning of the modifiable substrate ring, and the presence of a catalytic base (Asp86). Comparative structural
analysis revealed that ANT(2�)-Ia has a two-domain structure with an N-terminal active-site architecture that is conserved
among other antibiotic nucleotidyltransferases, including Lnu(A), LinB, ANT(4=)-Ia, ANT(4�)-Ib, and ANT(6)-Ia. There is also
similarity between the nucleotidyltransferase fold of ANT(2�)-Ia and DNA polymerase �. This similarity is consistent with evo-
lution from a common ancestor, with the nucleotidyltransferase fold having adapted for activity against chemically distinct mol-
ecules.

IMPORTANCE To successfully manage the threat associated with multidrug-resistant infectious diseases, innovative therapeutic
strategies need to be developed. One such approach involves the enhancement or potentiation of existing antibiotics against re-
sistant strains of bacteria. The reduction in clinical usefulness of the aminoglycosides is a particular problem among Gram-
negative human pathogens, since there are very few therapeutic options for infections caused by these organisms. In order to
successfully circumvent or inhibit the activity of aminoglycoside-modifying enzymes, and to thus rejuvenate the activity of the
aminoglycoside antibiotics against Gram-negative pathogens, structural and mechanistic information is crucial. This study re-
veals the structure of a clinically prevalent aminoglycoside resistance enzyme [ANT(2�)-Ia] and depicts the molecular basis un-
derlying modification of antibiotic substrates. Combined, these findings provide the groundwork for the development of broad-
spectrum inhibitors against antibiotic nucleotidyltransferases.
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The use of antibiotics for the successful treatment of infectious
diseases has been severely compromised due to the emergence

of multidrug-resistant bacteria, a problem that has been acknowl-
edged on a global scale (1, 2). One class of antibiotics whose clin-
ical efficacy is particularly diminished due to an increase in the
prevalence of resistant bacteria is the aminoglycosides. The ami-
noglycosides are natural antibiotics produced from soil-dwelling
bacteria. The founding member of this family, streptomycin, was
identified in 1944 (3) and was the result of an orchestrated effort to
identify antibacterial agents from fermentation products of soil
microbes (4). Following the discovery of streptomycin, numerous

additional aminoglycosides were identified and semisynthetic de-
rivatives such as amikacin developed, resulting in �20 members
of this class, many of which are effective antimicrobial drugs.

The aminoglycosides are structurally diverse and consist of two
or more amino-modified sugars linked to an aminocyclitol core;
broad-spectrum bactericidal activity is achieved by interference
with protein synthesis, including corruption of the genetic code
(5). All members of this class bind to rRNA and proteins within
the 30S subunit of the ribosome; however, interaction with and
binding to the target are achieved in different ways according to
the chemical structure of the drug (5).
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Members of the aminoglycoside family that contain a
2-deoxystreptamine (2-DOS) core, such as gentamicin, kanamy-
cin, and tobramycin (Fig. 1A), have been particularly effective
against many Gram-negative bacterial pathogens. This class of
aminoglycoside is decorated at positions 4 and 6 of the 2-DOS
core with amino-modified sugars; these substituents are referred
to as the prime and double-prime rings, respectively. Such 4,6-
disubstituted aminoglycosides bind to 16S rRNA; in particular,
the double-prime ring exhibits key interactions with G1405 of the
16S rRNA (Fig. 1B) (6, 7).

Despite the broad-spectrum activity and clinical success of
these drugs, their usefulness in the control of bacterial infections
has been overshadowed by the emergence of resistance. Indeed,
these drugs are inactivated by a variety of resistance mechanisms.
The most common mechanism is covalent modification of the
drug, a process that renders the antibiotic unable to bind effec-
tively to the ribosome and thus alleviates the drug-induced trans-
lation interference (8). Aminoglycoside inactivation is catalyzed
by a plethora of aminoglycoside-modifying enzymes (AMEs) that
operate by different molecular mechanisms, including phosphor-
ylation (catalyzed by nucleoside triphosphate-dependent
O-phosphotransferases [APHs]), acetylation (catalyzed by acyl-
coenzyme A-dependent N-acetyltransferases [AACs]) and adeny-
lylation (catalyzed by nucleoside triphosphate-dependent
O-nucleotidyltransferases [ANTs]) (9).

Structural and biochemical knowledge of these modifying en-
zymes is crucial for the development of strategies to circumvent
their activity and to thus rejuvenate the antibacterial action of the
aminoglycosides (10). To date, there have been significant ad-
vances providing structural, mechanistic, and inhibitory insight
into many members of the APH enzymes (11, 12). The AAC fam-
ily has also been well characterized through structure-function
studies of AAC(3) and AAC(6=) enzymes (13–20). In contrast, the
ANT family of enzymes is not well characterized (11), and there

are only three ANT enzymes with determined crystal structures:
ANT(4=)-Ia (PDB ID: 1KNY) (21), ANT(4=)-IIb (PDB ID: 4EBJ
and 4EBK), and ANT(6)-Ia (PDB ID: 2PBE).

There are five main classes of ANT enzymes, defined by their
regioselectivity of chemical modification at positions 2�, 3�, 4=, 6,
and 9 of substrate aminoglycosides. The aminoglycoside 2�-O-
nucleotidyltransferase [ANT(2�)-Ia] was originally identified
within a clinical isolate of Klebsiella pneumoniae in 1971 (22) and
is now one of the most clinically prevalent ANT enzymes harbored
by Gram-negative pathogens in North America (23–25). This al-
lele has spread to many other bacterial genera, including Pseu-
domonas, Acinetobacter, and Enterobacter, all members of the so-
called ESKAPE pathogens, which have been designated highly
clinically important (26, 27).

ANT(2�)-Ia confers antibiotic resistance by magnesium-
dependent transfer of a nucleoside monophosphate (AMP) to the
2�-OH of aminoglycoside substrates (Fig. 1A) (28). ANT(2�)-Ia is
one of the few AMEs that modify a hydroxyl moiety on the
double-prime ring. Understanding the molecular basis of
ANT(2�)-Ia-mediated drug inactivation is vital to help guide the
development of new aminoglycoside-like antibiotics such as pla-
zomicin (29) and for the identification of inhibitors targeting
AMEs, which could rescue the activity of older aminoglycoside
drugs such as gentamicin. Here we report the three-dimensional
(3D) structure of ANT(2�)-Ia and propose a molecular mecha-
nism of adenylylation mediated by this widespread resistance ele-
ment.

RESULTS
Purification of ANT(2�)-Ia. Previous reports (30–34) indicated
that expression of ANT(2�)-Ia in Escherichia coli resulted in only
partially soluble recombinant protein. We expressed the enzyme
in fusion with glutathione S-transferase (GST), which resulted in
significant improvement in expression of soluble protein, allow-

FIG 1 (A) 2-DOS (4,6-disubstituted 2-deoxystreptamine)-based aminoglycoside antibiotics amenable to modification by the nucleotidyltransferase
ANT(2�)-Ia (23); the 2�-OH site of modification is in red. (B) Crystal structure of gentamicin C1A (in yellow) in complex with a decoding A site oligonucleotide
(in grey) (7). Hydrogen bonds between the 2�-OH of gentamicin and the RNA are shown as dashed lines.
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ing us to obtain pure ANT(2�)-Ia (�95% homogeneity) after re-
moval of the N-terminal GST moiety (see Materials and Meth-
ods). To confirm the activity of recombinant ANT(2�)-Ia, we used
the EnzChek pyrophosphatase assay, which allows continuous
measurement of the release of pyrophosphate by ANT(2�)-Ia by
coupling it to the colorimetric detection of phosphate in the pres-
ence of excess pyrophosphatase. Accordingly, ANT(2�)-Ia kinetic
parameters (Table 1) were consistent with previous reports (33),
indicating that the protein retained full activity and was suitable
for structural and mechanistic studies.

Structural characterization of ANT(2�)-Ia reveals the molec-
ular framework for its activity. To decipher the mechanism un-
derlying adenylylation of 4,6-disubstituted 2-DOS-containing

aminoglycosides by ANT(2�)-Ia, we sought to determine the crys-
tal structure of the protein alone and in complex with a substrate
aminoglycoside. The apoenzyme structure was solved using the
sulfur single-anomalous-dispersion (S-SAD) phasing method.
The protein crystallized with one molecule per asymmetric unit,
and the apo structure was refined to 1.48 Å. The ANT(2�)-Ia–
kanamycin B cocrystal complex was solved by molecular replace-
ment (MR) using the apoenzyme as the search model and refined
to 1.73 Å. The final models of ANT(2�)-Ia contained interpretable
electron density for residues 3 to 177 (refinement statistics can be
found in Table 2).

The structure of ANT(2�)-Ia reveals that the protein comprises
two main domains: a larger N-terminal domain (residues 3 to 92)

TABLE 1 ANT(2�)-Ia steady-state kinetic parameters at 25°C

Enzyme and substrate kcat (s�1) Km (�M) kcat/Km (M�1 s�1)

Wild-type ANT(2�)-Ia; kanamycin B 5.2 � 0.2 23.9 � 6.6 2.1 � 105

Wild-type ANT(2�)-Ia; MgATP 15.3 � 0.6 35 � 7 4.4 � 105

D44A mutant; kanamycin B �0.05
D44A mutant; MgATP �0.05
D86A mutant; kanamycin B �0.05
D86A mutant; MgATP �0.05
H42A mutant; kanamycin B �0.05
H42A mutant; MgATP �0.05
R40A mutant; kanamycin B 7.5 � 0.2 16.5 � 1.6 4.53 � 105

R40A mutant; MgATP 8.1 � 0.6 97 � 14 8 � 104

TABLE 2 X-ray diffraction data collection and refinement statistics

Statistic

Result for ligand (PDB code)

Apo (4WQK) Kanamycin B (4WQL)

Data collection
Space group P21 P21

Cell dimensions
a, b, c (Å) 45.5, 42.1, 47.7 45.5, 42.0, 47.8
� (°) 105.49 105.2

Resolution (Å) 40.0�1.48 25.0�1.73
Rsym

a 0.036 (0.251)b 0.064 (0.564)
I/�(I) 63.68 (5.39) 33.4 (3.57)
Completeness (%) 96.8 (77.4) 100.0 (100.0)
Redundancy 7.0 (4.5) 4.4 (4.3)
Refinement
Resolution (Å) 40.0�1.48 25.0�1.73
No. of unique reflections: working, test 28,068, 1,995 18,351, 1,781
R factor/free R factorc 15.9/19.6 (28.3/32.1) 14.8/18.4 (28.4/33.1)
No. of refined atoms (molecules)

Protein 1415 1397
Magnesium 3 2
Substrate NA 33
Other solvent 45 52
Water 281 243

B factors
Protein 24.6 23.4
Magnesium 24.5 32.9
Substrate NA 45.6
Other solvent 47.4 52.3
Water 39.2 40.7

RMSD
Bond lengths (Å) 0.001 0.020
Bond angles (°) 1.441 1.668

a Rsym � 	h	i | Ii(h) � �I(h)� /	h	iIi(h), where Ii(h) and �I(h)� are the ith and mean measurements of the intensity of reflection h.
b Values in parentheses are those for the outer shells of the data.
c R � �|Fp

obs � Fp
calc|⁄�Fp

obs, where Fp
obs and Fp

calcare the observed and calculated structure-factor amplitudes, respectively.
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that is centered on a �-sheet with three interspersed �-helices and
a C-terminal domain (residues 93 to 177) that contains two
�-hairpins followed by four �-helices forming a bundle (Fig. 2).
The general conformation of the N-terminal domain of
ANT(2�)-Ia (Fig. 2) follows the �1-�1-�2-�2-X-�4-�3 NT fold
topology (where X corresponds to a variable insert across nucle-
otidyltransferase [NT] fold-containing proteins), which is typical
of this group of proteins (35). The C-terminal domain adopts two
�-hairpins, with the first forming an interaction on one edge of
the NT domain core �-sheet, plus a bundle of three �-helices.

ANT(2�)-Ia– kanamycin B complex structure reveals the spe-
cifics of antibiotic substrate recognition. The apo and kanamy-
cin B-bound structures of ANT(2�)-Ia align with a root mean
square deviation (RMSD) of 0.15 Å across 159 matching C� at-
oms, indicating that no gross conformational rearrangements oc-
cur upon aminoglycoside binding. The NT and C-terminal do-
mains of ANT(2�)-Ia form the walls of a large cleft ~28 Å in
diameter (Fig. 3A), which in the case of the kanamycin B-bound
structure harbors unambiguous additional electron density cor-
responding to the antibiotic molecule. The central ring of the an-
tibiotic is directed toward the interior of the protein, and the
prime and double-prime rings point toward solvent (Fig. 3A and
4B). The cleft also harbors two Mg2
 ions; the first ion (MgI

2
) is

coordinated by Asp44 and Asp46 and three ordered water mole-
cules, whereas the second ion (MgII

2
) is chelated by Asp44, Asp46,
and Asp86 side chains and the 2�-OH (the site of O-adenylylation)
and the 3�-NH2 groups of the antibiotic substrate (Fig. 3B). No-
tably, both Mg2
 ions in the ANT(2�)-Ia active site lack a sixth
coordinating ligand.

According to the ANT(2�)-Ia– kanamycin B complex struc-
ture, the antibiotic molecule is anchored in the enzyme active site
through eight hydrogen bonds formed between side chain or
main-chain atoms belonging to a total of nine residues (Fig. 3B).
On the substrate side, hydrogen bonds are formed by the hydrox-
yl/amino groups that face the interior of the active site (Fig. 3B).
Importantly, both the NT fold and the C-terminal domains of
ANT(2�)-Ia contribute residues involved in binding the antibiotic
substrate. The enzyme also forms two major stacking interactions
between aromatic side chains and the antibiotic, with Tyr74 and
Tyr134 situated over the central 2-DOS ring and the prime rings of
kanamycin B, respectively. Electron density corresponding to the
6� carbon and 6�-OH atoms of kanamycin B was relatively poorly
defined, likely due to the lack of interactions between ANT(2�)-Ia
and this area of the substrate. Overall, our analysis of the ANT(2�)-
Ia– kanamycin B structure showed that the enzyme’s active site
forms interactions with all three rings of the aminoglycoside sub-
strate. These interactions effectively secure the position of the
2�-OH nucleotidylation site in close proximity to the MgI

2
 ion
and the remainder of the deep active-site cleft, which is adequate
in size to accommodate a nucleoside triphosphate (Fig. 3A).

ANT(2�)-Ia shares conserved molecular features with other
NT-fold enzymes. Comparative structural analysis searches iden-
tified the lincosamide nucleotidyltransferase Lnu(A) (PDB ID:
4WH5 and 4FO1) as the closest structural homolog of ANT(2�)-Ia
(Z score of 16.4), despite low primary sequence conservation be-
tween these enzymes (17% sequence identity). The ANT(2�)-Ia
and Lnu(A) structures superposed with an RMSD of 2.4 Å over
146 C� atoms (Fig. 4A). However, Lnu(A) lacks an equivalent of
the C-terminal �-helix in ANT(2�)-Ia (residues 166 to 177). Im-
portantly, the similarity between these two enzymes extends to the
molecular composition of their active sites, including the posi-
tions of the Mg2
-coordinating residues, which in both enzymes
also coordinate the substrate antibiotic ring to be adenylylated
(Fig. 4B). In regard to the ANT(2�)-Ia– kanamycin B complex
structure, the antibiotic appears to be more solvent exposed than
lincomycin bound to Lnu(A); this observation is likely explained
by the highly polar properties of the aminoglycosides. Further-
more, ANT(2�)-Ia residues conferring interactions with the anti-
biotic substrate are markedly different from their equivalents in
Lnu(A).

We also observed significant structural similarity (Z score of
6.7 and C� RMSD of 3.4 Å across 109 matching C� atoms) be-
tween ANT(2�)-Ia and the lincosamide nucleotidyltransferase
LinB (36), an enzyme that also features the NT fold domain (see
Fig. S1 in the supplemental material). As observed between
ANT(2�)-Ia and Lnu(A), residues of LinB coordinating the Mg2


ions (Asp40 and Asp42) and the third acidic residue (Glu89) are
conserved (see Fig. S1); however, the C-terminal domains of
ANT(2�)-Ia and LinB do not show any structural similarity.

Interestingly, our homology search also revealed similarity be-
tween the NT fold of ANT(2�)-Ia and DNA polymerase � (Pol�)
(the palm domain) (37–39) (Fig. 4), a relationship that was also
noted with ANT(4=) (21). As we observed between ANT(2�)-Ia,

FIG 2 Crystal structure of ANT(2�)-Ia. The nucleotidyltransferase (NT) fold
is in black, and the C-terminal domain is in cyan; �-helices and �-sheets are
labeled.

Cox et al.

4 ® mbio.asm.org January/February 2015 Volume 6 Issue 1 e02180-14

http://www.rcsb.org/pdb/explore/explore.do?structureId=4WH5
http://www.ncbi.nlm.nih.gov/nuccore?term=4FO1
mbio.asm.org


Lnu(A), and LinB, the structural similarity with DNA Pol� ex-
tends to the architecture of the catalytic center (Fig. 4B). The three
acidic residues, two Mg2
 ions, and position of the nucleotidyla-
tion sites (3=-OH from the primer DNA for Pol�) spatially colo-
calize. In the polymerization reaction catalyzed by DNA Pol�,
Asp256 is considered the catalytic base that activates the primer
DNA 3=-OH for nucleophilic attack on the �-phosphate of in-
coming nucleoside triphosphates (40). However, beyond this do-
main, DNA Pol� contains additional N- and C-terminal domains
that do not share any structural similarity with ANT(2�)-Ia.

Finally, the structures of ANT(4=)-Ia, ANT(4�)-IIb, and
ANT(6)-Ia enzymes were also identified as ANT(2�)-Ia homologs
that share the conserved NT fold. However, the orientation of the
aminoglycoside substrates, the architecture of the C-terminal do-

mains, and their oligomeric state (dimeric) differ dramatically
from those of ANT(2�)-Ia.

Site-directed mutagenesis confirms individual roles of
ANT(2�)-Ia active-site residues. To investigate the role of
ANT(2�)-Ia active-site residues in catalysis and substrate recogni-
tion, we individually replaced them with alanine residues and
tested the activities of corresponding enzyme variants in vitro. The
Asp44-to-Ala substitution resulted in complete loss of ANT(2�)-Ia
activity against both kanamycin B and ATP, even at substrate con-
centrations 5 times the Km (Table 1). Mutation of Asp86 to Ala
likewise rendered the enzyme entirely inactive (Table 1).

We attempted to determine a nucleoside triphosphate/
analogue-bound complex structure of ANT(2�)-Ia but were not
successful. Due to similarities in the active sites of LinB and

FIG 3 Molecular basis underlying adenylylation of kanamycin B by ANT(2�)-Ia. (A) Surface representation of ANT(2�)-Ia with kanamycin B present in the large
cleft. Catalytic Mg2
 ions are shown as orange spheres. The 2�-OH is also labeled and the region of the protein involved in nucleotide binding is in blue (the
ternary structure of LinB [36] was used to assist in the identification of residues that may be important in nucleotide binding). (B) Interactions between the
ANT(2�)-Ia active site and kanamycin B. The catalytic base is labeled (Asp86), and bond distance (Å) between the 2�-OH of kanamycin B and Asp86 is also shown.
Electron density for kanamycin B is a simulated annealing Fo-Fc map contoured at 2.0 �, and the Mg2
 ions are as described above.
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ANT(2�)-Ia, the ternary structure of the former (36) was used to
assist in the identification of residues that may be important in
nucleotide binding. This comparison identified the positively
charged residues Arg40 and His42 as likely candidates; indeed, re-
placement of His42 resulted in loss of all enzyme activity (Table 1).
However, Arg40 only marginally reduced the nucleotidyltrans-
ferase activity. To ascertain the effect of Arg40 substitution on
nucleotide and kanamycin B binding, kinetic parameters were de-
termined for both. For kanamycin B, the kinetics did not differ
significantly from those of the wild-type enzyme, but nucleotide
binding appeared to be impaired (Table 1). These findings impli-
cate His42 and Arg40 in the function of ANT(2�)-Ia. Due to their
distance from the kanamycin B 2�-OH group (10 and 13 Å, respec-
tively), these residues are not involved in catalysis but instead
likely coordinate ATP.

DISCUSSION

We present the structural and mechanistic characterization of the
ANT(2�)-Ia enzyme in complex with its antibiotic substrate. The
chemical modification of the 2�-OH provides the molecular logic
for antibiotic resistance based on the importance of this site for
interaction with the drug target (Fig. 1B) (28). Combining all of

our findings allows the proposal of a mechanism for adenylylation
by ANT(2�)-Ia (Fig. 5). The putative mechanism of ANT(2�)-Ia
parallels the well-studied mechanism of DNA polymerization by
DNA Pol� (40). Binding of the nucleoside triphosphate groups is
stabilized by the two Mg2
 ions in the active site, His42 and Arg40,
plus perhaps other nearby residues, such as Lys147 and His148. A
catalytic base is predicted to be involved in a direct AMP transfer
mechanism from ATP to the aminoglycoside, via activation of the
2�-OH. Our mutagenic and structural data suggest Asp86 as a
likely candidate, due to the fact that it is essential for catalysis and
that its interactions with the 2�-OH of the aminoglycoside would
provide electrophilic polarization, increasing the nucleophilicity
of the alcohol. The interaction of MgII

2
 with the substrate 2�-OH
would also lend electrophilic polarization to this group. In gen-
eral, this chemical environment feature is consistent with a nu-
cleophilic attack on the �-phosphate of the nucleoside triphos-
phate by the substrate 2�-OH. Collapse of a tetrahedral
intermediate would release the energetic pyrophosphate as a suit-
able leaving group.

Catalysis relies on coordination of Mg2
 ions, positioning of
the substrate ring targeted for modification, and the presence of a
catalytic base. We observed that these active-site residues are con-

FIG 4 Conservation of the NT fold and catalytic architecture between ANT(2�)-Ia and nucleotidyltransferase enzymes. (A) Structures of ANT(2�)-Ia,
lincosamide nucleotidyltransferase Lnu(A) (PDB ID: 4FO1), and DNA polymerase � (PDB ID: 2FMS) (37). The NT fold is in black, and the C-terminal domains
are in light cyan. (B) Comparison of the catalytic architecture. Residues coordinating the Mg2
 ions are shown as sticks, Mg2
 ions and water molecules are
shown as orange and red spheres, respectively, and dashed lines indicate hydrogen bonds. Kanamycin B (KanB), lincomycin (Lcm), and primer DNA are shown
as sticks. DUP (2=-deoxyuridine-5=-�,�-imido-triphosphate) is shown as thin lines, and the �-phosphates are labeled. The modification site for each substrate
is labeled.
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served among other antibiotic nucleotidyltransferases, including
Lnu(A), LinB, ANT(4=)-Ia, ANT(4�)-Ib, and ANT(6)-Ia (36). The
similarity of catalytic architecture among these enzymes with that
of DNA Pol�, which was previously noted for LinB (36), is con-
sistent with a shared catalytic mechanism utilized by these en-
zymes. In turn, these observations suggest an evolutionary rela-
tionship between ANT(2�)-Ia, Lnu(A), LinB, and DNA Pol�
enzymes, with divergent evolution of the NT fold toward adapta-
tion for activity against chemically distinct substrates. Clearly,
substrate specificity dramatically differs and this diversification
appears to be conferred by distinct C-terminal domains.

We anticipate that since ANT and Lnu enzymes share clear
structural and catalytic similarities, as revealed through this study,
it may be possible to develop broad-spectrum inhibitors against
antibiotic nucleotidyltransferases. This strategy would rejuvenate
multiple classes of antibiotics that are susceptible to inactivation
via nucleotidylation. To allow for this possibility, it is necessary for
these inhibitors to target the core nucleotidyltransferase catalytic
machinery, since targeting the substrate recognition domain
would be less fruitful. This study will allow such focused efforts,
leading the way for structure-based drug design and the develop-
ment of next-generation antibiotics that are recalcitrant to adeny-
lylation.

MATERIALS AND METHODS
Overexpression and purification of ANT(2�)-Ia. E. coli Rosetta (Merck
KGaA, Darmstadt, Germany) (�DE3; pDEST15:aadB) (aadB, GenBank
no. ACX70191.1) was used for overexpression of ANT(2�)-Ia as a GST
fusion product as previously described (41). Glutathione affinity chroma-
tography was utilized as an initial purification step in buffer A (20 mM
Tris [pH 8.0], 300 mM NaCl), and the GST fusion tag was removed by
tobacco etch virus (TEV) protease cleavage at 12°C, followed by elution of
the cleaved protein with buffer A. ANT(2�)-Ia was purified to high homo-
geneity (�95%) by the inclusion of a final purification step involving gel
filtration chromatography. Separation was carried out at 4°C using a
HiPrep S200 (26/60) prepacked column (GE Healthcare), and samples
were eluted in buffer A (20 mM Tris [pH 8.0], 300 mM NaCl, 1 mM
dithiothreitol [DTT], and 5 mM MgCl2). For determination of the oligo-
meric state of ANT(2�)-Ia, the column was calibrated using a gel filtration
LMW calibration kit (GE Healthcare) using the manufacturer’s guide-
lines. ANT(2�)-Ia eluted as a single well-defined peak corresponding to a
monomeric form and a molecular mass of ~20 kDa; accordingly, analysis
of all crystal structure contacts using the PDBePISA server (42) did not
reveal any oligomeric assemblies.

Crystallization of ANT(2�)-Ia and data collection. ANT(2�)-Ia was
concentrated to 60 mg/ml, and crystals were grown at 20°C from hanging
drops using the vapor diffusion method. Optimized crystallization con-
ditions for ANT2(2�)-Ia were 10% 2-propanol, 20% polyethylene glycol
(PEG) 4000, and 0.1 M HEPES (pH 7.5). ANT(2�)-Ia was cocrystallized
with kanamycin B (Sigma Aldrich, Oakville, ON, Canada) at a ratio of 5
times the molar concentration of the former. For data collection, the
crystals were passaged through mother liquor containing 20% (vol/vol)
glycerol and frozen in nitrogen.

Data were collected at 100 K with Cu K� X rays generated by a Rigaku
007 Microfocus rotating-anode generator equipped with VariMax HF
optics and a Rigaku Raxis IV2
 detector. All X-ray data were reduced
with HKL-3000 (43). The ANT(2�)-Ia apoenzyme structure was solved by
S-SAD using Phenix.solve (44); four of the six sulfur sites (four cysteine
residues) were located. Automated model building was performed with
Phenix.autobuild, refinement was performed using Phenix.refine, and
manual model building was performed with Coot (45). The ANT(2�)-Ia–
kanamycin B complex structure was solved by molecular replacement
(MR) using the apoenzyme structure. Fo-Fc difference density corre-
sponding to the aminoglycoside molecule was readily traceable after MR.
Translation-libration-screw rotation (TLS) parameterization was utilized
for refinement of both structures. Geometries were verified using the Phe-
nix and Coot validation tools and the RCSB PDB deposition server. Oc-
cupancy values for solvent molecules and Mg2
 atoms were refined. All B
factors were refined as isotropic. Average B factor and bond angle/bond
length RMSD values were calculated using Phenix.

Structure analysis. For comparison of similar structures, the C�
RMSD was calculated using the SSM superposition tool in Coot (46) and
the Dali server (47). The PDBePISA tool (42) was utilized to identify
protein-ligand interactions. Structural homologs in the PDB were identi-
fied using the Dali server (47). Secondary structure boundaries were gen-
erated using the PDBsum server (48).

Site-directed mutagenesis. QuikChange (Agilent Technologies, Mis-
sissauga, Canada) site-directed mutagenesis was used to introduce point
mutations within aadB in the pDEST15 vector (Life Technologies), ac-
cording to the manufacturer’s suggested guidelines. Primers were de-
signed using the QuikChange primer design program (Agilent Technolo-
gies). Resulting mutants were confirmed by sequencing at the MOBIX
Central Facility (McMaster University, Hamilton, Canada).

ANT(2�)-Ia steady-state kinetic studies. The continuous EnzChek
pyrophosphate assay (Life Technologies) was used to assess wild-type and
mutant ANT(2�)-Ia enzyme activity in vitro. The reaction was followed at
360 nm using a Spectramax Plus384 (Molecular Devices) microtiter plate
reader. The assay was performed in duplicate, in 96-well plates (Nunc,
ThermoScientific) with a final volume of 100 �l and 50 mM HEPES
[pH 7.5], 40 mM KCl, 10 mM MgCl2, and 5 �g of ANT(2�)-Ia. For char-

FIG 5 Magnesium dependent adenylylation of gentamicin C2 by the aminoglycoside-modifying enzyme ANT(2�)-Ia.
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acterization of kanamycin B, ATP was kept at 5 times the Km, and for
assessment of ATP dependence, kanamycin was also kept at 5 times the
Km. The reaction mixtures were incubated with shaking for 3 min at 25°C,
followed by initiation with nucleotide, and the formation of pyrophos-
phate was monitored for 10 min. Data were assessed using software in
GraFit 5.0.13 (Erithacus Software).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.02180-14/-/DCSupplemental.
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