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Late-glacial elevated dust 
deposition linked to westerly wind 
shifts in southern South America
Heleen Vanneste1,2, François De Vleeschouwer1,2, Antonio Martínez-Cortizas3, Clemens von 
Scheffer1, Natalia Piotrowska4, Andrea Coronato5 & Gaël Le Roux1,2

Atmospheric dust loadings play a crucial role in the global climate system. Southern South America 
is a key dust source, however, dust deposition rates remain poorly quantified since the last glacial 
termination (~17 kyr ago), an important timeframe to anticipate future climate changes. Here we 
use isotope and element geochemistry in a peat archive from Tierra del Fuego, to reconstruct 
atmospheric dust fluxes and associated environmental and westerly wind changes for the past 
16.2 kyr. Dust depositions were elevated during the Antarctic Cold Reversal (ACR) and second half of 
the Younger Dryas (YD) stadial, originating from the glacial Beagle Channel valley. This increase was 
most probably associated with a strengthening of the westerlies during both periods as dust source 
areas were already available before the onset of the dust peaks and remained present throughout. 
Congruent with glacier advances across Patagonia, this dust record indicates an overall strengthening 
of the wind belt during the ACR. On the other hand, we argue that the YD dust peak is linked to 
strong and poleward shifted westerlies. The close interplay between dust fluxes and climatic changes 
demonstrates that atmospheric circulation was essential in generating and sustaining present-day 
interglacial conditions.

The timing and nature of paleoclimatic changes in southern South America since the last glacial are 
still a matter of debate. A major issue is the reconstruction of changes in the intensity and latitudinal 
position of the southern westerly wind (SWW) belt as it exerts an important control on the Southern 
Hemisphere’s and global climate1. Fossil pollen, macrofossil records, glacier fluctuations, are among the 
several proxies used for this reconstruction2–4. Most of these indicators, however, are interpreted as prox-
ies for precipitation but are in fact also influenced by temperature1,4. Furthermore they are based on pres-
ent precipitation-SWW strength correlation, a relationship that is not straightforward and might have 
been different in the past5. On the other hand, dust deposition is a function of particle availability and 
transport6. The former is dependent on vegetation, ice and snow cover, while wind speed and gustiness 
are the main drivers of dust emissions7. Therefore, together with the available data on paleovegetation 
and ice cover in Patagonia1, paleodust records potentially provide unique information on wind strength 
and pattern changes. Patagonia is an important dust provider to the southwest Atlantic Ocean and the 
Antarctic Peninsula, particularly during glacial periods8,9. Since the Last Glacial Maximum (19–23 kyr 
ago10), however, dust accumulation rates dropped significantly in Antarctic ice cores11, corresponding 
with a significant glacier retreat in Patagonia12. Accordingly, this decline in dust has been associated 
with the formation of proglacial lakes due to glacier melt, trapping the sediments which were otherwise 
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deposited on outwash plains, prone to mobilization12. To date, this hypothesis could not be verified 
because of a lack of paleodust records from Patagonia.

Results
To investigate the dustiness of Tierra del Fuego during the late-glacial - Holocene, we sampled an ombro-
trophic mire (referred to as Harberton bog; 54.9 °S, 67.2 °W) located on the south coast of Isla Grande 
de Tierra del Fuego along the Beagle Channel (Fig. 1). Ombrotrophic mires retrieve inorganic material 
solely via atmospheric deposition and therefore are excellent recorders of atmospheric dust content13. In 
addition, mires are abundant in southwest Patagonia14 due to high annual precipitation, showing high 
accumulation rates and are thus archives with potentially high-resolution chronologies. The base of the 
core is dated at 16.2 ±  0.2 cal kyr BP (Supplementary Table S1), indicating the approximate time of peat-
land initiation. This is slightly younger than earlier basal ages reported for this mire (17.8 cal kyr BP15), 
the latter indicating that Harberton was already ice-free by ~17.8 cal kyr BP as the result of deglaciation.

The total dust accumulation rate shown in Fig.  2a is derived from elemental concentration-depth 
records, specifically from rare earth elements (REE) measured within the bulk peat samples at a resolu-
tion of ca. 100 yr. REE are considered to be conservative, insoluble and widely present in crustal rocks, 
hence they can be used as a quantitative indicator of the natural variation in mineral matter inputs to 
bogs. The Harberton record shows three periods of significant increases in atmospheric dust deposition 
(ADD) since the late-glacial: (1) from 14.8 to 12.2 cal kyr BP, (2) from 12.1 to 11.6 cal kyr BP and (3) from 
7.8 to 7.7 cal kyr BP (Fig. 2a).

Apart from mineral dust, tephra layers are omnipresent in paleorecords from Patagonia16. Consequently, 
to extract the signal of atmospheric mineral dust deposition related to climate, we applied principal com-
ponent analysis to the geochemical composition of the oldest section of the record (7.1 to 16.2 cal kyr BP), 
where the dust peaks occur. Two principal components explain 91% of the variance, which can be 
appointed to mineral dust (principal component 1, PC1) and volcanic ash (principal component 2, PC2). 
As 95% of the variance in Sm is due to PC1 and 93% in K to PC2 (see Supplementary Information Fig. 
S2), Sm and K are presented here as reference elements (i.e. consistent proxies) for respectively mineral 
dust (PC1) and volcanic ash (PC2). From the K and Sm profiles (Fig. 2b) it is clear that the oldest two 
dust peaks (at 14.8-12.2 and 12.1-11.6 cal kyr BP) are not associated with volcanic activity and therefore 
can be interpreted in terms of paleoclimate and environmental changes.

To further trace the origin of the atmospheric dust, we determined the neodymium isotopic com-
position of a selection of peat samples across the intervals with increased ADD (Fig.  2a and Table  1). 
Epsilon Nd values are centred at ca. –3.3 ±  0.2 (ranging from –3.0 ±  0.2 to –3.9 ±  0.1) with exception of 
two samples at 7.8 and 8 cal kyr BP, which have positive epsilon Nd values of respectively 2.6 ±  0.1 and 
1.2 ±  0.2. The former is associated to a tephra layer of the Hudson volcano dated at 7.7 ±  0.3 cal kyr BP, 
for which an epsilon Nd value of 2.8 has been identified in a previous study17. The sample at 8 cal kyr BP 
with an epsilon Nd value of 1.2 ±  0.2 may represent a mixture of tephra material and atmospheric dust.

Discussion
Glacier fluctuations have been suggested as an important dust generating process in South Patagonia12. 
Harberton area is a local drumlin field generated by an outlet glacier of the Darwin Cordillera ice cap14,18. 
This glacier covered the Beagle Channel and its surroundings during the Last Glacial Maximum, reach-
ing as far east as Punta Moat15 (Fig. 1c). With the onset of the deglaciation the glacier retreated westwards 
(Fig. 1c), allowing the development of terrestrial and lacustrine environments in the ice-free valley until 
ca. 11 cal kyr BP, when the Beagle Channel was flooded by the sea (Fig. 2c)19. Accordingly, for the time-
span of the mineral dust peaks in the Harberton record, the Beagle Channel was a potential dust source. 
Moreover the Nd isotopic signature of the last deglaciation terminal moraine at Punta Moat, −3.0 ±  0.1, 
is remarkably similar to the epsilon Nd values measured in the peat samples, −3.3 ±  0.2 (Fig. 2a), which 
is significantly more negative than the epsilon Nd values of any other known Patagonian dust sources 
(varying from −2.6 to 0.817). Consequently, we suggest that the ice-free Beagle Channel was the main 
source of mineral dust for the south coast of Tierra del Fuego during the late-glacial.

Although the Beagle Channel became progressively ice-free west of Harberton since ~17.8 cal kyr BP19, 
we record two separate episodes of increased ADD, of which the eldest starts as early as 14.8 cal kyr BP. 
Furthermore, the regional vegetation cover was dominated by grassland and heatland between ~17 and 
11 cal kyr BP (Fig.  2d,e), plant communities that thrive in a cold (i.e. colder than today) and dry envi-
ronment4,20. Hence, despite the availability of sources and conditions for dust transport (low ice and 
vegetation cover, arid climate) since the onset of the mire formation (i.e. at 16.2 cal yr BP), dust deposi-
tion increased only significantly ca. 1.4 kyr later (i.e. at 14.8 cal kyr BP). This suggests a change in climate 
conditions 14.8 kyr ago, favouring dust mobilization. The timeframe of the first dust peak coincides with 
the Antarctic Cold Reversal (~14.1–12.8 cal kyr BP; Fig.  2b), a climate event known from Antarctic ice 
cores as a colder period21. Although the ACR is expressed in advances of outlet and alpine glaciers in 
respectively South Patagonia (51-52 °S)22 and the Fuegian Andes (54-55 °S)23, there are no reports of a 
glacier re-advances in the Beagle Channel14. On the other hand, proglacial lakes occupied deeper areas 
of the basin19. Accordingly, this data set shows that despite the presence of proglacial lakes, the Beagle 
Channel was still functioning as an important dust source for the region. Additional sampling may be 
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Figure 1. Modern climatology and Harberton bog location. a, Southern Hemisphere mean monthly 
zonal wind strength (m s−1) at 850 hPa based on NCEP/NCAR reanalysis data56, indicating present-day 
location of southern westerly wind belt. b, Topographic map of Patagonia (South America) and the location 
of the Harberton bog and paleoclimatic records discussed in text. NPI and SPI, respectively Northern and 
Southern Patagonian Ice Field. c, Topographic map of Beagle Channel and the locations of paleoclimatic 
records discussed in text and bogs for which the basal age has been measured (cal yr BP)14, indicating the 
timing of peat initiation. Punta Moat is the terminal moraine of the Last Glaciation15. Topographic maps 
were created in Surfer® 8 using gridded topography xyz data extracted from the SRTM30_PLUS V10 global 
database57.

needed to determine its impact, and that of other glacial valleys in Patagonia, on the environment at 
greater distances and ultimately on the global dust cycle.
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Figure 2. Paleoenvironmental data from the Southern Hemisphere. a, Dust accumulation rate (g m−2 yr−1) 
and neodymium isotopic composition (ε Nd) of the inorganic fraction of peat samples at the Harberton bog 
(54.9 °S, 67.2 °W; this study). b, Sm (ug g−1) and K (%) concentrations in bulk peat samples from Harberton 
bog (this study). c, Estimated eustatic sea level curve and local tectonic uplift (m) of the Beagle Channel 
area19. d,e, Nothofagus and Poaceae pollen records (%) from Harberton58, Paso Garibaldi4 and Puerto 
Hambre20 bogs (Tierra del Fuego and South-Patagonia). ACR =  Antarctic Cold Reversal; YD =  Younger Dryas.
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After a brief episode of low dust fallout, a second dust peak was recorded from ~12.1 to 11.6 cal kyr BP, 
coinciding with the second half of the Younger Dryas (~12.9–11.7 cal kyr BP24, Fig. 2b). Whilst the YD 
was a cold and dry period in the Northern Hemisphere with an elevated atmospheric dust load13, there 
is still much debate on its existence and climatic nature in the Southern Hemisphere. Overall, outlet 
glaciers of the Southern Patagonian Ice Field diminished in size during the YD25,26. Pollen sequences 
from Harberton and neighbouring bogs however, point to a colder and drier steppe/tundra environ-
ment4,20. The intermittent dust record of Harberton is in contrast with the continuous low regional veg-
etation cover and the exposure of fine glaciogenic and glacial outwash sediments in the ice-free Beagle 
Channel valley during the late-glacial. Accordingly, dust transport may not have been limited by the 
availability of dust source areas, indicating that the aeolian transport capacity, i.e. the ability of the wind 
to transport sediment27, increased. This suggests that the westerly winds, which control the climate in 
Patagonia/Tierra del Fuego28, intensified during both periods. As Harberton bog is located on the lee-
side of the Andes it is subjected to Foehn winds. These downslope desiccating winds are more vigorous 
where strong westerlies cross the Andes therefore, outbalancing the westerly precipitation that comes in 
through the South Pacific29. Hence, the elevated ADD observed at Harberton is best explained by more 
vigorous westerly winds at the respective times.

In addition to the Harberton record, a number of paleoproxy records attest to an increased zonal 
flow during the ACR in both north (41 °S) and southwest (50–55 °S) Patagonia, indicating an overall 
strengthening of the westerlies2,22. On the contrary, to date, data on latitudinal shifts and intensity varia-
tions of the westerlies related to the YD climate event are scarce to non-existent in Patagonia and Tierra 
del Fuego2,30. Therefore, the Harberton dust record is of added value as it shows that westerlies were 
present and strong in Tierra del Fuego during the second half of the Northern Hemisphere YD. This is in 
agreement with an oxygen isotope record from Laguna Potrok Aike (52 °S; Fig. 3b): low oxygen isotopic 
values indicate low lake levels from 12.1 to 11.8 cal kyr BP due to increased evaporation induced by strong 
westerly winds30. The absence of similar observations further north in Patagonia, either indicates that 
the latitude, ~52 °S, represented the northern limit of the wind belt and/or the lack of appropriate wind 
proxies. For the ACR, glacier advances in the Andean Cordillera are linked to increased precipitation 
due to stronger westerlies22. Correspondingly, the onset of a glacial retreat at the Patagonian Ice Field 
(46°–51 °S) since the termination of the ACR till the Neoglacial31,32, could be interpreted as weakened 
westerlies during the YD, assuming precipitation was the main driver of glacier fluctuations33.

Based on this given data, we hypothesize that during the YD the wind belt most likely shifted south-
wards towards Antarctica or contracted. A southward displacement is in line with previous findings. 
The temperature asymmetry between the Northern and the Southern Hemispheres during the YD is 
believed to have driven the atmospheric intertropical convergence zone (ITCZ) towards the equator, 
pushing the westerlies southwards towards Antarctica34. The ITCZ displacement has been inferred by 
the occurrence of light coloured homogenous sediments in the Cariaco Basin (10 °N, Fig. 3c)35 and the 

Sample ID (depth) 143Nd/144Nd ±(2σ)  εNd ±(2σ)

Peat samples

HAR12-PB01A-493 (683 cm) 0.512769 0.000006 2.56 0.12

HAR12-PB01A-502 (695 cm) 0.512699 0.000010 1.19 0.20

HAR12-PB01A-549 (760 cm) 0.512462 0.000005 − 3.43 0.10

HAR12-PB01A-588 (814 cm) 0.512436 0.000005 − 3.94 0.10

HAR12-PB01A-599 (829 cm) 0.512483 0.000011 − 3.02 0.21

HAR12-PB01A-609 (843 cm) 0.512482 0.000006 − 3.04 0.12

HAR12-PB01A-617 (854 cm) 0.512471 0.000007 − 3.26 0.14

HAR12-PB01A-621 (859 cm) 0.512481 0.000009 − 3.06 0.18

HAR12-PB01A-639 (884 cm) 0.512469 0.000008 − 3.30 0.16

HAR12-PB01A-649 (899 cm) 0.512453 0.000007 − 3.61 0.14

HAR12-PB01A-656 (910 cm) 0.512466 0.000010 − 3.36 0.20

HAR12-PB01A-674 (935 cm) 0.512479 0.000008 − 3.10 0.16

HAR12-PB01A-680 (944 cm) 0.512457 0.000005 − 3.53 0.10

HAR12-PB01A-701 (974 cm) 0.512457 0.000006 − 3.53 0.12

HAR12-PB01A-733 (1018 cm) 0.512438 0.000006 − 3.90 0.12

Till sample

Moat_I-30 (87.5 cm) 0.512486 0.000006 − 2.97 0.12

Table 1.  Neodymium isotopic signature of 15 peat samples from Harberton bog (54.9 °S, 67.2 °W) and  
1 till sample from the terminal moraine at Punta Moat (55.0 °S, 66.8 °W).
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Figure 3. Proxy records of deglaciation during the last glacial termination. a, Dust accumulation rate 
(g m−2 yr−1) at the Harberton bog (54.9 °S, 67.2 °W; this study). b, corrected paleo lake-water oxygen isotopic 
composition (δ 18Olake corr; ‰) from Laguna Potrok Aike (52 °S)30. c,  speleothem δ 18O values (VPDB ‰) 
from the Boutuverá Cave (South Brasil, 27 °S)36 and sediment reflectance record (L*) from the Cariaco Basin 
(11 °N)35, proxies for rainfall and hence the position of intertropical convergence zone (ITCZ). d, Opal flux 
(g cm−2 kyr−1) from a ocean sediment core in the South Atlantic, proxy for Southern Ocean upwelling34 and 
atmospheric CO2 concentrations (ppmv) from EDC on the EDC3 timescale59. e, EDC δ D values (‰)19 on 
the EDC3 timescale, as a proxy of temperature and dust flux data (mg m−2 yr−1)11. f, δ 18O values (‰SMOW) 
of NGRIP24. ACR =  Antarctic Cold Reversal; YD =  Younger Dryas.
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low speleothem δ 18O values measured in the Botuverá cave in southern Brazil (27 °S, Fig. 3c)36, gener-
ated during periods of respectively reduced and increased rainfall, i.e. when the ITCZ shifted south-
wards. Opal flux records from the Southern Ocean indicate enhanced westerly wind-driven upwelling 
during the YD (Fig. 3d), explaining the rise in atmospheric carbon dioxide concentrations in Antarctic 
ice cores (Fig.  3d)34. Accordingly, as we observe a climate signal in the Harberton dust record cor-
responding to the second half of the Northern Hemisphere YD, this dataset supports the view of an 
atmospheric mechanism37 besides the bipolar seesaw effect to explain the opposing behaviour between 
the hemispheres during the YD. The short and low ADD episode between the ACR and YD dust peak 
possibly indicates the timing of the reorganisation of the atmospheric circulation. This hypothesis will 
have to be tested in the future.

Regardless of the availability of dust in significant quantities, up to 120 g m−2 yr−1, in Tierra del 
Fuego during the ACR and YD, the majority did not reach Antarctica. Furthermore, besides the spike at 
12.9 cal kyr BP in the Antarctic dust record (Fig. 3e), the latter differs significantly from the Harberton 
record (particularly from 16.2 to ~14.6 cal kyr BP). Does this imply that Tierra del Fuego, despite its close 
location, was not an important dust source for Antarctica at this time? Our dust record is in agreement 
with previous observations, which suggest that Australia and Antarctica have become more important 
relative to southern South American sources since 15 kyr, as a result of atmospheric circulation reorgan-
isation38–41.

Our results fill an important geographical gap in the present-day global dust record. Furthermore, this 
data set demonstrates a great sensitivity of the dust cycle to relatively short climatic events (compared to 
glacial-interglacial transitions), which is most valuable for understanding and modelling dust dynamics.

Methods
Site Location. The Harberton bog (54.9 °S, 67.2 °W, 31 m a.s.l.) is one of the numerous mires located 
on the south coast of Isla Grande de Tierra del Fuego, along the Beagle Channel. Mean annual rain-
fall is around 600 mm yr−1 and mean annual temperature is 6 °C. The bog surface is dominated by 
Sphagnum magellanicum with a sparse cover of Marsippospermum grandiflorum and Empetrum rubrum. 
The present-day landscape of this region was mainly shaped by outlet glaciers of the Upper Pleistocene 
Darwin Cordillera ice cap: the Beagle Channel and Lake Fagnano glaciers besides alpine glaciers from 
the Fuegian Andes. Upon deglaciation, peatlands developed in small lakes and ponds in local drumlin 
fields, such as the Harberton area15,42, entrenched valleys and between moraines14.

Sample collection. Peat cores were recovered from Harberton bog in 2012 by means of a stainless 
steel Wardenaar corer43 for the top meter, followed by a stainless steel Russian corer (50 cm length; 10 cm 
internal diameter) for the rest of the core. A second overlapping core was taken in case the initial one 
would show signs of disturbances caused by coring. This core was, however, not analysed as we did not 
detect any disturbances in the master core. All cores were photographed, described and packed in plastic 
film and PVC tubes to be stored in wooden boxes for shipment to France. At EcoLab, the cores were 
frozen at −20 °C, unpacked and sliced at 1 cm resolution using a stainless steel band saw. Subsequently, 
each slice was cleaned with MQ water, edges removed and subsampled for further analyses. The thickness 
of each slice was measured using a vernier caliper, to calculate the loss of material due to each cut. An 
average loss of 2 mm per cut was calculated (= [total core length (1050 cm) – cumulative sample thick-
ness (891 cm)]/Nr of samples (739)) and accounted for when recalculating the mid-point depth of each 
sample. All the samples were stored at −20 °C. One till sample was collected in 2005 from the terminal 
moraine of the Beagle Channel glacier at Punta Moat, in a cliff formed due to the marine transgression 
and in a section of the pedo-sedimentary sequence (85–90 cm) where no pedogenetic transformations 
were evident. Before sampling, 10 cm of the outer face of the sediment were removed to avoid contam-
ination or modification by present materials/processes. Detailed information on the geochemical and 
radiocarbon analyses as well as the age model is given in the Supplementary Information.

Radiocarbon measurements and age model. Ten plant macrofossil samples were selected for 
radiocarbon analyses following established protocols44. All samples were prepared at the GADAM 
centre (Gliwice, Poland) where each sample was washed using the acid-alkali-acid extraction proto-
col (to remove carbonate, bacterial CO2 and humic/fulvic acid), dried, combusted and graphitised45. 
Radiocarbon concentrations were measured and 14C ages were calculated46 at the Rafter Radiocarbon 
Laboratory (Lower Hutt, New Zealand) and at DirectAMS Laboratory (Bothell, USA). Details of the 
dated material and results are given in Supplementary Table S1. The age-depth model was obtained using 
the Clam program47, which includes calibration of the 14C dates of the peat samples and a tephra layer 
of the Hudson volcano (dated 6850 ±  160 14C yr BP16 at 682.6 cm depth) using the SHCal13 calibration 
curve48. The best fit was obtained using a smooth spline (Supplementary Fig. S1). Based on 10000 iter-
ations, minimum and maximum ages for 2 sigma confidence interval were determined for each sam-
ple. Maximum likelihood ages were estimated based on the weighed average of all generated age-depth 
curves (Supplementary Table S2, excel file).
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Determination of major and trace element concentrations. A total of 205 bulk peat samples 
(at a ~5 cm resolution) were processed for element geochemistry. First, each sample was freeze-dried 
and powdered using an agate mortar. Subsequently, 100 mg of each sample was acid digested in Teflon 
beakers. The following digestion procedure was applied to each sample49: (1) a mixture of 0.5 ml HF and 
2 ml 16 M HNO3 was added and left on the hotplate at 110 °C for 2 days; (2) 1 ml of H202 was added 
to react for 6 h at room temperature; (3) 2 ml of 16 M HNO3 was added and left at 90 °C for 2 days to 
finalize the digestion. After each step, samples were evaporated to dryness. Finally, the samples were dis-
solved in 2 ml of 35% HNO3, transferred into 15 ml polypropylene tubes (Falcon® ), and further diluted 
with Milli-Q water up to 14 ml. Major elements (i.e. aluminium, titanium, magnesium and potassium) 
concentrations were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES; 
IRIS Intrepid II). Trace elements (strontium, gallium, rubidium, zircon, cesium, scandium, lead, tho-
rium, uranium, hafnium, rare earth elements) concentrations were determined by quadrupole induc-
tively coupled plasma mass spectrometry (ICP-MS; Agilent Technologies 7500ce) at the Observatoire 
Midi Pyrenees (Toulouse, France). The ICP-MS was calibrated using a synthetic multi-element standard, 
which was run every 8 samples, while an In-Re solution was used as an internal standard. The analytical 
performance was assessed by analyzing 3 international certified reference materials: SRM1947 (peach 
leaves), SRM1515 (apple leaves) and GBW-07063 (bush branches and leaves). The results are reported in 
Supplementary Table S3. Measurements by ICP-OES of Mg, K and Ti were all within 10% of the certified 
values while the accuracy on the Al concentrations varied from 10 to 26%. The elements measured by 
ICP-MS were all within 15% of the certified values with exception of Sc (17%) and La (21%). The repro-
ducibility of the digestion procedure, determined by repeat analyses of GBW-07063 (n =  10), SRM1947 
(n =  7), SRM1515 (n =  3) and 6 peat samples (each n =  3), was generally better than 17%. The blanks for 
all elements considered here were < 0.01 ppm.

Neodymium isotopic composition of peat and till samples. Fifteen peat samples and 1 till sam-
ple were selected for neodymium (Nd) isotope analyses. To reduce complications associated with organic 
material during the separation process, 400 mg of bulk peat sample (100 mg for the till sample) was dry 
ashed in a furnace at 550 °C for 5 hours. Subsequently the samples were acid digested using a mixture of 
concentrated HNO3 and HF. The accuracy and reproducibility of the digestion procedure regarding Nd 
concentrations, determined by repeat analyses of the international certified standard GBW-07063 (n =  3), 
was better than 10%. Each sample was subsampled in order to make sure that a mass of 250 ng Nd was 
present in the sample that was loaded onto the columns.

Nd was separated from the matrix using a two-column ion-exchange technique. First, the rare earth 
elements (REE) were extracted from the sample using a cation exchange column (Bio-Rad poly-prep) 
packed with ~2 ml of Dowex AG50W-X8 resin (200–400 mesh). Then, Nd was isolated from the other 
REE by reversed phase chromatography50 using columns (0.4 cm inner diameter, 8 cm long) packed with 
Ln-Spec resin (50–100 mesh). Details on this separation procedure are given in Supplementary Table S4. 
Procedural blanks were consistently less than 2 pg g−1.

The Nd isotopic ratios were measured on a thermal ionisation mass spectrometer (TIMS) Finnigan 
MAT 261 (static mode) at Observatoire Midi Pyrénées (Toulouse, France). 143Nd/144Nd ratios were deter-
mined as the average of 150 ratios normalized to 146Nd/144Nd =  0.7219 to correct for instrumental-induced 
mass fractionation. The international standard La Jolla (143Nd/144Nd =  0.51185851) was analysed at every 
session to monitor instrumental drift. Measured values were 0.511851 ±  0.000006 (2σ , n =  3) which 
translates into an external precision of 0.1 ε Nd units.

Dust accumulation rate calculations. Dust AR (g m−2 yr−1) are calculated for each sample based on 
the REE concentrations measured in the peat samples using the following equations:

∑µ( ) = × × ( )
− −Total REE AR gcm yr REE peat AR density[ ] 1i i i i

2 1

∑= × ( )Dust AR total REE AR REE[ ] 10000 2i i UCC

with ∑[REE]i the of the concentrations (μ g g−1) of the REE in sample i and ∑[REE]UCC the sum of the REE 
concentrations in the upper continental crust (148 μ g/g52). Peat AR (cm yr−1) and density (g cm−3) are 
given in Supplementary Table S2 (excel file). The density of each sample was determined by measuring 
the volume using a vernier caliper and subsequently weighing the sample after freeze drying it.

Principal component analysis. Principal component analysis (PCA) was performed using 
SPSSStatistics 20 software using a varimax rotation to reduce dimensionality within the dataset. Based 
on the co-variance between the variables (i.e. chemical elements in this study), a number of components 
are extracted explaining the total variance within the dataset. In practice this means that the components 
will contain elements that show similar variation, in this case similar concentration-depth profiles. Before 
analysis all data were first log transformed (log10) and subsequently converted to z-scores to account 
for the compositional nature of the data. The latter are calculated as follows z =  (Xi− XAvg)/Xstd with, Xi 
the concentration of element i, Xavg the average concentration of all samples for element i and Xstd is the 
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respective standard deviation. Both transformations rescale the data and hence open the closed system 
of concentrations53–55. A varimax rotation is an orthogonal rotation to optimize the loadings of variables 
in the components, i.e. to explain the variance in the dataset by more homogeneous components. PCA 
was only applied to the oldest section of the record (from 7.1 to 16.2 cal kyr BP) because we are interested 
in identifying the source of the dust peaks occurring in this section of the record. Secondly, the overall 
concentrations in the youngest part of the core are very low which would give a lot of noise to the data 
set and thus PCA outcome. The result of the PCA analysis is shown in Supplementary Fig. S2.
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