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Abstract

Background: Proteins that selectively transport water across the membranes of cells are
recognized as important in the normal functioning of the body systems of vertebrates. There are
I3 known mammalian aquaporins (AQPO to AQPI12), some of which have been shown to have
unexpected cellular roles beyond transmembrane water transport. The availability of non-
mammalian vertebrate animal models has the potential to provide insight into the emergence of
diverse function in the aquaporins. The domesticated chicken (Gallus gallus) is the premier avian
model for biological research; however, only a limited number of studies have compared chicken
and mammalian aquaporins. The identification of aquaporins that share functional motifs or are
expressed in the same tissues in human and chicken could allow the further functional analyses of
homologous aquaporins in both species. We hypothesize that integrative analyses of protein
sequences and body site expression of human, mouse, rat and chicken aquaporins has the potential
to yield novel biological hypotheses about the unexpected cellular roles of aquaporins beyond
transmembrane water transport.

Results: A total of 76 aquaporin transcript models derived from 47 aquaporin genes were
obtained for human, mouse, rat and chicken. Eleven body sites (brain, connective tissue, head,
heart, liver, muscle, ovary, pancreas, small intestine, spleen and testis) were identified in which
there is suggested expression of at least one mammalian and one chicken aquaporin. This study
demonstrates that modern on-line analysis tools, a novel matrix integration technique, and the
availability of the chicken genome for comparative genomics and expression analysis enables
hypothesis generation in several important areas including: (i) alternative transcription and
speciation effects on the conservation of functional motifs in vertebrate aquaporins; (ii) the
emergence of basolateral targeting in mammalian species; (jiii) the potential of the cysteine-rich
AQPI 1 as a possible target in the pathophysiology of neurodegenerative disorders such as autism
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that involve Purkinje cells; and (iv) possible impairment of function of pancreas-expressed AQP|2
during pancreatotropic necrosis in avian influenza virus infection.

Conclusion: The investigation of aquaporin function in chicken and mammalian species has the
potential to accelerate the discovery of novel knowledge of aquaporins in both avian and

mammalian species.

Background

Proteins that selectively transport water across the mem-
branes of cells are recognized as important in normal
functioning of the body systems of vertebrates. These
homologous proteins are collectively referred to as
aquaporins and include a subset called aquaglyceroporins
that are able to transport glycerol, urea and other small
solutes in addition to water [1]. There are 13 known mam-
malian aquaporins (AQPO to AQP12). These aquaporins
vary in tissue and developmental expression across mam-
malian species and unexpected cellular roles for the
aquaporins beyond transmembrane water transport have
been identified [2]. However, the cellular and molecular
strategies for these roles are not completely understood.
The water-only aquaporins are AQPO, AQP1, AQP2,
AQP4, AQP5, AQP6 and AQP8, while aquaglyceroporins
are AQP3, AQP7, AQP9 and AQP10 [1]. The transport
specificities and roles of AQP11 and AQP12 in health and
disease are not completely described [1,3-5]. Aquaporins
typically have six transmembrane regions and five loops
(A to E) with two characteristic Asparagine-Proline-
Alanine (NPA) motifs in loops B and E (Figure 1) [6].

Loop A Loop C

N

Figure |

Topology of an aquaporin protein within the mem-
brane. The protein consists of six transmembrane helices (I-
VI) connected by five loops (A-E) and includes two internal
tandem repeats (I-lll and IV-VI, respectively). Loops B and E,
containing the conserved NPA motifs (in the single-letter
amino-acid code), form short o helices that fold back into
the membrane from opposite sides. C, carboxyl terminus; N,
amino terminus. Figure reproduced from [6].

Based on the number of citations in PubMed, avian
aquaporins have been poorly investigated compared to
those of human, mouse and rat [7].

The domesticated chicken Gallus gallus is the premier
avian model for biological research [8-10]. Furthermore,
the publication of the chicken genome and availability of
large-scale gene expression data presents new opportuni-
ties to compare the expression of avian and mammalian
aquaporin genes. Mammalian aquaporins function in
diverse biological processes including development of
lens, inner ear, teeth and oral facial tissues; maintenance
of sperm motility; synthesis and secretion of milk; and
urine concentration. In addition, malfunction of mam-
malian aquaporins have been implicated in diverse dis-
ease processes such as altered fat metabolism, brain
edema, cancer, congenital cataract, dry mouth, dry skin,
infertility, hearing loss, nephrogenic diabetes, renal fail-
ure, and wet lung syndrome [11]. This broad range of
pathologies linked to altered aquaporin expression has
further supported the potential of aquaporins as drug tar-
gets for water-transport related disorders [12].

Apart from transmembrane/epithelial water transport,
recently suggested unexpected cellular roles of mamma-
lian aquaporins include cell migration, cell volume regu-
lation, mitochondria metabolism, neural signal
transduction, renal glycerol clearance and vesicular swell-
ing [11,13]. The co-expression of several members of the
aquaporin gene family in the same tissue such as small
intestine [ 14| makes it difficult to determine their individ-
ual role apart from trans-epithelial water transport. It is
not clear whether alternative transcription/splicing of an
aquaporin gene to produce more than one isoform con-
tributes to these unexpected cellular roles. Mice with defi-
cient or mutated aquaporin are currently used as models
to study novel cellular roles of human aquaporins [11].
There is an increasing need to have alternative non-mam-
malian models for aquaporin function in humans [14].
The chick optic tectum has been used to investigate the
role of AQP4 in blood brain barrier development [15].
Furthermore, in chick lens development, AQPO interacts
with lens-fiber gap junctions during lens development
[16].

There are a limited numbers of reports that have com-
pared the body site expression of chicken and mammalian
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aquaporins. Comparison of nucleotide sequences of
chicken AQP2, AQP4 and AQP5 to their rat and human
orthologs has revealed an overall identity of 75-90% and
similarity in tissue distribution [7]. AQP9 has not been
shown to be expressed in mammalian kidney, but recently
found expressed in young chicken kidney [17]. In addi-
tion, water-deprivation in early development of rodents
and chicken results in upregulation of the kidney AQP2
[17,18]. The distribution of AQP4 in the circumventricu-
lar organs of chicken and rat brains have been compared
[19]. Taken together, the identification of aquaporins that
share sequence similarity or are expressed in identical tis-
sues in human and chicken could allow the further func-
tional analyses of aquaporins in avian species.

The objectives of the investigation reported in this article
were to (1) determine the impact of alternative transcrip-
tion and speciation on functional motifs of aquaporin
gene transcript models predicted from the genomes of
human, mouse, rat and chicken; and (2) determine body
sites common to human, mouse, rat and chicken with
suggested aquaporin expression. We hypothesize that
integrative analyses of protein sequences and body site
expression of human, mouse, rat and chicken aquaporins
has the potential to yield novel biological hypotheses
about the unexpected cellular roles of aquaporins beyond
transmembrane water transport. Our high-throughput
comparative sequence analysis revealed the potential
impact of alternative transcription and speciation on the
conservation of functional motifs in human, mouse, rat
and chicken aquaporins. Furthermore, by using control-
led vocabulary of terms describing body sites in the Uni-
Gene database, an integrated view of suggested tissue
expression of aquaporins for these four organisms was
generated.

The integrative analyses of protein sequences and tissue
expression profiles presented in this article provides novel
insights into the potential function of cysteine-rich
AQP11 in the pathophysiology of autism and evidence for
involvement of pancreas-expressed AQP12 in the pathol-
ogy of highly pathogenic avian influenza virus infections.
The investigation of aquaporin function in chicken could
accelerate the discovery of novel knowledge on human
aquaporins especially during early development.

Results

Comparison of predicted aquaporin transcripts from
human, mouse, rat and chicken

In order to determine the impact of alternative transcrip-
tion as well as speciation on the conservation of func-
tional motifs in aquaporins, we first compiled the
aquaporin types with entries in the Entrez Gene [20] and
Ensembl [21] genomic resources (Table 1) for human,
mouse, rat and chicken. This dataset provided the basis for

http://www.biomedcentral.com/1471-2164/10/S2/S7

comparative sequence analysis of the transcripts predicted
in the Ensembl genome resource. Multiple sequence
alignment was performed on each aquaporin type in
which at least one mammalian and one chicken transcript
were available. A total of 76 sequences were retrieved from
the Ensembl. Multiple sequence alignments for each
aquaporin type are available as Additional File 1. A sum-
mary of the number of transcripts examined for 9
aquaporin types and key observations from sequence
alignment are presented in Table 2. The impact of alterna-
tive transcription and speciation of these vertebrate
aquaporins on the conservation of the two water-trans-
port motifs is summarized in Table 3. We further describe
below the results obtained for AQP3, AQP4, AQP11 and
AQP12.

Three human transcripts were retrieved for AQP3 and one
each for mouse, rat and chicken from the Ensembl (Figure
2). The protein isoform from human AQP3 transcript
ENST00000379492 lacked the first 34 amino acids
present in the other isoforms. This region contained the
YRLL motif known to be important for basolateral sorting
in epithelial cells [22-24]. The YRLL motif was replaced by
a NKLV motif in the only chicken isoform obtained from
transcript ENSGALT00000003868. The first NPA motif
was conserved in all the AQP3 isoforms while the second
NPA motif was absent in two human AQP3 isoform
sequences (ENST00000343952 and ENST00000379492).
The impact of alternative transcription and speciation is
illustrated by protein features predicted for the three
human AQP3 transcripts and one chicken AQP transcript
(Figure 3). Note the difference in number of transmem-
brane helices predicted for the human transcripts. Inter-
estingly, the chicken transcript lacks a prediction for signal
peptide. This observation led us to further analyze the
Ensembl generated pairwise sequence alignments of the
chicken AQP3 with other vertebrate AQP3 showing 1-to-
1 ortholog prediction. The AQP3
(ENSOANG00000014661) of the platypus (Ornithorhyn-
chus anatinus) had a YKLL motif aligned to the NKLV
motif of the chicken sequence (Figure 4).

AQP4 was the only aquaporin type in which the four
organisms had at least two transcripts. Multiple sequence
alignment of the amino acid sequences from the 9 tran-
scripts and construction of phylogenetic tree revealed two
classes of transcripts (Figure 5). The two rat transcripts
(ENSRNOT00000048109 and ENSRNOT00000021961)
clustered with a human transcript (ENST00000383170)
and a mouse transcript (ENSMUST00000079081). In the
case of the remaining 5 AQP4 transcripts, the chicken and
mouse protein sequences were clustered with human
transcript ENST00000339532.
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Table I: Aquaporin entries in Entrez Gene, UniGene, and Ensembl genomic resources

AQP Human Mouse Rat Chicken
Entrez  Unigene Ensembl* Entrez Unigene Ensembl*  Entrez Unigene  Ensembl* Entrez Unigene Ensembl*
Gene Gene Gene Gene
AQP 0 4284 Hs.574026 135517 17339 Mm.31625 25389 25480 Rn.23532 3132 374124 Gga.67 -
AQP | 358 Hs.76152 106125 11826 Mm.18625 4655 25240 Rn.l618 11648 420384 Gga.2680 5209
AQP 2 359  Hs.130730 167580 11827 Mm.20206 23013 25386 Rn.90076 297 - - -
AQP3 360 Hs.234642 165272 11828 Mm.34043 28435 65133 Rn.I1109 9797 426894 (Gga.23800 2452
AQP 4 361 Hs.315369 171885 11829 Mm.250786 24411 25293 Rn.90091 16043 421088 Gga.l1374 15128
AQP5 362 Hs.298023 161798 11830 Mm.45580 44217 25241  Rn.10066 17685 431305 Gga.6412 2720
AQP 6 363 Hs.54505 86159 11831 Mm.202309 43144 29170 Rn.48667 296 - - 10260
AQP 7 364 Hs.455323 165269 11832 Mm.8728 28427 29171 Rn.ll111 9686 426892 Gga.21944 18534
AQP 8 343 Hs.176658 103375 11833 Mm.273175 30762 29172 Rn.6315 14652 416566 Gga.6178 5988
AQP 9 366 Hs.104624 103569 64008 Mm.335570 32204 65054 Rn.30018 15949 415402 Gga.12485 4261
AQP 10 89872 Hs.259048 143595 435743 - - - - - - - -
AQP Il 282679 Hs.503345 178301 66333 Mm.29756 42797 286758 Rn.20144 13358 426725 Gga.8876 1614
AQP 12 375318 Hs.437167 184945 208760 Mm.235537 45091 367316 Rn.20532 4452 424861 Gga.19694 6436

*Ensembl Identifiers obtained had a total of | | numerals with the appropriate number of zeros as padding. Furthermore, the identifiers were
preceded by ENSG, ENSMUSG, ENSRNOG, and ENSGAL are for human, mouse, rat and chicken genes respectively. The isoform of Human AQP12

used for analysis was Aquaporin 12B.

In the case of AQP11, the first water transporting motif
was atypical (NPC) in all the isoforms examined. Only
three protein isoforms from transcripts
ENSRNOT00000018091, ENSMUST00000084986 and
ENST00000313578 contained the second NPA motif.
AQP11 sequences had a high number of cysteine residues
compared to other aquaporin types including a triplet
CCC present in the N-terminal of protein sequences pro-
duced by  transcripts ENSMUST00000055379,
ENSMUST00000084986 and ENST00000313578. The
two rat sequences had a CYC motif while chicken had a
CAC motif. Cysteine residues are known to interact with
sulfhydryl-reactive metals such as mercury, cadmium,
lead, and arsenic [25]. A total of five transcripts for AQP12
were retrieved for the four species. The protein sequence
for one of the human transcripts (ENST00000373309)
lacked the first NPA-like motif (NPT) present in the other
sequences. All contained the second NPA motif.

Body site expression profiles for human, mouse, rat and
chicken aquaporins

A total of 44 UniGene aquaporin entries from human
(13), mouse (12), rat (10) and chicken (9) were identified
has having suggested expression in at least one of 57 body
sites based on Expressed Sequence Tags (EST) counts
(Table 4). A total of 51 binary signatures described the
expression of aquaporins from the organisms compared.
The visualized matrix of signatures is presented in Figure
6. Furthermore, 11 body sites (brain, connective tissue,
head, heart, liver, muscle, ovary, pancreas, small intestine,
spleen and testis) were identified in which both chicken
and mammalian aquaporins were expressed. The brain
had the highest count for aquaporin expression. All four
organisms expressed AQP1, AQP4 and AQPI11 in the
brain. There was evidence of expression of AQP12 in the
intestine, pancreas, stomach, and tongue as well as expres-
sion in the pancreas for all species except rat (Figure 6,
Additional file 2). We mapped chicken aquaporins to
body sites in order to prioritize them for further func-
tional analysis (Table 5).
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Table 2: Aquaporin isoforms examined for each aquaporin type and key observations from comparative sequence analysis*

AQP Type Organism
Human Mouse Rat Chicken

Observations from sequence alignment

Human transcript ENST00000265298 lacked the first 94 amino acids of ENST00000311813

which is present in the AQP| from mouse, rat and chicken. This N-terminal region of the
sequence contained the first NPA motif. However, the second NPA motif starting at position
192 in ENST000003 11813 is conserved in all the 5 protein sequences

Human transcript ENST00000379492 lacked the first 34 amino acids present in the other

All the organisms had multiple transcripts.
The first NPA motif was observed in all the protein sequences. Two chicken transcripts

ENSGALTO0000004 1244 and ENSGALT0000004 1246 and two rodent transcripts
ENSMUST00000088200 and ENSRNOT00000040874 produced isoforms that lacked the

All nine protein sequences of AQP7 contained atypical water transport NPA motifs. The first

motif is NAA while the second motif was NPS.

The first water-transport motif for chicken AQP8 was NPV
Except for mouse transcript ENSMUSTO000001 13569, all other AQP9 protein sequences had

The first water transporting motif was atypical (NPC) in all the isoforms examined. Only

three protein isoforms from transcripts ENSRNOTO0000001809 |, ENSMUST00000084986
and ENST000003 13578 contained the second NPA motif.

AQPI 2 | | |
AQP3 3 | | |
isoforms.
AQP4 3 2 2
AQP5 | 2 2 3
second NPA motif.
AQP7 4 3 | |
AQP8 | 2 | |
AQP9 | 4 | 2
the second NPA motif.
AQPI I | 2 2 |
AQPI2 2 |

other sequences.

Human transcript ENST00000373309 lacked the first NPA-like motif (NPT) present in the

*Additional File | contains the multiple sequence alignment for AQPO to AQPI2. Ensembl Identifiers preceded by ENST, ENSMUST, ENSRNOT,
and ENSGALT are for human, mouse, rat and chicken transcripts respectively.

Discussion

Aquaporin cell surface proteins are emerging as important
proteins beyond water transport [2,11,13,26]. However,
the molecular, cellular and evolutionary basis for these
novel roles are not completely known. Our high-through-
put comparative sequence analysis revealed the impact of
alternative transcription and speciation on the conserva-
tion of functional motifs in human, mouse, rat and
chicken aquaporins. Furthermore, by using a controlled
vocabulary of terms describing body sites in the UniGene
database, an integrated view of suggested tissue expres-
sion of aquaporins in these four organisms was generated
(Figure 6). We were unable to retrieve information from
the Ensembl database on chicken AQP2 and AQPO (Ent-
rez Gene ID: 374124) although chicken AQPO (MIP) has

been studied in the context of early development of lens
fiber and its association with gap junction proteins [16].
The predicted chicken AQP6 was annotated as AQP2-like.
The annotation of AQPO, AQP2 and AQP6 from the
chicken genome warrants further investigation.

Alternate splicing of mRNA as a means of generating pro-
tein diversity can occur by exon skipping [27]. All the 76
aquaporins transcripts analyzed were multi-exon tran-
scripts and could be subject to alternative splicing with
impact on protein function. For the nine aquaporin types
compared, our sequence alignments uncovered
aquaporin isoforms that lacked one of the two water-
transport motifs (Table 3). We hypothesize that isoforms
lacking one of the two NPA or NPA-like motifs character-

Table 3: Prioritize aquaporin isoforms for investigation for roles other than water-transport

Aquaporin Organism Ensembl ID Missing NPA or NPA-like motif
AQPI Human ENST00000265298 First
AQP3 Human ENST00000343952 Second
AQP3 Human ENST00000379492 Second
AQP4 Human ENST00000339532 First
AQP4 Human ENST00000383170 Second
AQP5 Mouse ENSMUST00000088200 Second
AQP5 Rat ENSRNOT00000040874 Second
AQP5 Chicken ENSGALTO0000004 1244 Second
AQP5 Chicken ENSGALTO0000004 1246 Second
AQP9 Mouse ENSMUST000001 13569 Second
AQPI2 Human ENST00000373309 First
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Figure 2

ClustalW multiple sequence alignment of AQP3 pro-
tein isoforms predicted by the Ensembl software sys-
tem. Position 19 to 22 contains the YRLL motif for
basolateral targeting. This motif is replaced in chicken AQP3
with NKLV.

istic will have impaired or abolished water transport func-
tion. They are also candidates for investigating roles other
than water function. Another mechanism for variation
that can impact function of aquaporins is single nucle-
otide polymorphisms (SNPs). Previous work has demon-
strated that novel genetic variants of AQP4 resulting from
single nucleotide polymorphisms (SNP) showed reduced
water permeability [28]. We observed from the Ensembl
database (Release 50 July 2008) that a total of 19 reference
SNPs were mapped to the following chicken aquaporins:
AQP1, AQP7, AQP8, AQP9 and AQP12. As the chicken
genome become further characterized for polymor-
phisms, it may become possible to gain insights into
impact of SNP variation on aquaporin function and
organism phenotype.

Most proteins that target the plasma membrane contain
signals within their cytoplasmic termini that permit their
recruitment into endocytic vesicles, which in turn facili-
tates their selective compartmentalization in the apical or
basolateral membranes selectively [23]. We were inter-
ested in identifying avian protein isoforms in which the
functional motifs were different from mammalian
aquaporin isoforms. We have previously investigated the
compartmentalization of AQP3 and AQP10 in the human
intestine in which we observed that the basolateral sorting
motif "YRLL" is present in AQP3 but absent in AQP10
[22]. Based on the UniGene suggested expression profiles
there was no suggestion for the expression of chicken

http://www.biomedcentral.com/1471-2164/10/S2/S7

AQP3 in the intestine. Furthermore, the signal peptide for
targeting was not predicted for chicken AQP3 in the
Ensembl resource (Figure 3). Tissue expression for this
chicken AQP3 was suggested for head, liver, and ovary.
Comparative sequence analysis provided evidence that
chicken AQP3 lacks the YRLL motif (NKLV was observed)
suggesting that it may not be targeted to the basolateral
membrane of the intestine. The multiple sequence align-
ment of the AQP3 protein sequences from the four organ-
isms revealed that the amino acids immediately before
and after the YRLL and NKLV motifs were conserved (Fig-
ure 2).

According to the ProTeus (PROtein TErminUS) tool [29],
the NKLV protein signature is a short linear significant sig-
nature in termini of proteins with a corresponding Gene
Ontology Cellular Component of "extracellular". Based
on alignments available at the Ensembl resource [21] for
AQP3 from fish (Danio rerio, Oryzias latipes, Takifugu
rubripes, and Tetraodon nigroviridis) and an amphibian
(Xenopus tropicalis), the ancestral motifs of the sorting
motifs found in human may be NKLL or NMLM (Figure
4). Thus, the presence of the amino acid tyrosine (Y) in
this sorting tetrapeptide in the platypus suggests the point
in the evolution of AQP3 where the asparagine residue
was replaced by the critical tyrosine required for sorting
function [30]. The genome of O. anatinus has been pro-
posed has useful for informing human genome sequence
and critical link to understanding the differences between
avian and mammalian genomes [31,32]. These observa-
tions provide novel evolutionarily insights into the local-
ization signals encoded in the termini of AQP3.

We have used a binary encoding integration strategy to
gain a comprehensive view of suggested tissue expression
of aquaporins for four organisms. Higher-order patterns
in a binary vector space that encodes the presence (1) or
absence (0) of feature of interest is an approach for inte-
grating genome-wide numerical datasets [33-35]. Several
advantages offered by the binary integration of high-
throughput gene expression data include computational
efficiency and noise resilience [35]. Our matrix revealed
that AQP4, in addition to AQP1 and AQP11 were
expressed in the brain of all the four organisms. These
three aquaporin types are candidates for comparative
experimental investigation of aquaporin in brain func-
tion. In addition, the analysis delivered a set of body sites
in which there was evidence of expression of at least one
mammalian aquaporin and chicken aquaporin.

The functions of AQP11 and AQP12 in vertebrate physi-
ology are not completely understood [1,3]. We observed
that AQP11 had the highest number of cysteine residues
compared to other aquaporins. AQP11 is expressed in the
Purkinje cells of the brain cerebellar [1], a site that have
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Figure 3

Impact of alternative transcription and speciation on protein features of AQP3 isoforms. There are differences in
the predicted protein features of AQP3 isoforms obtained from human and chicken gene loci. In the chicken homolog, no sig-
nal peptide cleavage predicted. Images were obtained from Ensembl gene information pages. HGNC is abbreviation for Human
Genome Nomenclature Committee.
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Figure 4

Multiple sequence alignment of AQP3 sequences
from selected vertebrates. The platypus (Ornithorhynchus
anatinus), a beaked mammal whose females lay eggs, had an
YKLL motif aligned to the NKLV motif of the chicken
sequence.

been implicated in the pathophysiology of autism
[36,37]. Exposure of chick embryo to the environmental
metal pollutant methylmercury led to reduction in the
number of Purkinje cells [38]. Furthermore, there were
adverse post-natal behavioral, morphological and bio-
chemical consequences. Mercury ions are known to regu-
late aquaporin function by interacting with cysteine
residues [39,40]. Interestingly, the first pore forming
motif of AQP11 found in Loop B has a motif of NPC
instead of the NPA. However, the second motif is NPA
consistent with other AQPs. AQP11 is the only human
aquaporin with the tri-cysteine (CCC) motif. These obser-
vations led us to hypothesize that AQP11 may be a target
in the pathophysiology of neurodegenerative disorders
like autism. We are currently studying the specificity and
affinity of a range of cations to further understand the
interaction of cations with aquaporins in the function of
the central nervous system. With the availability of the
chicken genome, the chick embryo has the potential to
serve as an important model for the study of the develop-
ment of neurodegenerative disorders [38,41].

In the case of AQP12, there was suggested expression in
the pancreas of human, mouse and chicken (Table 4) with
chicken having the highest expression level. AQP12 is
localized intracellularly in the pancreatic acinar cells, the
site for synthesis of digestive enzymes [3]. Histopatholog-
ical studies have confirmed that the highly pathogenic
H5N1 virus that causes avian influenza in chicken and
other avian species causes multifocal necrosis in the pan-
creatic acinar cells suggesting that the effect of avian influ-
enza on the function of AQP12 warrants further
investigation.

http://www.biomedcentral.com/1471-2164/10/S2/S7

Conclusion

This study demonstrates that the chicken genome com-
bined with a comprehensive controlled vocabulary-facili-
tated integration of UniGene suggested body site
expression can drive generation of hypotheses related to
the function of avian and mammalian aquaporins. We
describe the generation of hypotheses related to (i) the
impact of alternative transcription and speciation on the
conservation of functional motifs in human, mouse, rat
and chicken aquaporins; (ii) identification of the emer-
gence of basolateral targeting in mammalian species (iii)
possibility of cysteine-rich AQP11 as target in the patho-
physiology of neurodegenerative disorders; and (iv)
impact on the function of pancreas-expressed AQP12 dur-
ing pancreatotropic necrosis associated with avian influ-
enza virus infection.

Methods

Comparison of predicted aquaporin transcripts from
human, mouse, rat and chicken

Predictions of genes encoding aquaporins from human,
mouse, rat and chicken genomes were obtained from the
Ensembl project (Release 50 July 2008) [21] and the Ent-
rez Gene database at the National Center for Biotechnol-
ogy Information (NCBI) [20]. In both databases, the

AQP4_H_TI

pr— QP4 C_T1

b AQPA_C_T2

AQP4_M_T2

AQP4_H_T2

AQP4_H_T3

AQP4 R T2

AQP4_M_T1

AQP4_R_T1

Figure 5

Phylogenetic tree of AQP4 protein sequences from
human (H), mouse (M), rat (R) and chicken (C). The
symbols and their corresponding Ensembl transcripts in
brackets are: AQP4_C_T| (ENSGALT00000024413);
AQP4_C_T2 (ENSGALTO00000036809); AQP4_M_TI
(ENSMUST00000079081); AQP4_M_T2
(ENSMUST000001 15856); AQP4_R_TI
(ENSRNOT00000021961); AQP4_R_T2
(ENSRNOT00000048109); AQP4_H_TI
(ENST00000339532); AQP4_H_T2 (ENST00000383168);
AQP4_H_T3 (ENST00000383170).
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Table 4: Controlled UniGene body site terms associated with expressed aquaporins from human, mouse, rat and chicken

Body Site AQP Count Body Site AQP Count Body Site AQP Count Body Site AQP Count
Adipose tissue 5 Extraembryonic tissue 3 Muscle 14 Spleen 6
Adrenal gland 4 Eye 19 Nasopharynx 3 Stomach 10
Ascites | Fertilized ovum | Nerve 2 Testis 15
Bladder 6 Head 3 Ovary 10 Thymus 8
Blood 3 Heart 10 Pancreas I Thyroid 6
Bone 4 Inner ear 3 Parathyroid 2 Tongue 3
Bone marrow 5 Intestine 13 Pharynx 2 Trachea 2
Brain 23 Joint 3 Pineal gland 2 Umbilical cord 2
Cervix 3 Kidney 21 Pituitary gland 2 Uterus 9
Colon 2 Larynx 4 Placenta 8 Vagina 2
Connective tissue 12 Liver 15 Prostate 10 Vascular 3
Dorsal root ganglion | Lung 14 Salivary gland 4 Vibrissa |
Embryonic tissue 12 Lymph node | Skin 8

Epididymis | Mammary gland 10 Small intestine 2

Esophagus 2 Mouth 2 Spinal cord 2

human aquaporin information was used as the starting
point to extract predicted homologous proteins in the
other three species. The amino acid sequences encoding
predicted transcripts associated with aquaporin genes in
which both an Ensembl and Entrez Gene record exist were
further compared. We sought to determine the conserva-
tion of functional motifs among predicted transcripts
from orthologous genes. Therefore, the amino acid
sequence diversity encoded by aquaporin transcripts was
determined by multiple sequence alignment of orthologs
using ClustalW. In order to visualize the relationship of
selected sequences, neighbor-joining tree bootstrapped
using 1,000 random samples of sites from the alignment
was constructed using the ClustalW software at the DNA
Data Bank of Japan [42]. FigTree software version 1.12
[43] was used to view the phylogenetic trees.

UniGene expression profiles for human, mouse, rat and
chicken aquaporins

Each NCBI UniGene Cluster contains set of transcript
sequences that appear to come from the same transcrip-
tion locus (gene or expressed pseudogene) as well as other
information including expression profile in body sites

and developmental stages [20]. The UniGene cluster iden-
tifier for each of the aquaporins was extracted from the
Entrez Gene record and verified manually. In instances
where more than one UniGene entry was associated the
Entrez Gene, the unambiguous UniGene entry was
selected. The value of the Transcript per million (TPM) for
each body site was programmatically extracted from the
UniGene Expression Profile Viewer page.

There was need to identify chicken and mammalian
aquaporins that were expressed in the same body site
based on controlled vocabulary term used in UniGene.
Therefore, a 4-digit binary signature was constructed to
encode the presence or absence of species aquaporin
expression. Thus a matrix consisting of 52-digit binary sig-
nature and the number of body sites was constructed and
visualized using matrix2png [44].

Competing interests
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Table 5: Body sites and corresponding expressed chicken aquaporins that could be used as models for understanding mammalian

aquaporins
Aquaporin Type Chicken UniGene ID Body Site
AQPO Gga.67 Head
AQPI Gga.2680 Brain, Connective Tissue, Head, Heart, Liver, Muscle, Ovary, Spleen
AQP3 Gga.23800 Head, Liver, Ovary
AQP4 Gga.l1374 Brain, Muscle
AQP5 Gga.6412 Pancreas
AQP7 Gga.21944 Testis
AQP9 Gga. 12485 Heart, Liver, Muscle
AQPI I Gga.8876 Brain, Liver, Muscle, Small Intestine
AQPI2 Gga. 19694 Pancreas
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Figure 6
Visualization of comparison of suggested body site expression of UniGene data for human (h), mouse (m), rat
(r), and chicken (c) aquaporins. Each aquaporin type is represented by 4 boxes corresponding to the four-digit binary
number. Red box indicate presence of expression (1) while green box indicate absence of expression (0).
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mouse, rat and chicken transcripts respectively.
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