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OBJECTIVE—This study evaluated the influence of somatosta-
tin receptor type 2 (SSTR2) polymorphisms on measures of
glucose homeostasis in the Insulin Resistance Atherosclerosis
Family Study (IRASFS). SSTR2 is a G-protein—coupled receptor
that, in response to somatostatin, mediates inhibition of insulin,
glucagon, and growth hormone release and thus may affect
glucose homeostasis.

RESEARCH DESIGN AND METHODS—Ten single nucleotide
polymorphisms (SNPs) spanning the gene were chosen using a
SNP density selection algorithm and genotyped on 1,425 Hispanic-
American individuals from 90 families in the IRASFS. These
families comprised two samples (set 1 and set 2), which were
analyzed individually and as a combined set. Single SNP tests of
association were performed for four glucose homeostasis mea-
sures—insulin sensitivity (S;), acute insulin response (AIR),
disposition index (DI), and fasting blood glucose (FBG)—using
generalized estimating equations.

RESULTS—The SSTRZ2 locus was encompassed by a single link-
age disequilibrium (LD) block (D’ = 0.91-1.00; * = 0.09-0.97) that
contained four of the ten SNPs evaluated. Within the SSTR2-
containing LD block, evidence of association was observed in each
of the two sets and in a combined analysis with decreased S;
—0.16; P, = 0.0024-0.0030), decreased DI

(Bhomozygous =

meta-analysis
nomomygous = —0.35 10 —5.16; Py o anayess = 0.0075-0.027), and

increased FBG (Bpomozygous = 2305 Pretaanaysis = 0-045). SNPs
outside the SSTR2-containing LD block were not associated with
measures of glucose homeostasis.

CONCLUSIONS—We observed evidence for association of
SSTR2 polymorphisms with measures of glucose homeostasis.
Thus, variants in SSTR2 may influence pathways of S; to modu-
late glucose homeostasis. Diabetes 58:1457-1462, 2009
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omatostatin (SRIF) is a hormone found through-
out the body that inhibits the action or expression
of several hormones including insulin, glucagon,
and growth hormone (1). SRIF is an important
regulator of the endocrine system, exerting its effects
through interactions with pituitary growth hormone,
thyroid-stimulating hormone, and several hormones of the
gastrointestinal tract. Five G-protein—coupled receptors
(SRIF receptor type [SSTR] 1-5) that bind SRIF exist, each
exerting differential effects based on the receptor bound
and localization. SSTRZ2 is found primarily in the pancreas,
pituitary, and stomach (2). Several studies have evaluated
the effects of SRIF on the respective receptors. Rat studies
have found that SSTRZ2 ligands mediate inhibition of
glucagon release, whereas SSTR5 mediates inhibition of
insulin release (3). In addition, a study of pancreatic islets
from SSTR2 knockout mice supported the finding in rats,
concluding that SRIF inhibition of glucagon release is
primarily regulated through interaction with SSTR2,
whereas insulin secretion is primarily regulated by SSTR5
(4). Human studies of the pancreas revealed slightly
different results, suggesting that SRIF can inhibit insulin
release through the SSTRZ receptor (5). In contrast, Cheng
et al. (6) observed that SSTR2 mediates the SRIF-induced
increase in insulin secretion, although the increase was
detected only in the presence of arginine vasopressin.
Based on these studies, it is apparent that whereas SSTRZ
does appear to mediate the regulation of insulin and
glucagon, the exact mechanism remains obscure.

To date, no studies have assessed the effects of SSTR2
polymorphisms on glucose homeostasis traits in population-
based studies. The Insulin Resistance Atherosclerosis
Family Study (IRASFS) is a multicenter study investigating
the genetic contributions to glucose homeostasis and
adiposity and includes a population suitable for studying
such effects. Previous studies in the IRASFS of SSTR2 as a
positional candidate gene for alterations in the amount of
visceral adipose tissue present in study participants (7,8)
revealed no association; however, the role in glucose
homeostasis, as suggested by the literature, was not as-
sessed. The IRASFS is an extensively phenotyped popula-
tion with measures of glucose homeostasis derived from
minimal model (MINMOD) analysis of frequently sampled
intravenous glucose tolerance tests, which include insulin
sensitivity (S;), acute insulin response (AIR), and disposi-
tion index (DI) as well as fasting blood glucose (FBG). In
this study, we have evaluated the influence of SSTRZ
polymorphisms on measures of glucose homeostasis with
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TABLE 1
Demographic summary of IRASF'S Hispanic-American participants
Set 1 Set 2 Combined sets 1 and 2

Age (years) 42.2 + 14.5 (40.9) 43.5 *+ 14.7 (41.6) 42.8 = 14.6 (41.3)
Female sex (%) 57 60 58
Glucose homeostasis

S; (X10~® min~ !/[pmol/]) 2.0 2.0 (1.5) 2.1+ 1.8 (L.7) 2.0 = 1.9 (1.5)

AIR (pmol/l) 685 + 631 (537) 709 + 687 (529) 695 + 655 (534)

DI (10"° min™ 1) 1,193 = 1,266 (887) 1,222 *+ 1,201 (933) 1,205 = 1,238 (919)

FBG (mg/dl) 103.5 = 33.6 (93.5) 102.7 = 36.5 (93.5) 103.2 = 34.8 (93.5)

Data are means = SD (median) unless otherwise indicated.

the goal of defining the biological pathways through which
this receptor exerts its effects.

RESEARCH DESIGN AND METHODS

The IRASFS was designed to investigate the genetic determinants of insulin
resistance and adiposity that are important risk factors in the development of
type 2 diabetes and atherosclerosis. Using well-developed technical methods
to accurately assess quantitative measures of glucose homeostasis and
adiposity, the IRASF'S examines the familial aggregation and genetic contri-
butions for those phenotypes. Hispanic Americans from the IRASFS were
recruited from two centers: San Antonio, Texas, and San Luis Valley,
Colorado. The study design, recruitment, and phenotyping have previously
been described in detail (9). Briefly, 90 multigenerational Hispanic-American
families (1,425 individuals) were recruited in two phases denoted set 1 (45
families: 33 from San Antonio, Texas, and 12 from San Luis Valley, Colorado;
827 individuals) and set 2 (45 families: 27 from San Antonio, Texas, and 18
from San Luis Valley, Colorado; 592 individuals). Recruitment was indepen-
dent of type 2 diabetes or cardiovascular disease status, although 14.2% of
individuals were diagnosed with type 2 diabetes. Table 1 summarizes the
primary phenotypes of study participants.

Measures of glucose homoeostasis were assessed by frequently sampled
intravenous glucose tolerance tests (10) with MINMOD analyses (11). S;
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was calculated using MINMOD software. AIR was calculated as the mean
insulin increment in plasma insulin concentration above basal in the first 8
min after glucose administration. DI was calculated as DI = S; X AIR. FBG
values were obtained using standard methods. Individuals with type 2
diabetes were excluded from analysis.

Singlue nucleotide polymorphisms (SNPs) were selected using the
SNPbrowser 3.0 (Applied Biosystems) SNP density selection algorithm. The
genomic interval assessed included the SSTR2 gene =15 kb, which extended
coverage to two adjacent linkage disequilibrium (LD) blocks, as assessed by
evaluation of the HapMap CEU population. Density was selected at 2 kb with a
minor allele frequency (MAF) >5%. Supplementary Table Al, available in an
online appendix at http:/diabetes.diabetesjournals.org/cgi/content/full/db08-0189/
DC1, contains the characteristics of SNPs selected for genotyping. Primers for
PCR amplification and extension were designed using SpectroDESIGNER soft-
ware, and genotyping was performed on the Sequenom MassARRAY system (12).

SNPs were examined for Mendelian inconsistencies in their genotypes
using PedCheck (13). Inconsistent genotypes (n = 43) were converted to
missing (0.002% error rate). Maximum likelihood estimates of allele frequen-
cies were computed using the largest set of unrelated individuals and
genotypes tested for departures from Hardy-Weinberg equilibrium propor-
tions. To validate SNP coverage, the aggressive tagging option of Tagger (14)
implemented in the program Haploview (15) was used to assess coverage in
the HapMap CEU population.
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FIG. 1. Haploview-generated LD map of the 10 SNPs at the SSTRZ2 locus in unrelated Hispanic Americans from the IRASFS. A: Regions of high
LD (D’ = 1 and logarithm of odds [LOD] >2) are shown in the darkest shade. Markers with lower LD (0.45 < D' < 1 and LOD >2) are shown in
dark through light shades, with the color intensity decreasing with decreasing D’ value. Regions of low LD and low LOD scores (LOD <2) are
shown in white. The number within each box indicates the D’ statistic value between the corresponding two SNPs. B: Regions of high correlation
(r® = 1) are shown in black. Markers with lower correlations (0 < r? < 1) are shown in shades of gray with the color intensity decreasing with
decreasing r? value. Regions of low correlation (r?> = 0) are shown in white.
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TABLE 2

Genotypic means for quantitative measures of glucose homeostasis calculated in set 1 of the IRASFS Hispanic-American population

Genotypic means = SD (n)*

Phenotype SNP Allelest  MAF U1 12 2/2 Pi
S, rs1037257 C/T 0.37 2.37 + 2.21 (207) 1.96 + 1.59 (280) 2.13 + 2.17 (85) 0.027
154969076 C/G 0.22 2.13 + 2.01 (315) 2.05 + 1.69 (198) 2.24 + 2.21 (30) 0.98
rs1037260 T/G 0.13 2.09 = 1.90 (470) 2.25 = 2.05 (94) 2.18 + 1.74 (5) 0.40
rs11077670 G/A 0.14 2.09 = 1.98 (398) 2.22 + 1.86 (139) 2.01 + 2.12 (8) 0.91
151868486 G/T 0.30 2.23 + 2.06 (254) 2.10 + 1.92 (232) 1.81 = 1.56 (73) 0.0040
1714925 AG 0.30 2.19 = 2.03 (244) 2.07 + 1.89 (243) 1.76 + 1.45 (71) 0.011
rs998571 AG 0.29 2.24 = 2.01 (261) 2.14 + 1.97 (219) 171 = 1.43 (73) 0.0040
17220818 AG 0.37 1.93 = 1.67 (216) 2.11 + 1.94 (268) 2.71 + 2.33 (91) 0.0020
rs6501603 T/G 0.48 2.27 + 2.16 (152) 2.03 = 1.86 (276) 2.15 + 1.72 (128) 0.51
rs4969017 T/C 0.03 2.14 + 1.97 (529) 1.96 = 1.13 (20) 1.01 =+ 0.00 (1) 0.18
AIR rs1037257 C/T 0.37 713 + 543 (207) 743 + 619 (280) 845 + 721 (85) 0.54
rs4969076 C/G 0.22 788 + 623 (315) 698 + 585 (198) 820 = 627 (30) 0.29
rs1037260 T/G 0.13 763 + 644 (470) 761 = 566 (94) 513 + 177 (5) 0.69
rs11077670 G/A 0.14 770 + 620 (398) 676 + 698 (139) 920 + 737 (8) 0.17
rs1868486 G/T 0.30 727 + 532 (254) 801 + 706 (232) 755 + 696 (73) 0.80
1714925 AG 0.30 728 + 532 (244) 800 = 699 (243) 751 = 708 (71) 0.81
1s998571 AG 0.29 722 + 525 (261) 812 + 724 (219) 774 + 699 (73) 0.66
17220818 AG 0.37 788 + 643 (216) 739 + 637 (268) 736 = 567 (91) 0.66
16501603 T/G 0.48 759 + 584 (152) 764 = 650 (276) 702 + 581 (128) 0.72
154969017 T/C 0.03 765 + 626 (529) 579 + 297 (20) 195 + 0 (1) 0.14
DI rs1037257 C/T 0.37 1,375+ 1,279 (207) 1,225 + 1,201 (280) 1,390 + 1,345 (85) 0.053
rs4969076 C/G 022 1,397 + 1,414 (315) 1,130 + 893 (198) 1,553 + 1,539 (30) 0.34
rs1037260 T/G 0.13 1,273 + 1,229 (470) 1,485 + 1,409 (94) 1,207 = 1,052 (5) 0.62
rs11077670 G/A 0.14 1,344+ 1,309(398) 1,133 = 1,027 (139) 1,655 + 1,780 (8) 0.036
151868486 G/T 0.30 1,360 + 1,349 (254) 1,342 + 1,283 (232) 1,027 + 939 (73) 0.0020
15714925 AG 0.30 1,348 + 1,337 (244) 1,327 + 1,202 (243) 979 + 838 (71) 0.0010
1s998571 AG 029 1,352+ 1,292 (261) 1,388 + 1,366 (219) 994 + 837 (73) 0.0010
17220818 AG 0.37 1254+ 1,176 (216) 1,262 + 1,280 (268) 1,597 + 1,404 (91) 0.052
rs6501603 T/G 048 1463 + 1,437 (152) 1,230 + 1,176 (276) 1,227 + 1,004 (128)  0.68
rs4969017 T/C 0.03 1,328 +1,293(529) 1,100 + 975 (20) 197 + 0 (1) 0.94
FBG rs1037257 C/T 0.37  93.28 + 9.35 (220) 93.85 = 10.25 (298)  92.88 =+ 9.68 (88) 0.62
154969076 C/G 022 9357+ 1024 (343)  93.69 + 9.01 (202) 91.16 =+ 8.15 (32) 0.043
rs1037260 T/G 0.13  93.26 + 9.55 (498) 94.35 = 10.48 (99) 94.07 = 11.80 (7) 0.14
rs11077670 G/A 0.14  93.57 + 9.99 (427) 93.38 = 9.49 (144) 96.31 + 11.29 (8) 0.41
151868486 G/T 0.30  92.49 + 9.70 (272) 94.62 + 10.02 (243)  94.24 + 9.35 (77) 0.019
1714925 AG 0.30  92.34 + 9.52 (264) 94.48 + 10.00 (253)  94.05 + 9.58 (75) 0.005
rs998571 AG 029  92.41 + 9.48 (280) 94.24 = 10.27 (230)  94.23 + 9.32 (77) 0.014
17220818 AG 0.37  93.86 + 9.46 (222) 93.88 + 10.00 (286)  90.96 + 9.23 (101) 0.014
rs6501603 T/G 048  93.30 + 9.76 (166) 94.12 + 10.37 (293)  92.52 =+ 8.86 (132) 0.25
rs4969017 T/C 0.03  93.50 + 9.69 (562) 90.59 = 9.68 (22) 93.00 = 0.00 (1) 0.19

Boldface data indicate P values <0.05. *Genotypic means = SD (n) for homozygotes of the major allele (1/1) as well as heterozygotes (1/2)

and homozygotes of the minor allele (2/2). TMajor/minor alleles. £Test for association among each SNP-trait combination using a series of

generalized estimating equations.

To test for association among each SNP-trait combination by set and in the
combined analysis, a series of generalized estimating equations (16) was
computed. When necessary, quantitative traits were transformed to approxi-
mate the distributional assumptions of conditional normality (conditional on
covariates) and homogeneity of variance. Familial correlations within a
pedigree were adjusted for by assuming exchangeable correlation and com-
puting the sandwich estimator of the variance (17). The sandwich estimator is
also denoted the robust or empirical estimator of the variance and is a
consistent estimator even under misspecification of the correlation matrix.
For each SNP and phenotype, the 2 d.f. overall test of genotypic association
was performed and reported. When evidence of association was observed,
three individual contrasts defined by the genetic models (dominant, additive,
and recessive) were computed. In addition, a meta-analysis was computed
treating set 1 and set 2 as different populations. We modeled set 1 or set 2
affiliation as a random effect in a variance component-measured genotype
model, as implemented in the sequential oligogenic linkage analysis (18). This
standard approach to meta-analysis accounts for unknown sources of con-
founding affiliated with the subsamples of set 1 and set 2 (19). To test for
whether the effect was consistent across the two subsamples, a test of SNP by
set (dummy variable parameterization) interaction (effect heterogeneity) was
computed as the centered cross product. Absence of an interaction suggests

DIABETES, VOL. 58, JUNE 2009

there is no detected evidence of heterogeneity of effect across the subsamples.
Tests reported here were computed adjusting for age, sex, recruitment center,
and BMI. Association results reported herein were not adjusted for multiple
comparisons due to inter-SNP and inter-trait correlations.

RESULTS

A total of 10 SNPs at the SSTR2 locus were genotyped on
1,425 Hispanic individuals. The majority of SNPs in this
study had an MAF >0.15. Using the Haploview Tagger
program, a subset of the genotyped SNPs (six SNPs
genotyped in the HapMap Build 36 dataset) captured
common variation (HapMap CEU, MAF >0.05, aggres-
sive tagging algorithm) with a mean 7 > 0.70. D’ values
were high between SNPs within the SSTR2 gene
(rs11077670, 1rs1868486, rs714925, 1rs998571, and
rs7220818; D' =0.8) and declined 5’ and 3’ to these
markers (D’ <0.6; Fig. 1).
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TABLE 3

Genotypic means for quantitative measures of glucose homeostasis calculated in set 2 of the IRASFS Hispanic-American population

Genotypic means = SD (n)*

Phenotype SNP Allelest  MAF 11 1/2 2/2 P
S, 151037257 C/T 0.40 2.35 + 1.78 (143) 2.08 = 1.78 (218) 2.34 + 1.91 (61) 0.60
154969076 C/G 0.22 2.31 + 1.85 (34) 2.15 + 1.75 (162) 1.82 = 1.53 (25) 0.15
151037260 T/G 0.15 2.19 + 1.72 (330) 2.28 + 1.99 (92) 3.19 + 1.55 (2) 0.83
1s11077670 G/A 0.10 2.29 + 1.84 (318) 1.96 + 1.69 (88) 1.81 = 1.57 (6) 0.039
151868486 G/T 0.28 2.24 + 1.78 (199) 2.23 + 1.79 (191) 1.68 = 1.72 (36) 0.038
1714925 AG 0.28 2.27 + 1.81 (196) 2.25 + 1.79 (191) 1.69 = 1.75 (35) 0.097
15998571 A/G 0.25 2.26 + 1.79 (214) 2.21 + 1.79 (178) 1.70 = 1.64 (36) 0.11
157220818 AG 0.41 2.17 + 1.72 (132) 2.20 + 1.76 (219) 2.18 + 1.85 (72) 0.98
1s6501603 T/G 0.45 2.35 + 1.79 (141) 2.11 + 1.77 (203) 2.22 + 1.92 (73) 0.61
154969017 T/C 0.02 2.21 + 1.79 (417) 2.00 + 1.66 (16) 0.15
AIR 151037257 C/T 0.40 697 + 629 (143) 820 + 739 (218) 841 + 695 (61) 0.32
154969076 C/G 0.22 773 + 664 (234) 748 + 692 (162) 776 + 829 (25) 0.80
151037260 T/G 0.15 740 + 681 (330) 867 + 712 (92) 455 + 6 (2) 0.34
1511077670 G/A 0.10 773 + 641 (318) 815 + 886 (88) 831 =+ 358 (6) 0.84
151868486 G/T 0.28 773 + 676 (199) 797 + 727 (191) 618 =+ 593 (36) 0.021
15714925 A/G 0.28 777 = 671 (196) 794 + 727 (191) 629 = 605 (35) 0.089
15998571 AG 0.25 786 + 660 (214) 777 + 740 (178) 643 + 596 (36) 0.26
157220818 AG 0.41 757 + 626 (132) 789 + 744 (219) TAT + 646 (72) 0.86
1s6501603 T/G 0.45 709 + 602 (141) 781 = 708 (203) 933 + 837 (73) 0.66
1s4969017 T/C 0.02 744 + 661 (417) 1,236 = 1,130 (16) 0.12
DI 151037257 C/T 040 1270+ 1,017 (151) 1,375+ 1,245 (218) 1,520 + 1,499 (61)  0.56
154969076 C/G 022 1,426+ 1247(234) 1,255 + 1,152 (162) 1,122+ 1,149(25)  0.0050
rs1037260 T/G 0.15 1,307+ 1,163 (330) 1,462 = 1,321 (92) 1,445 = 685 (2) 0.53
1511077670 G/A 0.10 1,415+ 1236(318) 1,143 = 1,106 (88) 1,468 = 1,524 (6) 0.0010
151868486 G/T 028 1,305+ 1,049 (199) 1436 = 1,311 (191) 1,035+ 1,402 (36)  0.088
1714925 AG 028 1,315+ 1,032(196) 1430 = 1,309 (191) 1,072 + 1,457 (35)  0.21
15998571 AG 025 1,380 + 1,158 (214) 1,353 + 1,216 (178) 1,096 + 1,430 (36)  0.20
17220818 A/G 041 1,443+ 1339(132) 1,204 = 1,106 (219) 1,265+ 1,098 (72)  0.63
16501603 T/G 045 1,312+ 1,180(141) 1,313 + 1,161 (203) 1,578 = 1,409 (73)  0.32
154969017 T/C 0.02 1,323+ 1200(417) 1,540 = 1,199 (16) 0.59
FBG 151037257 C/T 040  92.68 = 9.98 (151) 93.40 + 9.01 (231) 93.93 + 7.27 (63) 0.21
154969076 C/G 022  93.31 + 9.04 (246) 92.47 + 9.20 (172) 9752 + 1032 (26)  0.18
rs1037260 T/G 0.15  93.43 + 9.46 (350) 92.38 + 7.98 (95) 90.33 + 7.94 (3) 0.53
1s11077670 G/A 0.10  92.75 =+ 8.99 (336) 94.68 = 9.83 (92) 97.75 + 5.40 (6) 0.099
151868486 G/T 028 9343 + 9.53(212) 92.18 + 8.51 (199) 97.41 + 9.63 (39) 0.024
1714925 AG 028  93.40 *+ 9.59 (209) 92.24 + 8.46 (199) 97.87 + 9.44 (38) 0.030
15998571 A/G 025  93.34 + 9.47 (229) 92.59 = 8.55 (185) 96.25 + 10.56 (38)  0.51
17220818 AG 041  93.89 + 8.88(143) 92.88 + 9.09 (226) 93.29 + 1029 (77)  0.64
rs6501603 T/G 045  93.02 + 9.20 (147) 93.15 + 9.01 (217) 93.91 + 9.27 (76) 0.60
154969017 T/C 0.02  93.28 + 9.24 (438) 92.92 + 8.70 (18) 0.92

Boldface data indicate P values <0.05. *Genotypic means = SD (n) for homozygotes of the major allele (1/1) as well as heterozygotes
(1/2) and homozygotes of the minor allele (2/2). TMajor/minor alleles. Test for association among each SNP-trait combination using

a series of generalized estimating equations.

In set 1 (Table 2), the majority of the SNPs in the
SSTR2-containing LD block (D’ >0.91; 7* > 0.10) were
associated (or trending toward association) with S; (P <
0.011), DI (P < 0.036), and FBG (P < 0.019). Association
with AIR was not detected. Similar association was de-
tected with individuals in set 2, although many of the SNPs
showed a decrease in the magnitude of association. S;
and FBG were the most consistently associated glucose
homeostasis traits, with three of five SNPs in high LD
(D’ >0.77; * > 0.08) showing association or trending toward
association (P < 0.039 and P < 0.030, respectively; Table 3).
In the combined analysis (Table 4), the magnitude of asso-
ciation increased within the LD block (D’ >0.85, * > 0.09;
Fig. 1) from that seen in either set independently. S; was
the most consistently associated trait within the LD
block (Ppeaanaysis < 0-0030). DI was also associated,
with four of the five SNPs in high LD showing associa-
tion (Ppeeaanalysis < 0.027). Association with FBG de-
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creased in the combined analysis, and only one SNP
remained significant (rs714925, P o4 anaysis = 0-045).

DISCUSSION

This study of SSTR2 gene polymorphisms represents the
first detailed population genetic analysis of this gene in
relation to glucose homeostasis phenotypes. Whereas the
current study design is limited by the SNP selection
method, i.e., density versus tagging algorithms, the high
LD in the region facilitated sufficient coverage of genetic
variation. Strengths of this study include the use of a large
Hispanic-American cohort and analysis of quantitative
measures of glucose homeostasis. Moreover, since the
Hispanic-American subjects were divided into two inde-
pendent sets with identical recruitment criteria and similar
demographic data, results can be compared between the

DIABETES, VOL. 58, JUNE 2009
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TABLE 4

Genotypic means for quantitative measures of glucose homeostasis calculated in the combined IRASFS Hispanic-American

population

Genotypic means = SD (n)*

Phenotype SNP Allelest MAF 11 1/2 2/2 Pi P§

S; rs1037257 C/T 0.38 2.36 = 2.04 (350) 2.01 = 1.68 (498) 2.22 + 2.0567 (146)  0.60 0.16
rs4969076 C/G 0.22 2.21 = 1.95 (549) 2.09 = 1.72 (360) 2.05 = 1.93 (55) 0.43 0.41
rs1037260 T/G 0.14 2.13 = 1.83 (800) 2.26 = 2.02 (186) 2.47 = 1.63 (7) 0.83 0.75
rs11077670 G/A 0.12 2.18 £ 1.92 (716) 2.11 = 1.80 (227) 1.92 = 1.84 (14) 0.24 0.62
rs1868486 G/T 0.29 2.23 = 1.94 (453) 2.16 = 1.86 (423) 1.76 = 1.61 (109)  0.000071 0.0025
rs714925 A/G 0.29 2.23 £ 1.94 (440) 2.15 = 1.85 (434) 1.74 = 1.55 (106)  0.0010 0.0030
rs998571 A/G 0.27 2.25 £ 1.91 (475) 2.17 = 1.89 (397) 1.71 = 1.50 (109)  0.00018 0.0024
rs7220818 A/G 0.39 2.02 = 1.69 (348) 2.15 = 1.86 (487) 2.48 *= 2.14 (163) 0.60 0.16
rs6501603 T/G 0.47 2.31 £ 1.99 (293) 2.07 = 1.82 (479) 2.17 = 1.79 (201) 0.29 0.13
rs4969017 T/C 0.03 2.17 £ 1.89 (946) 1.98 = 1.37 (36) 1.01 = 0.00 (1) 0.83 0.94

AIR rs1037257 C/T 0.38 706 = 579 (350) 777 = 675 (498) 844 + 708 (146) 0.32 0.16
rs4969076 C/G 0.22 781 £ 640 (549) 721 = 635 (360) 800 = 719 (55) 0.48 0.66
rs1037260 T/G 0.14 754 £ 659 (800) 814 = 643 (186) 496 = 147 (7) 0.50 0.78
rs11077670 G/A 0.12 772 = 629 (716) 730 = 725 (227) 882 + 586 (14) 0.37 0.55
rs1868486 G/T 0.29 747 = 599 (453) 799 = 715 (423) 710 = 664 (109) 0.43 0.58
rs714925 A/G 0.29 750 £ 598 (440) 798 £ 711 (434) 711 = 675 (106) 0.48 0.56
rs998571 A/G 0.27 751 = 590 (475) 796 = 730 (397) 731 = 667 (109) 0.99 0.99
rs7220818 A/G 0.39 776 = 636 (348) 762 *+ 687 (487) 741 * 601 (163) 0.90 0.96
rs6501603 T/G 0.47 735 £ 592 (293) 771 £ 674 (479) 786 * 692 (201) 0.46 0.47
rs4969017 T/C 0.03 756 = 641 (946) 871 = 839 (36) 195 + 0 (1) 0.75 0.25

DI rs1037257 C/T 0.38 1,332 = 1,179 (350) 1,290 = 1,221 (498) 1,444 = 1,408 (146) 0.56 0.92
rs4969076 C/G 0.22 1,409 = 1,344 (549) 1,186 = 1,018 (360) 1,357 = 1,380 (55) 0.051 0.036
rs1037260 T/G 0.14 1,287 = 1,201 (800) 1,474 = 1,362 (186) 1,275 = 910 (7) 0.82 0.90
rs11077670 G/A 0.12 1,376 = 1,277 (716) 1,137 = 1,056 (227) 1,575 = 1,615 (14)  0.00025 0.015
rs1868486 G/T 0.29 1,335 + 1,225 (453) 1,385 = 1,295 (423) 1,030 = 1,107 (109) 0.00037 0.0075
rs714925 A/G 0.29 1,333 = 1,209 (440) 1,373 = 1,250 (434) 1,009 = 1,076 (106) 0.0010 0.0061
rs998571 A/G 0.27 1,365 = 1,233 (475) 1,373 = 1,299 (397) 1,028 = 1,064 (109) 0.0030 0.027
rs7220818 A/G 0.39 1,326 = 1,242 (348) 1,277 = 1,203 (487) 1,450 = 1,285 (163) 0.070 0.14
rs6501603 T/G 047 1,391 = 1,320 (293) 1,265 + 1,169 (479) 1,355 = 1,177 (201) 0.30 0.24
rs4969017 T/C 0.03 1,326 = 1,252 (946) 1,295 = 1,087 (36) 197 = 0 (1) 0.66 0.47

FBG rs1037257 C/T 0.38 93.03 +£9.60 (371)  93.66 = 9.72 (529)  93.31 = 8.74 (151) 0.21 0.87
rs4969076 C/G 022 9346 +9.75(589)  93.13 £ 9.10(374)  94.01 = 9.65 (58) 0.47 0.54
rs1037260 T/G 0.14 9333 +9.51(848) 93.38 +9.37(194)  92.95 = 10.49 (10) 0.91 0.74
rs11077670 G/A 0.12 9321 =£9.56 (763)  93.89 = 9.63 (236)  96.93 = 8.97 (14) 0.056 0.11
rs1868486 G/T 0.29 9290 = 9.63 (484)  93.52 £9.44 (442)  95.31 =9.52(116)  0.010 0.083
rs714925 A/G 029 92.81 = 9.56 (473)  93.49 =941 (452)  95.34 =9.66 (113)  0.010 0.045
rs998571 A/G 027 92.83 2948 (509)  93.51 = 9.57(415)  94.90 =9.75(115)  0.010 0.079
rs7220818 A/G 0.39 93.87 = 11.96 (365) 93.44 + 1097 (513)  91.96 = 9.74 (178) 0.10 0.25
rs6501603 T/G 0.47 93.17 =9.49 (313)  93.71 £9.82 (510)  93.03 = 9.02 (208) 0.76 0.72
rs4969017 T/C 0.03 9340 = 9.49 (1000) 91.64 = 9.21 (40) 93.00 = 0.00 (1) 0.41 0.81

Boldface data indicate P values <0.05. *Genotypic means = SD (n) for homozygotes of the major allele (1/1) as well as heterozygotes (1/2)
and homozygotes of the minor allele (2/2). TMajor/minor alleles. i Test for association among each SNP-trait combination using a series of
generalized estimating equations. §Meta-analysis P value computed by sequential oligogenic linkage analysis with the modeling of set 1 or
set 2 affiliation as a random effect in a variance component-measured genotype model.

two populations, resulting in an ideal replication popula-
tion, and can be combined to give maximal power for
detecting association.

In total, 10 SNPs located at the SSTRZ2 locus were
genotyped on 1,425 Hispanic Americans. The most consis-
tent region of association fell within the LD block encom-
passing the SSTRZ gene, with three of the five SNPs highly
correlated (% > 0.78; Fig. 1) and driving the association.
IRASFS Hispanic Americans were separated into two
distinct groups for analysis, and results were compared
between groups. Although set 1 individuals exhibited
stronger association between polymorphisms in SSTR2
and S; as well as DI and FBG, similar evidence of associ-
ation or trends was detected in set 2, albeit of lesser
magnitude. Thus, association was detected in two inde-
pendent sets of Hispanic Americans.

DIABETES, VOL. 58, JUNE 2009

The magnitude of association increased when the two sets
of Hispanic Americans were combined. Tests of between-
population heterogeneity were nonsignificant for the most
significantly associated SNPs and traits (Table A2 in the
online appendix). Within the LD block, associations were
observed between SSTR2 SNPs and S; (Petaanalvsis —
0.0024-0.0030) and DI (P,e(a anatysis = 0-0075-0.027). Exam-
ination of the genotypic means revealed a consistent pattern
of decreased SI (Bhomozygous = _016) and DI (Bhomozygous =
—0.35 to —b.16) associated with the minor allele (Table 4;
online appendix Table A2). In addition, evidence of associa-
tion was observed with FBG (P eqnanaysis = 0-045), with
increased values (Bhomozygous = 2-30) associated with the
minor allele (Table 4; online appendix Table A2). Taken
together, these findings are consistent with genetic variants
at the SSTR2 locus contributing to insulin resistance, which
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results in higher circulating blood glucose levels. Evaluation
of SSTR2 SNPs for association with type 2 diabetes resulted
in an overall lack of association, with only a single SNP
showing nominal association (rs7220818, P = 0.040; data not
shown). Lack of association should be viewed cautiously, as
the result could be attributed to modest sample size for type
2 diabetes (n = 181).

In addition, we evaluated SSTRZ2 in a collection of 605
African Americans from the IRASFS who were recruited
and phenotyped in a similar manner. No evidence of
association was observed (data not shown). This absence
of association could reflect observable differences in LD
patterns in the Hispanic- and African-American popula-
tions as reflected in the HapMap reference populations
(CEU and YRI, respectively; online appendix Figs. Al and
A2), which results in less efficient tagging of variation in
African populations (+* = 0.47, MAF >0.05, aggressive
tagging algorithm). In addition, lack of association could
be attributed to reduced power due to smaller sample size
or ethnicity-specific genetic differences.

SSTR2 polymorphisms appear to play a role in the
modulation of glucose homeostasis through mechanisms
consistent with the known biological function of the
protein. SRIF inhibits growth hormone and glucagon se-
cretion in a subtype-selective process through SSTR2 (1).
Both growth hormone and glucagon exhibit potent antag-
onistic effects on insulin action by increasing hepatic
gluconeogenesis and glycogenolysis. In addition, growth
hormone decreases peripheral glucose utilization (20).
Decreased utilization of peripheral glucose would directly
affect S; as measured herein. Evidence of association with
DI is likely to be attributed to associations with S; due to
the mathematical relationship (DI = S; X AIR). The
physiological effect of decreased glucose utilization cou-
pled with increased glucose production would result in
elevated blood glucose levels, as observed through the asso-
ciation with FBG. Lack of association with AIR could be
attributed to the subtype-selective actions of SRIF to inhibit
insulin secretion, predominantly through SSTRS (1).

Based on these findings, additional research is war-
ranted to identify a true functional variant(s), as it is
unlikely the causal variant was genotyped on these indi-
viduals; i.e., SNPs were chosen based on position. Al-
though evidence of association was detected between
SNPs in the SSTR2 coding region and glucose homeostasis
phenotypes, magnitude of the association was not com-
pletely consistent throughout all analyses, suggesting that
the association is due to LD with the true functional
variant. Additionally, a more thorough evaluation of the
proximal 5’ genomic region may provide insight into a
causal mechanism, possibly through interaction with the
proposed promoter(s) (21-23). In conclusion, SSTR2 poly-
morphisms are associated with glucose homeostasis and
appear to be involved through modulation of S;.

ACKNOWLEDGMENTS

This research was supported in part by NIH grants
HL060894, HL060931, HL060944, HL.061019, and HL061210.
No potential conflicts of interest relevant to this article
were reported.
The authors acknowledge the anonymous reviewers for
their thoughtful insight during the manuscript review
process.

1462

REFERENCES

1. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol
1999;20:157-198
2. Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S. Cloning and
functional characterization of a family of human and mouse somatostatin
receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl
Acad Sci U S A 1992;89:251-255
3. Rossowski WJ, Coy DH. Potent inhibitory effects of a type four receptor-
selective somatostatin analog on rat insulin release. Biochem Biophys Res
Commun 1993;197:366-371
4. Strowski MZ, Parmar RM, Blake AD, Schaeffer JM. Somatostatin inhibits
insulin and glucagon secretion via two receptors subtypes: an in vitro
study of pancreatic islets from somatostatin receptor 2 knockout mice.
Endocrinology 2000;141:111-117
5. Moldovan S, Atiya A, Adrian TE, Kleinman RM, Lloyd K, Olthoff K,
Imagawa D, Shevlin L, Coy D, Walsh J, et al. Somatostatin inhibits B-cell
secretion via a subtype-2 somatostatin receptor in the isolated perfused
human pancreas. J Surg Res 1995;59:85-90
6. Cheng H, Yibchok-anun S, Coy DH, Hsu WH. SSTR2 mediates the soma-
tostatin-induced increase in intracellular Ca(2+) concentration and insulin
secretion in the presence of arginine vasopressin in clonal beta-cell
HIT-T15. Life Sci 2002;71:927-936
7. Sutton BS, Langefeld CD, Campbell JK, Haffner SM, Norris JM, Scherzinger
AL, Wagenknecht LE, Bowden DW. Genetic mapping of a 17q chromo-
somal region linked to obesity phenotypes in the IRAS family study. Int J
Obes (Lond) 2006;30:1433-1441
8. Norris JM, Langefeld CD, Scherzinger AL, Rich SS, Bookman E, Beck SR,
Saad MF, Haffner SM, Bergman RN, Bowden DW, Wagenknecht LE.
Quantitative trait loci for abdominal fat and BMI in Hispanic-Americans
and African-Americans: the IRAS Family study. Int J Obes Relat Metab
Disord 2005;29:67-77
9. Henkin L, Bergman RN, Bowden DW, Ellsworth DL, Haffner SM, Langefeld
CD, Mitchell BD, Norris JM, Rewers M, Saad MF, Stamm E, Wagenknecht
LE, Rich SS. Genetic epidemiology of insulin resistance and visceral
adiposity: the IRAS Family Study design and methods. Ann Epidemiol
2003;13:211-217
10. Bergman RN, Finegood DT, Ader M. Assessment of insulin sensitivity in
vivo. Endocr Rev 1985;6:45-86
. Bergman RN. Lilly lecture 1989: toward physiological understanding of
glucose tolerance: minimal-model approach. Diabetes 1989;38:1512-1527
12. Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J, Little
DP, Strausberg R, Koester H, Cantor CR, Braun A. High-throughput
development and characterization of a genomewide collection of gene-
based single nucleotide polymorphism markers by chip-based matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry. Proc
Natl Acad Sci U S A 2001;98:581-584
13. O’Connell JR, Weeks DE. PedCheck: a program for identification of genotype
incompatibilities in linkage analysis. Am J Hum Genet 1998;63:259-266
14. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D.
Efficiency and power in genetic association studies. Nat Genet 2005;37:
1217-1223
15. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization
of LD and haplotype maps. Bioinformatics 2005;21:263-265
16. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous
outcomes. Biometrics 1986;42:121-130
17. Hardin JW: Generalized Estimating Equations. New York, Chapman &
Hall/CRC, 2003
18. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in
general pedigrees. Am J Hum Genet 1998;62:1198-1211
19. Sutton AJ, Abrams KR, Sheldon TA, Song F: Methods for Meta-Analysis in
Medical Research. West Sussex, U.K., John Wiley & Sons, 2000
20. Yuen KC, Dunger DB. Therapeutic aspects of growth hormone and
insulin-like growth factor-I treatment on visceral fat and insulin sensitivity
in adults. Diabetes Obes Metab 2007;9:11-22
. Petersenn S, Rasch AC, Presch S, Beil FU, Schulte HM. Genomic structure
and transcriptional regulation of the human somatostatin receptor type 2.
Mol Cell Endocrinol 1999;157:75-85
22. Pscherer A, Dorflinger U, Kirfel J, Gawlas K, Ruschoff J, Buettner R, Schule
R. The helix-loop-helix transcription factor SEF-2 regulates the activity of
a novel initiator element in the promoter of the human somatostatin
receptor II gene. Embo J 1996;15:6680-6690
23. Torrisani J, Hanoun N, Laurell H, Lopez F, Maoret J, Souque A, Susini C,
Cordelier P, Buscail L. Identification of an upstream promoter of the
human somatostatin receptor hSSTR2, that is controlled by epigenetic
modifications. Endocrinology 2008;149:3137-3147

1

—

2

—

DIABETES, VOL. 58, JUNE 2009



