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ABSTRACT: Herein, we report on naturally derived microtubule
stabilizers with activity against triple negative breast cancer
(TNBC) cell lines, including paclitaxel, fijianolide B/laulimalide
(3), fijianolide B di-acetate (4), and two new semisynthetic analogs
of 3, which include fijianolide J (5) and fijianolide L (6). Similar to
paclitaxel, compound 3 demonstrated classic microtubule stabiliz-
ing activity with potent (GI50 = 0.7−17 nM) antiproliferative
efficacy among the five molecularly distinct TNBC cell lines.
Alternatively, compounds 5 or 6, generated from oxidation of C-20
or C-15 and C-20 respectively, resulted in a unique profile with
reduced potency (GI50 = 4−9 μM), but improved efficacy in some
lines, suggesting a distinct mechanism of action. The C-15, C-20
di-acetate, and dioxo modifications on 4 and 6 resulted in
compounds devoid of classic microtubule stabilizing activity in biochemical assays. While 4 also had no detectable effect on cellular
microtubules, 6 promoted a reorganization of the cytoskeleton resulting in an accumulation of microtubules at the cell periphery.
Compound 5, with a single C-20 oxo substitution, displayed a mixed phenotype, sharing properties of 3 and 6. These results
demonstrate the importance of the C-15/C-20 chiral centers, which appear to be required for the potent microtubule stabilizing
activity of this chemotype and that oxidation of these sites promotes unanticipated cytoskeletal alterations that are distinct from
classic microtubule stabilization, likely through a distinct mechanism of action.

■ INTRODUCTION

Some of the most effective frontline chemotherapeutic agents
for the treatment of triple negative breast cancers (TNBCs) are
the taxane class of microtubule stabilizers, including paclitax-
el.1,2 Over the past decades, a number of other microtubule
targeted agents (MTAs) derived from natural products have
been developed for the treatment of breast cancer with a
particular focus on therapeutics that have distinct binding sites
as compared to the taxanes or the ability to circumvent
clinically relevant forms of taxane resistance.3 A noteworthy
example includes Ixempra, an analog of the myxobacteria-
derived epothilone B that binds within the taxane pocket and
may have advantages in taxane-resistant settings.4 Selected
examples of marine-derived microtubule stabilizers that have
undergone preclinical development include the covalent
microtubule stabilizer zampanolide, which binds within the
taxane pocket,5 as well as peloruside A6 and the fijianolides/
laulimalides,7−9 which jointly define a microtubule stabilizer
binding site that is completely nonoverlapping with the
taxanes.8

The fijianolide/laulimalide chemotype has received consid-
erable attention over the past 20 years as a potent class of

microtubule stabilizers that demonstrate activity against
taxane-resistant cell lines, including multidrug resistant cells
expressing the p-glycoprotein drug efflux pump.8−10 Fijianolide
A/isolaulimalide (1), neolaulimalide (2), and laulimalide/
fijianolide B (3), shown in Figure 1, were independently
characterized in 198811,12 and 1996.13 While 1 was found to be
modestly potent, 2 and 3 were recognized early on to impart
considerable cytotoxic potency against a wide variety of cancer
cell lines. A landmark discovery in 1999 revealed that the
cytotoxic mechanism of action (MOA) of 3 against cancer cell
lines was due in part to its ability to stabilize microtubules.9

This was later confirmed for 2 as well in 2009.13 Interestingly,
the microtubule binding site for this chemotype was found to
be on the microtubule exterior, distinct from the taxane site,
enabling this structural class to retain potency against taxane-
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resistant cell lines.8−10 These findings have motivated 14 total
syntheses of 3 by multiple research groups.7,13−16 In vivo
antitumor evaluations reported antitumor activity for 3 in
HCT-116 xenografts16 and a complete lack of efficacy in
MDA-MB-435 and HT-1080 xenografts over a range of doses
and schedules.17 Alternatively, significant efforts have been
made studying 3 for its use as a novel molecular probe to
investigate microtubule dynamics because of its distinct
binding motif with β-tubulin.18−29

Stability studies noted the more potent 3 isomerized to the
less potent 1 by a potential SN2 attack on C-17 of the epoxide
by the C-20 hydroxyl group upon exposure to acidic
conditions.11,12 Isomerization of 2 to 1 was also observed,
albeit over a much longer period of time (2 days) compared to
that of 3 to 1 (2 h).13 From these studies, it appears 2
undergoes a much slower conversion involving ring contrac-
tion to generate 3, then isomerizes to 1, rendering 2 to be
more stable then 3. However, further studies to pursue 2 as a
therapeutic lead have been stymied because it has not been
reliably isolated from natural sources, being only reported

once.13 These results highlighted the need to develop analogs
of 3 with enhanced stability and retained potency to expand
the understanding of the cytotoxic structure−activity relation-
ship (SAR) of this chemotype.15 To date, this has resulted in
the generation of 37 distinct analogs of 3 summarized in Figure
2 and shown in Table S1.8,11,13,15,16,30−35 Figure 2 depicts the
relative impact of modifications to each of six different
chemical regions of 3, labeled as R1−R6, on potency to result in
low (IC50 > 1000 nM), medium (IC50 = 100−1000 nM) or
high (IC50 < 100 nM) potency analogs against a variety of
cancer cell lines (individual IC50 values listed in Table S1).
These data highlight the significant amount of medicinal
chemistry that has been conducted with this chemotype by
over a dozen different research groups to optimize the potency
and stability of this structural class for therapeutic develop-
ment. However, it is important to note most of these studies
did not confirm whether the antiproliferative potency of these
analogs was due to the same mechanism of microtubule
stabilization as for 3, which complicates the interpretation of
these SAR studies.

Figure 1. Structures of fijianolide A/isolaulimalide (1), neolaulimalide (2), fijianolide B/laulimalide (3), fijianolide B di-acetate (4), and fijianolides
J (5) and L (6).

Figure 2. Summary of structure activity relationship (SAR) studies with 3 involving 28 modifications to R-groups (R1−R6), resulting in low (IC50 >
1000 nM, red), medium (IC50 = 100−1000 nM, orange), or high (IC50 < 100 nM, green) potency analogs (in parentheses) based on potency to
selected cancer cell lines in Table S1.
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A key takeaway from Figure 2 is that structural variations to
region R4 resulted in a dozen new analogs, but all with potency
in the micromolar range, indicating modifications to the C-21
to C-27 side chain region of this chemotype are not well
tolerated. Structural variations to regions R1−R3 and R5 had
variable effects on potency depending on the specific
modification. Selected examples of the potency in IC50 to
cancer cell lines from analogs of 3 with modifications to
regions R1−R3 are shown (in entries 2−8) in Table S1. A large
OTBS ether modification at the C-20 hydroxyl drastically
reduced potency (>1000 nM), whereas more minor methoxy
and acetoxy modifications at this position were better tolerated
with only moderately diminished potencies of 240 and 91 nM,
respectively.30,31 Similarly, a methoxy substitution on C-15
significantly reduces potency (>1000 nM), while an acetoxy
modification on C-15 is well tolerated (23 nM). A di-acetate
modification of both C-15 and C-20 (fijianolide B di-acetate,
411) also led to a moderate reduction in potency of 289 nM.30

Epimerization of C-15 also produced a compound with
moderately diminished potency (176 nM) although no
mention of stability was reported.30 Lastly, oxidation of C-15
to a ketone in combination with a reduction of the epoxide
(desepoxide) completely abrogated activity, but it is unclear
the effect of C-15 oxidation on its own. On the basis of these
data and that 2 retained the potency of 3, but with improved
stability, we hypothesized that (a) targeted oxidation of the C-
15 and C-20 stereocenters and (b) selected oxidation followed
by reduction of C-20 to make the hydroxy epimer, could
provide new lead compounds with retained nM potency,
improved stability and ease of synthesis. Herein we describe
the results of our hypothesis that include evaluations of 3, as
well as C-15 and C-20 modified analogs, against selected triple
negative breast cancer (TNBC) cell lines, which led to the
unanticipated identification of a novel mechanism of action
independent of direct microtubule stabilization for this
chemotype.

■ RESULTS AND DISCUSSION

Our first step was to evaluate the antiproliferative and cytotoxic
effects of 3 in a panel of five molecularly diverse triple negative
breast cancer (TNBC) cell lines taking into account the
cellular density at the time of compound addition, which is
represented by the dashed line at y = 0 in Figure 3. Consistent
with published data in other cell lines, 3 demonstrated potent
antiproliferative activity in each TNBC line with concen-
trations that inhibited growth by 50% (GI50; y = 50 in Figure
3) ranging from 0.7 nM in the HCC1806 line to 17.3 nM in
the HCC1937 cell line. In contrast, the efficacy of 3 varied
among cell lines with cytotoxicity only observed in the MDA-
MB-453 and HCC1806 cell lines as evidenced by decreased
cellular density as compared to the time of compound addition
(values dropping below the dashed line at y = 0). This is
consistent with the relative efficacy of these cell lines to other
classes of MTAs and demonstrates that 3 retains potent
antiproliferative effects in TNBC models.
Next, we generated the known fijianolide B di-acetate

(4)10,30 by acetylating the hydroxyl groups on C-15 and C-20.
This began with pure 3 to generate 4 by employing methods
described previously in the Experimental Section.11,30 As noted
above, we hypothesized the stability of 3 could be improved,
while also simplifying its total synthesis, by eliminating the C-
15 and C-20 chiral centers. This involved oxidizing 3 at C-15
and C-20 using Dess−Martin periodinane (DMP) to produce
the C-20 mono-oxo fijianolide J (5) along with the C-15, C-20
dioxo fijianolide L (6) as described in the Experimental
Section. Using one molar equivalent of DMP with 3 led to the
production of nearly pure 5, while use of excess of 2 mol equiv
DMP with 3 led to a mixture of 5 and 6. Under no
circumstances were we able to oxidize C-15 without oxidizing
C-20 on 3 using DMP. Structural assignment of 4−6 was
achieved by a combination of 1D and 2D NMR experiments
and ESI-HAMS as shown in Tables S2 and S3 and Figures S2−
S16. An additional C-15/C-20 dimethoxy analog of 3 (named
fijianolide K) was also generated but not in sufficient quantity

Figure 3. Antiproliferative and cytotoxic effects of 3 in a panel of molecularly diverse triple negative breast cancer (TNBC) cell lines. The cellular
density at the time of compound addition is represented as the dashed line at y = 0, which allows for determination of the concentration that
inhibits proliferation by 50% (y = 50) as the GI50 value. Cytotoxicity is evident from values that fall below the dashed line. Mean ± SEM, n = 3
independent experiments.

Table 1. Antiproliferative Potency of Paclitaxel and 3−6 Against Triple Negative Breast Cancer Cell Linesa

GI50 (nM)

compound MDA-MB-231 HCC1806 BT-549

paclitaxel 3.3 ± 0.6 0.9 ± 0.3 2.8 ± 0.7
fijianolide B/laulimalide (3) 5.2 ± 0.9 0.7 ± 0.2 4.0 ± 1.6
fijianolide B di-acetate (4) 234 ± 104 110 ± 21 300 ± 25
fijianolide J (5) 4300 ± 700 4100 ± 800 5300 ± 800
fijianolide L (6) 8700 ± 1000 7900 ± 1000 6500 ± 500

aThe concentration of each compound that inhibited the growth of each triple negative breast cancer (TNBC) cell line by 50% as compared to the
time of drug addition (GI50) was determined using the SRB assay. Mean ± SEM, n = 3−4 independent experiments
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to be fully structurally characterized and or evaluated in our
biological assays.
We evaluated the potency and efficacy of 4−6 in a subset of

TNBC cell lines. Consistent with previous reports in the
MDA-MB-435 melanoma line,30 we found that 4 had
approximately 100-fold reduced potency as compared to 3 in
our panel of TNBC lines in Table 1. Both compounds 5 and 6
had approximately 1000-fold reduced antiproliferative potency
as compared to 3 in the MDA-MB-231, HCC1806, and BT-
549 cell lines over 48 h as shown in Table 1. When we more
closely interrogated the concentration-dependent response of
these compounds on cellular growth and cytotoxicity, we
observed that in spite of their decreased antiproliferative
potency, compounds 5 and 6 actually had improved cytotoxic
efficacy as compared to 3 or 4 at these higher μM
concentrations, particularly in the MDA-MB-231 and BT-549
cell lines (Figure 4). This distinct pharmacological profile
suggested that compounds 5 and 6 did not just have reduced
potency, but that they likely had a distinct mechanism of action
as compared to the parent compound 3. To address this, we
compared the ability of these compounds to polymerize
microtubules both in biochemical preparations as well as in
cells. We found that 5 had a reduced rate of biochemical
tubulin polymerization as compared to 3 whereas neither 4 nor
6 were able to promote the polymerization of purified tubulin
even when present at equimolar (20 μM) concentrations with
tubulin heterodimers (Figure 5A).

We, further, evaluated the effects of these compounds on
cellular microtubules in BT-549 cells. While 3 demonstrated
classic cellular microtubule bundling, 4 had no effect on the
cellular microtubule structure at concentrations up to 10 μM
(data not shown). While compounds 5 and 6 did not promote
classical microtubule stabilization in cells, they led to distinct
phenotypes of short microtubule tufts for 5 or a roping of
microtubules around the cellular periphery for 6 (Figure 5B).
Importantly, these changes to the interphase microtubule
cytoskeleton were observed 8 h after compound addition
before any evidence of cytotoxicity was observed for 5 or 6.
Together, these data demonstrate that the dual C-15/C-20
acetylation or oxidation of 3 effectively eliminates direct
microtubule stabilizing activity and reduces cellular potency.
This reduced potency is associated with a distinct mechanism
of action for compounds 5 and 6, precluding this activity being
due to trace amounts of the parent compound. Although, we
cannot distinguish whether the micromolar potency observed
with 4 is due to reduced activity of the modified compound or
some degree of esterification of 4 into 3 in cells, co-
sedimentation studies suggest that the activity of 4 is not
likely due to contamination of the sample with small amounts
of 3 (Figure S17). However, we cannot distinguish whether the
micromolar potency observed with 4 is due to reduced activity
of the modified compound, minor traces of 3, or some degree
of esterification of 4 into 3 in cells. Regardless, we conclude
that either acetylation or oxidation of C-15/C-20 moieties on 3

Figure 4. Concentration-dependent antiproliferative and cytotoxic effects of 3 (green), 4 (red), 5, (blue), and 6 (purple) in triple negative breast
cancer (TNBC) cell lines: (A) MDA-MB-231, (B) HCC1806, and (C) BT-549. The cellular density at the time of compound addition is
represented as the dashed line at y = 0. Cytotoxicity is evident from values that fall below the dashed line (see arrows). Mean ± SEM, n = 3−4
independent experiments.

Figure 5. Fijianolides modified at C-15, C-20 have distinct effects on tubulin as compared to 3. (A) Biochemical tubulin polymerization assay
where 20 μM purified tubulin heterodimers are incubated in the presence of 20 μM of 3−6. The microtubule destabilizer colchicine (colch) is used
as a negative control. (B) Immunofluorescence of microtubules (green) and DNA (blue) in BT-549 cells treated for 8 h with vehicle (veh), 100 nM
of 3, or 20 μM of 5 and 6. Data for compound 4 is not shown as it resembled the vehicle (veh) control.
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results in a loss of activity and, in the case of oxidation, results
in compounds with a distinct mechanism of action.
Because of the complete lack of direct microtubule

polymerization observed for 6 and the unique accumulation
of cellular microtubules around the cell periphery, we further
interrogated its cytoskeletal effects. Vimentin is a type III
intermediate filament (IF) protein expressed in mesenchymal
cells and is found in breast cancer cells that have undergone
epithelial-to-mesenchymal transition (EMT), including BT-
549 cells. We found that 8 h of treatment with 6 was sufficient
to completely collapse vimentin to a perinuclear localization as
shown in Figure 6A and shift the distribution of F-actin fibers

from the cell periphery to a more uniform distribution
throughout the cell (Figure 6B). This collapse of the vimentin
IF network to a perinuclear localization is strikingly similar to
that induced by expression of the α-tubulin deacetylase,
HDAC6, or a nonacetylatable variant of tubulin (K40R).36

Indeed, 6 is distinct from the parent compound in that it is
unable to promote the acetylation of α-tubulin, which has been
previously reported for 3 (Figure 6C).18 Importantly, this
vimentin collapse is also associated with oncogene trans-
formation and increased cellular stiffness, which is associated
with increased invasion, suggesting that compounds that
promote this phenotype would not be effective anticancer
agents. Presumably, the changes in cellular microtubule
structure are mediated through a maintained interaction of 6
with the microtubule exterior that does not increase protofila-
ment stability, but instead leads to distinct changes to the
microtubule and vimentin cytoskeleton. These data are
consistent with reports by Mooberry et al, who saw a strikingly
similar phenotype described as “long thick ropy microtubule
structures” when cells were treated with an analog of 3 that was
methylated at C-20 and lacked the C-16, C-17 epoxide, which
also alters the orientation of C-15.31 Intriguingly, neither of
these individual modifications produced this phenotype,
suggesting that a disruption at both of these moieties is
necessary to shift the cytoskeletal mechanism of action of this

compound. Our data are consistent in that they also show that
the oxidation of C-20 alone is not sufficient for a full
phenotypic shift, but rather that oxidation of both C-15 and C-
20 is required to completely eliminate microtubule polymer-
izing activity and promote the distinct peripheral distribution
of microtubules shown in Figures 5B and 6.

■ CONCLUSIONS

While the clinical future of the fijianolide/laulimalide chemo-
type as a monotherapy remains uncertain, its unique binding
site provides synergistic activity in combination with taxane-
site binding MTAs and allows it to circumvent some taxane-
associated drug resistance mechanisms. In the current study,
we hypothesized that the creation of a C-20 hydroxy epimer of
3 could serve as a viable new analog for the relatively
unexplored SAR epimerization studies of this chemotype.
However, our results demonstrate that the observed cytotox-
icity for C-15/C-20 oxidized derivatives of 3 is due to a distinct
mechanism of action as compared to the direct microtubule
stabilizing activity of 3. This is a valuable finding as it prompts
the need to reinterpret SAR data reported for this compound
class, particularly when the activity of an analog is reported
only as an IC50 value with no follow up mechanistic evaluations
to ensure that the SAR is on target for the microtubule
stabilizing activity of the fijianolide/laulimalide chemotype. An
additional advantage of these more detailed mechanistic
evaluations is that they alleviate concerns that the reduced
potency of an analog is due to contamination with trace
amounts of the parent compound.
We propose that at least some of the inconsistency in the

literature regarding the impact of modifications to fijianolide/
laulimalide analogs, particularly at C-15/C-20, is due to the
fact we demonstrate that substitutions at those sites can change
the mechanism of the antiproliferative and cytotoxic effects of
this compound class. Our findings more specifically demon-
strate that the chiral centers of C-15/C-20 are critical for the
microtubule stabilizing activity of 3 and that even minor
modifications to these moieties, intended to improve
compound stability, are incompatible with the direct micro-
tubule stabilizing activity of this structural class. The finding
that 6 can promote a distinct relocalization of cellular
microtubules and other components of the cytoskeleton in
the absence of direct microtubule stabilization or tubulin
acetylation in cells suggests that this analog could retain the
ability to interact with the fijianolide/laulimalide binding site
on tubulin, but that the lack of chiral centers at C-15/20 leads
to distinct allosteric effects downstream of its binding to alter
its mechanism of action. Ultimately, our findings provide
additional insight into the mechanistic importance of the C-
15/C-20 moieties on the fijianolide/laulimalide chemotype
and provide a cautionary tale of the importance of inter-
rogating detailed mechanistic SAR data for this and other
compound classes when undertaking these types of studies.

■ EXPERIMENTAL SECTION

General Experimental Procedures. NMR experiments
were conducted on several different spectrometers that include
(1) a Varian (Agilent) spectrometer fitted with a 5 mm triple-
resonance probe (1H, 13C, 15N) with 400 MHz resonance for
1H experiments and 100 MHz resonance for 13C experiments,
(2) a Bruker Avance III HD spectrometer fitted with a 5 mm
BBO smart probe with 500 MHz resonance for 1H experiments

Figure 6. Cytoskeletal effects of 6. (A) Immunofluorescence for
vimentin (red) and DNA (blue) without (left panels) or with (right
panels) microtubules (green) in BT-549 cells treated with vehicle or
20 μM 6 for 8 h. (B) Immunofluorescence for F-actin (red) and DNA
(blue) without (left panels) or with (right panels) microtubules
(green) in BT-549 cells treated with vehicle or 20 μM 6 for 8 h. (C)
Immunoblot of total β-tubulin (green) or acetylated α-tubulin (K40)
in BT-549 cells treated with vehicle, 100 nM 3, or 20 μM indicated
analogs for 8 h.
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and 125 MHz for 13C experiments, (3) a Varian (Agilent)
Inova fitted with a 5 mm triple-resonance cryoprobe (1H, 13C,
15N) with 600 MHz for 1H experiments and 150 MHz for 13C
experiments, and (4) a Bruker AV fitted with a triple-resonance
(1H, 13C, 15N) cryoprobe with 700 MHz resonance for 1H
experiments and 175 MHz for 13C experiments. LCMS and
high accuracy mass spectrometer measurements were
performed on a VelosPro Orbitrap mass spectrometer
(Thermo Scientific) coupled to a photodiode array detector
with the following experimental parameters: ion transfer tube
temperature, 380 °C; vaporization temperature, 300 °C; sheath
gas pressure, 60 psi; auxiliary gas flow, 20 abu; spray voltage,
3.0 kV; S-lens RF level, 68.3%.
Biological Material, Collection, and Identification.

Specimens of the marine sponge Cacospongia mycof ijiensis were
obtained by scuba in Vanuatu as reported previously.37,38

Taxonomic identification was based on comparison of
characteristic biological features to other samples in the UC
Santa Cruz sponge repository. Voucher specimens and
underwater photos are available on request.
Extraction and Isolation. Extracts of C. mycof ijiensis were

processed according to previous reported methods.39 Reposi-
tory dichloromethane methanol extracts (coded DMM, not
traditionally processed due to their high lipophilic content)
were obtained from the UCSC marine sponge repository. The
DMM extract was used in the repeated scale up HPLC
isolation of 3, for use in semisynthesis and further biological
evaluation. HPLC purification was performed on a semi-
preparative column (Phenomenex Inc. Luna© 5 μm C18(2)
100 Å 10 × 250 mm) in conjunction with a 4.0 × 3.0 mm C18
(octadecyl) guard column and cartridge (holder part number:
KJ0−4282, cartridge part number: AJ0−4287, Phenomenex
Inc., Torrance, CA, USA). A reversed-phased linear gradient
was employed (30:70 CH3CN/H2O to 80:20 over 50 min,
ramping up to 100% CH3CN from 51 to 61 min, then
returning to 30:70 for re-equilibration from minutes 62 to 73).
Compound detection was measured with an Applied
Biosystems 759a UV detector at a single wavelength λmax =
230 nm. For the DMM extracts, four major HPLC fractions
began to elute at approximately 46 min. For each HPLC
sample of the DMM extracts ([15 mg/150 μL], MeOH),
approximately 0.6 mg of compound 3, 0.3 mg of zampanolide,
0.7 mg of latrunculin A, and 1.5 mg of mycothiazole were
liberated. All purified compounds were dried under an N2
stream, stored in an amber vial, and purged with gaseous argon
then sealed in a dark desiccator under vacuum. Compound 4
was generated by semisynthesis according to previously
reported methods.11,30 A sample of 3 (4.35 mg) along with
1000 μL acetic anhydride and 1000 μL dry pyrdine were added
to a reaction vial. The mixture was stirred for 24 h before the
reaction was quenched with 1000 μL of d-H2O and 1000 μL of
dichloromethane (DCM). The layers were inverted and
allowed to separate before the DCM layer was removed
from the reaction vial and dried under an N2 stream. The dried
DCM layer was purified using RP-HPLC (Phenomenex Luna 5
μm C18(2) 100 Å 10 × 250 mm) to yield one major fraction
determined to be compound 4 (3.43 mg, 68%). Compounds 5
and 6 were generated by semisynthesis. A sample of 3 (15.42
mg) and Dess−Martin periodinane (64 mg, 4.4 mol equiv )
were added to 800 μL of dichloromethane.40 The mixture was
stirred for 22 h. The reaction mixture, along with 100 mL of
water and 100 mL of hexanes, were added to a separatory
funnel. The aqueous and organic layers were collected

separately and the organic layer was dried under an N2 stream.
The dried crude organic layer (10.15 mg) was purified using
RP-HPLC (Phenomenex Luna 5 μm C18(2) 100 Å 10 × 250
mm) to yield two major fractions determined to be
compounds 5 (1.70 mg, 14%) and 6 (1.05 mg, 8%).

Cell Lines. MDA-MB-231, HCC1937, MDA-MB-453, and
HCC1806 human TNBC cell lines were received from ATCC.
BT-549 cells were obtained from the Georgetown University
Lombardi Comprehensive Cancer Center, Washington, DC.
BT-549, HCC1806 and HCC1937 cells were grown in RPMI
1640 medium (Gibco) supplemented with up to 10% FBS
(Corning). MDA-MB-231 and MDA-MB-453 were cultured in
modified IMEM supplemented with L-glutamine and up to
10% FBS. Cell line identity was authenticated by STR-based
profiling (Genetica DNA Laboratories). All cells were grown at
37 °C and 5% CO2 in an incubator and routinely tested for
mycoplasma contamination.

Antiproliferative and Cytotoxic Assay. TNBC cells
were seeded into a 96-well plate and, after adhering overnight,
were treated with vehicle alone or compounds at concen-
trations from 1 nM to 20 μM in a final volume of 0.5% EtOH
vehicle for 48 h. A separate plate was fixed with 10% TCA at
the time of drug addition to provide a readout of cellular
density, which was used to differentiate antiproliferative from
cytotoxic effects. 48 h after treatment, cells were fixed with 10%
TCA, and the protein stained with sulforhodamine B dye,
which allowed for quantification of cellular density propor-
tional to absorbance at 560 nm using a Spectramax plate reader
running SoftMax Pro 5.4 (Molecular Devices). The percent
growth at each concentration was calculated using the equation
[(48 h drug − time 0)/(48 h vehicle − time 0)]*100 and
percent cytotoxicity as 100 − [(48 h drug/time 0)*100],
where time 0 is the density of cells at the time of drug addition.
Concentration-dependent antiproliferative effects were
graphed using Graphpad (Prism) with error bars representing
SEM as compared to the density at the time of drug addition as
y = 0, the density of vehicle treated cells as y = 100, and a blank
well as y = −100. Concentrations that caused a 50% inhibition
of cell growth (GI50, y = 50) were determined by nonlinear
regression analysis of the data and are from 3 independent
experiments each run in triplicate ± SEM.

Immunofluorescence. BT-549 cells were plated on glass
coverslips treated with the indicated concentration of each
compound or EtOH vehicle control for 8 h and then fixed with
ice cold methanol for 5 min. Indirect immunofluorescence was
used to detect β-tubulin (Sigma T-4026T) and nuclei stained
with DAPI. Images were acquired on a Nikon widefield
florescence microscope running NIS elements with multiple z-
stacks.

Biochemical Tubulin Polymerization. The polymer-
ization of purified porcine tubulin (Cytoskeleton; T240) was
performed in GPEM buffer (80 mM PIPES pH 6.9, 2 mM
MgCl2, 0.5 mM EGTA, and 1 mM GTP) in 10% glycerol. All
components were kept on ice during preparation. Compounds
(1 μL of 2 mM stocks) were added to individual wells of a 96-
well plate in 100 μL of GPEM buffer with 20 μM tubulin to
give equimolar concentrations of tubulin and drug. Micro-
tubule polymerization was monitored at 37 °C by measuring
the change in absorbance at 340 nm every minute for an hour
using a SoftMax Pro 5.4 plate reader (Molecular Devices).

Immunoblotting. BT-549 cells were seeded in a 6-well
dish and treated with ethanol (vehicle), 100 nM of 3, or 20 μM
of compounds 4, 5, or 6. Cells were harvested by scraping and
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lysed in 50 mM Tris, 1% IGEPAL CA-630, and 150 mM
sodium chloride with protease inhibitor cocktail (Sigma-
Aldrich), 10 mM sodium fluoride, 1 mM phenylmethylsulfonyl
fluoride, and 200 μM sodium orthovanadate. Equal amounts of
protein were loaded onto a Bolt 10% Bis−Tris Plus gel
(Invitrogen) and transferred onto a PVDF Immobilon-FL
membrane (Millipore). The membrane was blocked for 1 h at
room temperature in 5% nonfat milk in TBST after which
protein levels were evaluated by immunoblotting. Primary
antibodies used were acetylated-α-tubulin (rabbit monoclonal
antibody, 1:1000, 5335S, Cell Signaling Technologies) and
total β-tubulin (mouse monoclonal antibody, 1:1000, T4026,
Sigma-Aldrich). Secondary antibodies used were IRDye
800CW Goat antirabbit for acetylated α-tubulin (red) and
680CW goat antimouse for total β-tubulin (green) (1:5000
dilution, LI-COR Biosciences). The immunoblot was
visualized using a LI-COR Biosciences Odyssey Fc Imager
for 10 min at the 700CW channel and 2 min at the 800CW
channel. Revert total protein staining confirmed equal loading
of protein in each lane.
Paclitaxel. Obtained from Sigma-Aldrich. (T1912).
Fijianolide B/Laulimalide (3). White powder; 1H and 13C

NMR data (C6D6) see Table S2 and Figure S1, consistent with
previous reports,16 ESI-HAMS m/z 515.2969 [M + H]+ (calcd
for C30H43O7, 515.3009).
Fijianolide B Di-acetate (4). White powder; 1H NMR data

(C6D6) see Table S3 and Figure S2; LRMS m/z (599 [M +
H]+) (calcd for C34H47O9).
Fijianolide J (5). White powder; 1H and 13C NMR data

(C6D6) see Table S4 and Figures S3−S8; ESI-HAMS m/z
(513.2728 [M + H]+) (calcd for C30H41O7, 513.2852).
Fijianolide L (6). White powder; 1H and 13C NMR data

(C6D6) see Table S5 and Figures S9−S13; ESI-HAMS m/z
(511.2574 [M + H]+) (calcd for C30H39O7, 511.2696).
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