
RESEARCH ARTICLE

Efficient learning representation of noise-

reduced foam effects with convolutional

denoising networks

Jong-Hyun KimID
1, YoungBin KimID

2*

1 School of Software Application, Kangnam University, Yongin, Gyeonggi, Republic of Korea, 2 Graduate

School of Advanced Imaging Science, Multimedia & Film, Chung-Ang University, Seoul, Republic of Korea

* ybkim85@cau.ac.kr

Abstract

This study proposes a neural network framework for modeling the foam effects found in liq-

uid simulation without noise. The position and advection of the foam particles are calculated

using the existing screen projection method, and the noise problem that occurs in this pro-

cess is prevented by using the neural network. A significant problem in the screen projection

approach is the noise generated in the projection map during the projecting of momentum

onto the discretized screen space. We efficiently solve this problem by utilizing a denoising

neural network. Following the selection of the foam generation area using a projection map,

the foam particles are generated through the inverse transformation of the 2D space into 3D

space. This solves the problem of small-sized foam dissipation that occurs in conventional

denoising networks. Furthermore, by integrating the proposed algorithm with the screen-

space projection framework, it is able to maintain all the advantages of this approach. In con-

clusion, the denoising process and clean foam effects enable the proposed network to

model the foam effects stably.

Introduction

Physics-based fluid simulation has been used to realize various visual special effects to simulate

water [1, 2], fire [3–5], smoke [6–8], fire-flake [9–11], foam [12, 13], bubble [14, 15], and mist

(or spray) [16, 17]. When expressing water, the associated secondary effects such as foam, bub-

ble, and splash are caused by oscillating movements, and various approaches have been pro-

posed to efficiently model these characteristics [18, 19]. In general, splashes, foams, and

bubbles are modeled by analyzing the flow of the underlying fluids, and movement is con-

trolled by adopting a different advection method depending on the type of material. This

approach, however, requires a large amount of computation to consider the movement of 3D

fluid, and various screen-space projection approaches have been proposed to process them

efficiently [20, 21]. Although these approaches use a depth map and a normal map to model

the bubble effect in real time, they are inefficient in accurately modeling foam or splash in 3D

space because they use only 2D space. Failure to model the advection of bubbles results in a

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0275117 October 10, 2022 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim J-H, Kim Y (2022) Efficient learning

representation of noise-reduced foam effects with

convolutional denoising networks. PLoS ONE

17(10): e0275117. https://doi.org/10.1371/journal.

pone.0275117

Editor: Nattapol Aunsri, Mae Fah Luang University,

THAILAND

Received: March 10, 2022

Accepted: September 11, 2022

Published: October 10, 2022

Copyright: © 2022 Kim, Kim. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: This research was supported by Basic

Science Research Program through the

NationalResearch Foundation of Korea(NRF)

funded by the Ministry of Education

(2022R1F1A1063180, Contribution Rate: 50%),

Institute for Information & communications

Technology Planning \& Evaluation (IITP) through

the Korea government (MSIT) under Grant No.

2021-0-01341 (Artificial Intelligence Graduate

https://orcid.org/0000-0003-1603-2675
https://orcid.org/0000-0002-2114-0120
https://doi.org/10.1371/journal.pone.0275117
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275117&domain=pdf&date_stamp=2022-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275117&domain=pdf&date_stamp=2022-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275117&domain=pdf&date_stamp=2022-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275117&domain=pdf&date_stamp=2022-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275117&domain=pdf&date_stamp=2022-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275117&domain=pdf&date_stamp=2022-10-10
https://doi.org/10.1371/journal.pone.0275117
https://doi.org/10.1371/journal.pone.0275117
http://creativecommons.org/licenses/by/4.0/


sense of heterogeneity. Consequently, the screen projection approach has primarily been

applied to real-time applications, such as games.

Kim et al. recently improved the efficiency and quality of foam visualization using both 2D

and 3D space [22, 23]. As shown in Fig 1, by projecting the motion of the 3D fluid onto the 2D

screen space, candidate groups that have a high probability of generating bubbles are selected.

Subsequently, the 2D space is inverse-transformed to 3D space to generate bubbles. This allevi-

ates the heterogeneity felt when only 2D space is used and the bubble movement is modeled

realistically. The process of projecting particle motion into 2D space, however, causes an alias-

ing problem, which may affect the quality of the foam. Fig 2 shows the foam generated by

rotating two boxes and a model of the resultant acceleration map. The map projected into 2D

space, as shown in Fig 2, causes aliasing problems near the boundary as fast and slow particles

are mixed. A separable binomial filter is used to solve this problem; however, it causes foam

loss. The noise problem that occurs in the projection map also significantly affects the creation

of foam (see Fig 3A). In particular, when fluid particles are sourced or particles are splattered

in the air, such as when splashes collide with the water surface at high speed, noisy foam and

flickering problems in continuous frames may occur. Although this problem may be solved by

applying a separable binomial filter, significant foam loss can occur in the process (see Fig 3B).

This study proposes a framework that models foam without loss using a neural network-

based projection map refinement technique. The implementation of the proposed technique

requires solving the following sub-problems from the motion of the input fluid:

Fig 1. Illustration of the inverse transformation of 2D foam-sourcing triangle into 3D space [22, 23].

https://doi.org/10.1371/journal.pone.0275117.g001

Fig 2. Aliasing problem that occurred while projecting 3D particles into 2D space (red: Faster acceleration). (a)

Frame 20, (b) Frame 120.

https://doi.org/10.1371/journal.pone.0275117.g002
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1. Collection of Projection map data. This is a process of collecting data for learning the pro-

jection map. In this study, after projecting the movement of particles into 2D space using a

technique proposed by Kim et al. [22, 23], the projection map data after refinement are col-

lected through an adaptive binomial filter.

2. Neural network design for noise reduction. The noise reduction network is modeled

using a convolutional neural network (CNN) based on residual compensation.

3. Integrated foam framework using neural network. A new method for integrating the

noise-removed projection map into the existing foam creation framework is proposed.

Solving the first problem allows us to collect the data needed to train the network. This

data-construction step is an important process to refine the projection map without loss of

foam. A solution for the second problem is essential to learn a noise-reduced weight from the

data, that is, a noise-reduced projection map is obtained in the test stage using the weight.

Solving the last problem allows us to express the foam generation by integrating the network

process into the existing bubble generation algorithm efficiently.

In general, foam is a product of fluid motion calculated in 3D. Consequently, splashes,

foam, and bubbles are called secondary effects. Notably, owing to the nature of 3D, the amount

of computation required to calculate fluid motion is enormous, and the amount increases

exponentially in the calculation of secondary effects. In this study, we avoid computational

problems and efficiently generate foam through a foam generation approach that reduces the

amount of computation by projecting fluid motion onto a screen. However, because the fluid

motion is projected onto a 2D screen, not 3D space, it is sensitive to even small movements,

and a noise pattern appears during the foam generation process. Owing to dimension reduc-

tion, the foam generation may flicker in the continuous time changes, or noisy results may be

produced because of a small number of water particles with large momentum (see Fig 3). To

Fig 3. The filtering technique used in the previous methods [22, 23] (red box: Noise area). (a) Before filtering, (b)

After filtering.

https://doi.org/10.1371/journal.pone.0275117.g003
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solve the above problems, this study proposes a new denoising network architecture that gen-

erates foam efficiently without noise.

Related work

This section briefly reviews the physics-based foam generation technique, the foam visualiza-

tion technique using screen space, the simulation technique using AI, and the artificial neural

network technique for noise removal, which are closely related to this study.

Foam modeling with physically based approach

Physics-based simulations are continuously being studied to develop methods to model foam

and motion. Takahashi et al. analyzed the motion of the underlying fluids based on curvature,

and modeled the foam effect by applying the state change rule to the area with large motion

[24]. However, this approach is unable to model various foam effects because it has a particle

motion similar to a grain of sand as opposed to foam. Geiger et al. proposed a multilayering

method to effectively handle the foam-generation process [25]. In this method, each layer that

can express foam, splash, water drop, and mist is calculated; however, this method results in

foam clumping. In addition, the method focuses solely on foam creation and rendering, which

is not sufficient to realistically represent foam movement, thereby making it difficult to use in

various scenes. In the method using the Eulerian model, secondary effects, such as splash are

modeled using particle level-set or maker-particle methods. Kim et al. introduced a method to

model splashes and water droplets without ignoring maker-particles falling from the liquid

surface [19]. However, because most of them have a ballistic movement, there is a limit to

expressing detailed foams. Losasso et al. developed a particle level-set technique to improve

the aforementioned method to express splashes, and applied the smoothed particle hydrody-

namics (SPH) technique to splash particles to improve ballistic movement [26]. This enabled

the modeling of diffuse phenomena existing between air and splash particles, which was diffi-

cult to model using conventional ballistic motion. This method focused on the splash and the

foams were expressed using textures.

Mihalef et al. solved the problem of dissolved gas based on SPH and realistically visualized

carbonated drinks, which were difficult to express in the past [27]. Ihmsen et al. expressed phe-

nomena such as splash, foam, and bubble using only the SPH framework [18]. However,

because the quality depends on the particle number, achieving high quality results requires a

large number of SPH particles, which increases the computation time. In addition, SPH kernel

causes a problem of foam particles agglomeration. Wang et al. improved Ihmsen et al.’s

method efficiently by proposing a hybrid technique that mixes SPH and Lattice Boltzmann

techniques [28]. However, this method mostly models and expresses splashes and the visuali-

zation of other effects such as foams and bubbles is significantly limited or almost

imperceptible.

Yue et al. modeled continuum foam using the material point method (MPM), by which

shear-dependent flows of shaving cream or whipped cream can be generated. However, the

foam targeted by their method differs from the sea foam targeted in this study as it generates

dense foams composed of microscopic bubbles [29]. Similar to Yue et al., Ram et al. modeled

foam effects based on MPM. However, they generated viscoelastic fluids of sponges rather

than sea foam [30]. Although MPM is more accurate numerically than FLIP or SPH, it requires

more computation. The previous studies applied it mainly to shear motion or viscoelastic flu-

ids generated in large-scale foam that does not have many foam particles. The application of

this method to generate sea foam, which has numerous foam particles, thus requires more
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computational resources and is not efficient. Furthermore, these methods are not applicable to

sea foam that has characteristics different from those of shaving cream or cake.

Foam modeling with screen space approach

Foam modeling using the screen space approach is commonly employed in real-time applica-

tions, such as games and virtual reality. To avoid the tessellation problem found in grid-based

approaches, Van der Laan et al. proposed a new framework for rendering particles in screen

space [20]. The noise that occurs during projection onto the 2D screen space was mitigated

through the curvature flow filtering technique. Although in this method, the foam effect was

modeled using a simple noise texture, it was difficult to expect a realistic foam effect. Bagar

et al. processed different types of fluids with separate layers to create a more realistic and 3D

foam effect [21]. Although the screen rendering technique has been modified in other various

ways [31–33], it is not sufficient to visualize even the movement of foam because it uses only

2D space.

To solve this problem, Kim et al. utilized both 2D and 3D spaces to improve the efficiency

and quality of foam [22, 23]. In this method, the location where foams are to be generated was

quickly found using 2D space, and the foam particles were advected by inverse-transformation

of this space into 3D space.

Fluid modeling with artificial neural networks

Recently, artificial neural networks have been used to improve physics-based simulations. Spe-

cifically, in the field of fluid simulation, the Poisson equation, which must be solved when cal-

culating high-resolution pressure, has been replaced with the super-resolution (SR) process to

ensure efficiency maximization [34–36]. More recently, the use of deep learning to directly

process high-resolution simulations has also been proposed; specifically, approaches to obtain

simulation details using ConvNet or generative adversarial network (GAN) [37] have been

proposed. Tompson et al. [38] and Xiao et al. [39] solved the Navier-Stokes equation efficiently

by using a ConvNet-based approach. These studies performed SR using previously obtained

low-resolution smoke simulation results as opposed to directly solving the simulation equa-

tion. Recently, Hong et al. proposed a method to efficiently perform SR with an octree-based

adaptive structure [40].

ConvNet and GAN are deep learning methods that are widely used in SR studies. Dong

et al. proposed a ConvNet-based solution for processing a single image SR [41], and Ledig

et al. [42] and Chu et al. [43] proposed a GAN-based method for image SR. Chu and Thüerey

used ConvNet models to synthesize high-resolution smoke simulations [35] and Werhah et al.

used GAN to simulate SR. Bai et al. proposed an SR that generates high-resolution smoke

details using deep learning-based dynamic features [44]. Notwithstanding these various

approaches, there have been no attempts to apply deep learning to splash or foam. This study

proposes a neural network-based method that alleviates noisy projection maps (a problem that

frequently arises in conventional frameworks) to generate foam based on screens. Our method

was found to cleanly model the details of the high-resolution foam effect without losing foam.

Artificial neural network for noise removal

This section reviews artificial neural network-based denoising techniques used for images and

videos. Deep learning methods use a large set of image pairs instead of presetting the image

data to directly learn noise removal from images containing noise through a deep neural net-

work. Jain and Seung proposed a noise removal method using a five-layers ConvNet [45], and

some studies extended this method to create an autoencoder-based method [46, 47]. Burger
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et al. presented a method that has performance similar to block-matching and 3D filtering

(BM3D) [48] using multi-layer perceptron [49]. Zhang et al. proposed denoising ConvNet

(DnCNN) and introduced a method to solve the Gaussian denoising problem [50]. Mao et al.

proposed a very deep convolutional encoder-decoder networks technique using a symmetric

skip connection [51]. Tai et al. proposed very deep persistent memory networks (MemNets) to

continuously learn memory through an adaptive learning process that can be used for image

restoration [52]. More recently, NLRN [53], N3Net [54], and UDNet [55] have included non-

local properties of image in DNN to facilitate denoising tasks. In addition, to increase flexibil-

ity for spatial variant noise, a technique called FFDNet, which pre-evaluates the noise level and

uses it as an input to the network along with images containing noise, has been introduced

[56]. Guo et al. [57] and Brooks et al. [58] attempted to simulate the denoising process of cam-

era images. However, most denoising methods are created based on image data, and applica-

tion of these techniques to 3D simulation can cause detail loss. This study shows the foam loss

caused by using a denoising network that uses image data as input, and demonstrates through

experiments how accurately the technique proposed in this study models foam particles.

Proposed framework

This study computes the underlying fluid simulation using the fluid-implicit particle (FLIP)

method, and a hybrid method that uses the grid-particle method is employed to advect the

fluid particles. A previously proposed screen-space projection technique is used for foam gen-

eration [22, 23]. The methods proposed in this study are described in detail following the

review of the basic foam generation methods in Section “Foam Representation with Screen-

Space Approach”. The algorithm proposed in this study is executed in the following order. (A

list of symbols is available in Table 1).

Table 1. Simulation parameters.

Name Description Value

Z Depth map –

Z� Refined depth map –

D Acceleration map –

D� Refined acceleration map –

P Projection matrix –

Q Inverse projection matrix –

C Candidate region in 2D –

C� Refined candidate region in 2D –

F Curvature map with D –

F� Curvature map with D� –

r Radius of water particle –

xp, yp, zp Projected coordinate –

rx, ry, rz Projected radius –

dp Projected acceleration –

Δ t Time-step 0.006

α Weighting for binomial filter 12.0

β Curvature threshold 0.1

h Projective spacing 2.0

Nx × Ny Projective space res. 400×300

nfilter Size of binomial filter 3

https://doi.org/10.1371/journal.pone.0275117.t001
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• Preprocessing

1. 3D fluid particles are projected onto screen space and data are built to be used as a net-

work through an adaptive binomial filter.

2. Projected map data are learned through ConvNet-based denoising network. This pro-

cess is repeated during the projection map refinement (used as a test in the Online-2

process).

• Online

1. Fluid particles advected by FLIP are projected onto screen space through a projection

matrix. In this process, acceleration and depth, which are the physical quantities of the

particles, are projected.

2. Two projection maps: the acceleration map and the depth map are refined through the

denoising network.

3. Using a refined acceleration map, the space in 2D screen where foams are likely to be

generated are quickly located.

4. A 2D position is converted to a 3D position by performing inverse-transformation on

candidate positions found in screen space. Subsequently, foam particles are created and

advected in 3D space.

Fig 4 shows an overview of the algorithm proposed in this study. After the position and

velocity of water particles in 3D space are determined using the Navier-Stokes equation, the

physical quantities of the particles are projected onto 2D space (Step 1 in Fig 4). Because a

noise problem occurs in this process, a denoising stage is added to solve it. The main purpose

of our study is to use a neural network to solve the noisy artifacts that appear during the pro-

cess of water particles projection. After the waver pattern is extracted through physical quanti-

ties subjected to representation learning by the neural network, it is inversely transformed to

generate foam particles in 3D space and advected (Step 2 in Fig 4). For more detailed explana-

tions, please see [22, 23].

Foam representation with screen-space approach

Projection map generation from fluid particles. In this section, the screen space-based

foam method used in this study is briefly described [22, 23]. First, the acceleration and depth

maps of the fluid particles existing in 3D space are calculated through screen projection.W
andH represent the horizontal and vertical pixel resolution in screen space, respectively. Nx ×

Fig 4. Algorithm overview.

https://doi.org/10.1371/journal.pone.0275117.g004
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Ny is the resolution of the regular grid divided by the projection interval h, and r is the radius

of the fluid particle. r, which is also a user-adjustable value, is the range used to obtain a

smooth projection map during projection. The depth value zij and the acceleration value dij of

the fluid particle are converted into projection coordinates, and each map is composed as fol-

lows: depth map Z 2 RNx�Ny , acceleration map D 2 RNx�Ny . The particle’s acceleration dij is
simply calculated from the difference in velocity between frames: |vt+Δt − vt|.

Particles x in 3D space [x, y, z, 1]T are transformed into 2D projection space using the pro-

jection matrix P (see Eq 1).

x0
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To avoid distortion of the z values during projection, perspective division is applied to x, y,
except for the z values. Using this method, the projected coordinates (xp, yp), zp and the pro-

jected acceleration dp of the 3D fluid particle are calculated (see Eq 2).
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(xd, yd) is the index of the array in which the acceleration dp in screen space is stored.

The particle radius r in 3D space is projected using the following method (see Eq 3):
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pi,j is an element of the projection matrix P. To obtain isotropically projected radius values, rx
and ry are set to rp.

Because numerous fluid particles may be projected onto a node in screen space, the depth

and acceleration values are updated as follows (see Eq 4):

zij  minðzij; zp � rzhijÞ; dij  argminðzijÞ ð4Þ

where

hij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
ðih � xpÞ

2
þ ðjh � ypÞ

2

r2
p

s

ð5Þ

ðih � xpÞ
2
þ ðjh � ypÞ

2
� r2

p is a term used to determine whether the projected coordinates are

affected by each node in the projection space. If zp − rzhij, which is the depth value of the pro-

jected coordinates, is less than zij, zij, and dij are updated using Eq 4. Fig 2 shows the
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acceleration map in which 3D particles are projected onto screen space. However, as previ-

ously mentioned, an aliasing problem can occur. Section “Preprocessing: Collection of Projec-

tion Map Data”�“Refinement of Projection Map with Denoising Neural Networks” describes

an efficient means of handling this problem, and transfers the proposed technique. A new

foam particle generation framework integrated with the technique is described in Section

“Integration with Existing Solver”.

Preprocessing: Collection of projection map data

The data required for network learning in this study were acquired through physics-based sim-

ulation. Among the various approaches available to model the bubble effect, the method pro-

posed by Kim et al. was applied in this study because it uses 2D space together with 3D space.

Learning was performed using an artificial neural network. [22, 23]. To alleviate aliasing, we

refined the data using an adaptive binomial filter (see Fig 5).

This filter aims to alleviate the aliasing problem of the projection map through the smooth-

ing process. The smoothing parameter nfilter is user-adjustable and applied to all cases where

dij 6¼ 1. In this study, the filter size is controlled according to the size of dij to minimize foam

loss due to oversmoothing (see Eq 6).

n�filter ¼
jdijja ; if jdijj > Z

3 ; else

(

ð6Þ

α, a user-adjustable variable, is set to 12 in this study.

Fig 6 shows the acceleration map before and after using the adaptive binomial filter. The

acceleration map showing the rough shape is smoothed with the application of the filter (see

Fig 6A), while maintaining the characteristic shape (see Fig 6B). In this study, pairs of projec-

tion maps were constructed for various foam scenes in the following process.

Fig 7 shows the scenes used to construct the data. The data were constructed using projec-

tion maps (acceleration maps and depth maps) calculated for various scenes, which were cre-

ated by collisions with solids and foam simulations by fluids. In the data employed for this

study, 20,000 unfiltered projection maps existed. However, 5,000 projection maps, consisting

of acceleration and depth maps, were used.

Refinement of projection map with denoising neural networks

After obtaining the foam data {F0, F1, . . .} using physics-based simulation, a projection map

onto which an adaptive binomial filter is applied using the method described in the previous

sectionfd
0

fw
; d

1

fw
; :::g and the map onto which it is unapplied fd

0

fwo
; d

1

fwo
; :::g are generated. δ rep-

resents D and Z describes the above. The projection maps are partitioned into patches before

Fig 5. Separable binomial filter with size nfilter = 3. The acceleration value (i, j) shown in the center is the weighted

sum of the neighboring values.

https://doi.org/10.1371/journal.pone.0275117.g005

PLOS ONE Efficient learning representation of noise-reduced foam effects with convolutional denoising networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0275117 October 10, 2022 9 / 30

https://doi.org/10.1371/journal.pone.0275117.g005
https://doi.org/10.1371/journal.pone.0275117


being used in the training network. Our goal in using the training data is to find a mapping

function f(x) that minimizes the loss between the predicted value νs and the ground truth (GT)

dfw . The loss function for performing this process is the mean squared error (MSE) between

the predicted projection map and the GT projection map. Our goal is to minimize νs = f(x).

Because the application of many weighting layers requires a large memory in the super-res-

olution CNN) technique (SRCNN), there is a limit to constructing a deep network [41]. To

avoid this problem, this study trains and tests foam data through residual learning. The resid-

ual map of the input/output projection map is calculated as follows: r ¼ dfw � dfwo . Although

the loss function in the SRCNN technique is 1

2
jjdfw � f ðxÞjj

2
, this study computes the final loss

function L as follows because we aim to predict the residual map (see Eq 7).

Lðr; xÞ ¼
1

2
kr � xk2 ð7Þ

r is the residual and x is the value of f(x). In the network process, the loss layer is calculated

using three factors: residual estimation, dfwo , and dfw . Loss is calculated as the Euclidean

Fig 6. Comparison of aliasing artifacts. The pixels are colored according to the magnitude of dij from red (high) to

the blue (low). (a) Before, (b) After.

https://doi.org/10.1371/journal.pone.0275117.g006

Fig 7. Examples by simulation.

https://doi.org/10.1371/journal.pone.0275117.g007
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distance between the map reconstructed through the network and dfw , where the reconstructed

map is the sum of the input and output maps of the network.

This network is modeled based on ConvNet and has the following configuration (see Fig 8):

When the feature map that has undergone the first ConvNet operation is re-added to the result

value obtained through the two convolutions, residual compensation method is used. In this

process, the error lost through the convolution operation is mitigated through residual com-

pensation. In this study, this process is repeated ten times and a total of 20 convolution opera-

tions are performed because two convolutions are performed per cycle. The value that

undergoes the first convolution is initially added. Subsequently, the previous result is repeat-

edly added. The size is then doubled through upscaling, and four convolution operations are

completed before completion. The projection maps D� and Z� obtained in this manner are

used to determine the generation of foam particles, which is explained in detail in the next

section.

Integration with existing solver

Generation and advection of foam particles. Using the refined projection map, a 2D

candidate area with a potential for foam generation is extracted (see Eq 8).

C ¼ fði; j; kÞjd > g; z 2 Z�; d 2 D�; ði; jÞ 2 RNx�Ny g; ð8Þ

γ is the threshold used to find the fast flow region, which is set to 0.0001 in this study. Z� and

D� are depth maps and acceleration maps refined through the network. Reducing the value of

γ makes it possible to create foam even in areas with slow flow, and allows the users to easily

control the number of foams. The Marching squares algorithm is used to compose the

extracted 2D foam area into a triangle, transforming the shape of the candidate group of foam

particles into 2D triangles. These triangles are then transformed into 3D model space through

the inverse transformation of Eqs 1 and 2. The coordinates of the transformed triangle are cal-

culated as follows (see Eq 9).

x

y

z

1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼ Q

ð� 1þ 2xp=WÞw

ð� 1þ 2yp=HÞw

zp

w

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð9Þ

where

w ¼
1 � q4;3zp

q4;1ð� 1þ 2xp=WÞ þ q4;2ð� 1þ 2yp=HÞ þ q4;4

; ð10Þ

qi,j is an element of the inverse projection matrix Q and, as previously mentioned, perspective

Fig 8. Feature extraction via denoising convolutional neural network (red arrow: Residual process).

https://doi.org/10.1371/journal.pone.0275117.g008
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division is not applied to zp. The number of foam particles is determined using the Weber

number. It is recommended to read Kim et al. for more detail information on this method [22,

23].

Next, the wave pattern of the foam is calculated using the refined projection map. Utilizing

the method proposed by Van der Lann et al., the flow-based curvature is calculated at all values

of the projected space [20] (see Eq 11).

@z
@t
¼ H; ð11Þ

t is the time-step andH is the mean curvature of the depth map calculated in the 2D projection

space. The depth map used in this process is Z�. The method used by Van der Lann et al. con-

tains a noise pattern [20] mitigation, which requires iterative curvature calculation. Because

the change pattern of the original curvature is lost in this approach, the wave pattern of the

foam is calculated by modifying Eq 8 as follows (see Eq 12):

C� ¼ fði; j; kÞjd > g \ f > b; f 2 F�; ði; jÞ 2 RNx�Ny g; ð12Þ

F� is the curvature of the depth map, which is Z� refined through the network in this study. In

addition, β is a threshold value for finding a high curvature region, which is set to 0.1 in this

study. Advection for foam particles utilizes the lattice velocity field and fluid particles calcu-

lated through FLIP. This method uses the previous approach. For a detailed explanation, please

see the previous study [22, 23].

Implementation

Details of simulation and rendering. The proposed framework was implemented on a com-

puter with an Intel i7–7700k 4.20 GHz CPU, 32 GB RAM, and an NVIDIA GeForce GTX

1080 Ti graphics card. A FLIP-based fluid solution was used as the underlying fluid simulation

[59], and a GPU-based preconditioned conjugate gradient was used as a numerical solution to

calculate the pressure [60]. For the FLIP grid, all momentum was stored using the Staggered

Marker-and-Cell method [61], and the boundary particle technique proposed by Akinci et al.

was used for collision handling between fluids and solids [62].

Algorithm 1: Pseudocode of our algorithm as an extension to the previous foam simulator

[22, 23]
// Base water solver
1. Advect 3D water particles using FLIP
2. Compute the interaction of water & solids
// Our foam solver
3. Project 3D water particles on screen space
4. Denoise projection maps with neural network
5. Extract wave patterns by curvature
6. Find 2D foam-sourcing areas
7. Find 3D foam-sourcing triangles
8. Emit foam particles
9. Advect foam particles
10. Compute the interaction of foam & solids
11. Eliminate expired foam particles

For the final product, the particles were rendered by ray tracing without reconstructing the

surface of the fluid. The colors of the fluid particle and foam particle were set to (0.8, 0.5, 0.3)

and (1.0, 1.0, 1.0), respectively. The alpha value was set to 0.07. Each particle was projected

onto the image space to be rendered, and 3×3 pixels were updated at the projected position as
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follows (see Eq 13).

pi;j ¼

pri;j  cacr þ ð1 � caÞpri;j

pgi;j  cacg þ ð1 � caÞp
g
i;j

pbi;j  cacb þ ð1 � caÞpbi;j

8
>>><

>>>:

; ð13Þ

(pri;j; p
g
i;j; pbi;j) represents the color of the pixel, and (cr, cg, cb) represents the color of the projected

particle in image space. ca is the alpha value. The pseudocode of the foam simulation algorithm

is as follows (see Algorithm 1).

Details of the denoising convolutional neural network architecture. This study used a

CNN architecture to design the denoising network. This section presents the details of the

denoising convolutional neural network architecture. The denoising convolutional neural net-

work comprises two main stages: feature extraction and feature reconstruction.

Assume that the input x is a three-channel image with a resolution of 128×128. The first

ConvNet1 consists of two types of layers. First, we use 64 5×5 filters in a convolution operation

with the ReLU activation function for better capturing of receptive fields. The pooling layer

then operates on each depth slice of the input independently and resizes it spatially using the

MAX operation. The pooling layer, which uses a filter size of 2×2 and a stride of 2, downsam-

ples every depth slice in the input by 2 in both width and height. The output feature map is

64×64×64.

The output feature map of ConvNet1 is used as the input of ConvNet2, and the overall

denoising convolutional neural network flow is as follows (see Fig 9). The ConvNet 1–2 in this

figure denotes that two ConvNet layers are used in the ConvNet 1 process, and similarly, Con-

vNet 5–4 denotes that four ConvNet layers are used in the ConvNet 5 process.

The reconstruction step is a process of restoring the result through transposed convolution

of the feature map of the network (see Fig 10). The details of ConvNet r1 to ConvNet r7 are

listed in Table 2. The input of the neural network is the size of 1

2
of the original map, and when

it is subsequently added to the residual map, the size is similar to that of the reconstruction

output. This network was implemented in TensorFlow [63]. The adaptive moment estimation

(Adam) was used as the optimizer. The curve of the MSE loss for 5,000 iterations is shown in

Fig 11.

In this study, the learning rate was set differently for each epoch using a learning rate sched-

ular (LRS), specifically, exponential LRS [64], in which the rate of current step is taken expo-

nentially: the exponent is set to lower [higher] than 1 when the length of the current step is

shorter [longer] than the predetermined stage-length. In the data-pretreatment process, data

Fig 9. Denoising convolutional neural network architecture (input: x(128, 128, 3), [weight], [bias], #x(width,

height, depth), final output: x(4, 4, 512)).

https://doi.org/10.1371/journal.pone.0275117.g009
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Fig 10. Feature reconstruction (input: x(4, 4, 512), output: x(256, 256, 3)).

https://doi.org/10.1371/journal.pone.0275117.g010

Table 2. Details of the denoising convolutional neural network architecture.

ConvNet r1 ConvNet r2 ConvNet r3 ConvNet r4 ConvNet r5 ConvNet r6 ConvNet r7

Transpose(. . .) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) –

#x(w,h,d) (8,8,64) (16,16,64) (32,32,64) (64,64,64) (128,128,64) (256,256,64) –

concat(. . .) (input x, ConvNet5) (input x, ConvNet4) (input x, ConvNet3) (input x, ConvNet2) (input x, ConvNet1) – –

#x(w,h,d) (8,8,64+512) – – – – – –

[weight],[bias] 5×5×64,64 5×5×64,64 5×5×64,64 5×5×64,64 5×5×64,64 5×5×64,64 5×5×3,3

Num. ConvNet ConvNet r1–4 ConvNet r2–4 ConvNet r3–4 ConvNet r4–2 ConvNet r5–2 ConvNet r6–2 ConvNet r7–1

#x(w,h,d) (8,8,64) (16,16,64) (32,32,64) (64,64,64) (128,128,64) (256,256,64) (256,256,3)

https://doi.org/10.1371/journal.pone.0275117.t002

Fig 11. Training loss.

https://doi.org/10.1371/journal.pone.0275117.g011
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were obtained without additive data augmentation through the separable binomial filter

method explained above. The amount of data obtained in the pretreatment process is sufficient

to produce the results of this study. Furthermore, more datasets, if needed, can be obtained

easily only by adjusting the value of nfilter. The values of beta1 and beta2 used in the Adam

optimizer were set to 0.9 and 0.999, respectively.

The proposed technique did not cause overfitting or underfitting problems. Therefore, we

believe that the amount of training data was sufficient to prevent overfitting. Furthermore, we

believe that if it does occur, it can be solved by methods such as model capacity reduction,

dropout techniques, L1 or L2 regularization, or data augmentation. The occurrence of under-

fitting was not sensitive, as shown by the training loss.

Results and discussion

For a comprehensive analysis of the technique proposed in this study, the differences with the

image-based denoising technique in terms of quality and continuity of the generated bubbles

are analyzed.

To provide support for the quality of the proposed method, a scene in which two boxes stir

a liquid is produced as a simple test scenario. To model the fluid in this scene, the time-step is

set to 0.006 and approximately one million fluid particles are used. Fig 12 shows the refined

acceleration map. The projection map used as input has aliasing and coarse noise in the result

projected onto the screen. The refinement of the projection map through the proposed net-

work not only alleviates the aliasing problem, but also maintains the shape of the original

acceleration map.

Fig 13 shows the foam effect created using the refined projection map. The refinement pro-

cess produces stable foaming results without noise or foam loss. In particular, Fig 13B shows

Fig 12. Refinement of acceleration map with our method (red: Fast flow zone). (a) Frame 20, (b) Frame 130.

https://doi.org/10.1371/journal.pone.0275117.g012

Fig 13. Foam effects with our method in two rotating boxes (inset image: Simulation view). (a) Frame 20, (b)

Frame 130.

https://doi.org/10.1371/journal.pone.0275117.g013
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that the misty surface foam effects are accurately visualized. In the production of this scene,

the foam advection technique suggested by Kim et al. is used [22], and the refinement tech-

nique suggested in this study realistically expresses thin and misty surface foam without loss.

Fig 14 shows the scene where the emitter in the air is rotating and sourcing water particles,

where foam effects are implemented. In addition to the foam generated by the water-solid

interaction shown earlier, the foam effect is also excellently produced in the emitter scene

based on the refined projection map.

Figs 13 and 14 show the foam effect generated by water-solid collision or impact between

water particles expressed using the emitter. Conversely, Fig 15 is a scene in which foams are

gradually generated. Similar to previous results, foam effects are stably expressed by the

smoothly refined projection map.

Fig 16 shows the foam effect expressed in the U-shaped corridor scene, where the foam is

stably produced even in the collisions between particles and in the curved paths after the colli-

sions. In particular, through the refined projection map, small-sized foam particles are not lost

and are perfectly expressed.

Because the proposed method generates high-quality foam in a short time, it can be used

for both high-quality content movie/animation VFX and visual effects used in games, which

are real-time contents (see Fig 17). In addition, it is highly capable of being used for building

physically based mixed reality in mixed reality environments and the metaverse. Fig 17A is the

result showing the water and foam effects expressed in “Moana,” a Disney animation, and Fig

17B is the product of PhysX, a real-time physics engine provided by NAVIDA as open source

Fig 14. Foam effects with our method in a rotating-emitter (inset image: Acceleration map). (a) Frame 50, (b)

Frame 140.

https://doi.org/10.1371/journal.pone.0275117.g014

Fig 15. Foam effects with our method in tornado (inset image: Acceleration map). (a) Frame 123, (b) Frame 174.

https://doi.org/10.1371/journal.pone.0275117.g015
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software. It is used often, unlike Fig 17A, in games to provide real-time contents. Our method

is highly applicable because its quality and computational speed are acceptable in both real-

time and non-real-time contents. Our method can be used for immersive contents because it

allows us to create not only VR/AR but also physically based visual special effects, game, and

metaverse spaces based on physics. This shows that our method is expected to contribute to

digital contents, mixed reality, the metaverse industry & market, and the content industry.

Comparison with existing denoising networks

In this section, the method proposed in this study and the existing image digitizing techniques

are compared. Because we created foam effect based on a projective approach, various image

denoising techniques proposed in the field of computer vision can be applied. The application

Fig 16. Foam effects by fluid-solid interaction using our method as the water flows along the U-shaped corridor

(inset image: Acceleration map).

https://doi.org/10.1371/journal.pone.0275117.g016

Fig 17. Examples used in film and game. (a) Disney animation ‘Moana’ [65], (b) NVIDIA PhysX [66].

https://doi.org/10.1371/journal.pone.0275117.g017

PLOS ONE Efficient learning representation of noise-reduced foam effects with convolutional denoising networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0275117 October 10, 2022 17 / 30

https://doi.org/10.1371/journal.pone.0275117.g016
https://doi.org/10.1371/journal.pone.0275117.g017
https://doi.org/10.1371/journal.pone.0275117


and implementation are simple; hence, the denoising stages for the projection map described

above can be solely replaced with the previous methods. Variational denoising networks) [67]

and dual adversarial network (DANet) [68] are compared. Learning is performed using the

learning data and algorithms presented in each method, and denoising results are obtained by

employing the projection map calculated using fluid particles in the test process as an input.

The output denoising map is used to generate foam particles in 3D space through inverse-

transformation as described above, and the final result of the foam is compared in this process.

Rotating two boxes in water. Fig 18 shows the results of applying the denoising CNN

(DnCNN) [50], a network that performs image denoising based on Deep CNN, for foam simu-

lation. Although noise is alleviated compared to the input acceleration map, the foam detail is

damaged because most of the small-sized foams are lost.

The dual adversarial network (DANet) [68], an image denoising technique, is applied to

foam simulation and compared with the proposed method (see Fig 19). Similar to the previous

results, foam loss is experienced.

The last image denoising technique to be compared is variational denoising networks

(VDNets) [67] (see Fig 20). This technique utilizes the variance map generated using a Gauss-

ian kernel and performs denoising by applying three different variance maps. In this study, all

experiments were conducted for denoising corresponding to case1� 3 for comparing the

results of foam effects using VDNet. As mentioned in the original study on VDNet, denoising

results were produced according to various test cases and there was no significant difference in

foam effects, although a problem of dissipation in surface foam was noted.

Fig 18. Foam effects with previous method and same scene as Fig 13 (inset image: Refined acceleration map with

DnCNN [50]). (a) Frame 20, (b) Frame 130.

https://doi.org/10.1371/journal.pone.0275117.g018

Fig 19. Foam effects with previous method and same scene as Fig 13 (inset image: Refined acceleration map with

DANet [68]). (a) Frame 20, (b) Frame 130.

https://doi.org/10.1371/journal.pone.0275117.g019
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Fig 21 shows a comparison by frame between the foam effects presented above. Our denois-

ing network showed excellent overall performance without missing details even with small

scale foams (see Fig 21A). In the foam effects generated by the initial frame of the box rotation,

the proposed method showed intrinsic foam patterns correctly while previous approaches

showed loss of foam detail (see ADnCNN, ADANet and AVDNet in Fig 21). Similarly, the previous

methods in region B generated results with lost foam effects, particularly in BVDNet, which gen-

erated significant lost foam effects. case1 showed diminutive denoising effects in the VDNet

experimental results, and case3 had a noticeable result. However, the foam effect was severely

lost, as shown in BVDNet.

case1 showed diminutive denoising effects in the VDNet experimental results, and case3
showed a noticeable result. However, the foam effect was severely lost, as shown in BVDNet.

Similarly, the previous methods in region B generated results with lost foam effects, particu-

larly in BVDNet, which generated significant lost foam effects.

Fig 20. Foam effects with previous method and same scene as Fig 13 (inset image: Refined acceleration map with

VDNet [67]). (a) Frames 20 and 130 with VDNet case1, (b) Frames 20 and 130 with VDNet case2, (c) Frames 20 and

130 with VDNet case3.

https://doi.org/10.1371/journal.pone.0275117.g020
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Foam effects should be accurately visualized not only in the interaction between water par-

ticles and solids, but also in the wave crest formed by the interaction between water particles.

The proposed method, as shown in C and D, expressed the foam effects in the wave crest excel-

lently without loss, while most of the previous methods showed damaged foam effects.

To evaluate the superiority of the proposed method in various scenes as well as the foam

effects expressed by the interaction between water particles and solids, we tested foam effect

with User-defined tornado external forces (see Fig 22A) and fluid-solid interaction scenes (see

Fig 22B) In creating tornado scene, external force was applied as follows: Fðx; y; zÞ ¼ ð� y;x;0Þ
ðx2þy2Þ2

.

As shown before, all the results are produced stably without loss of foam effects.

Fig 23 shows the recently introduced foam effects technique using angular advection [69].

The application of our proposed denoising networks to the angular advection technique,

where rotation is expressed gradually, leads to foam effects being visualized without loss, even

in band-shaped foams expressed as thin foam particles. Compared to the previous techniques

in which viscous foam effects are obtained when only linear momentum is applied (see inset

Fig 21. Comparison results with our method and previous approaches (scene: Rotating two boxes in water). (a)

Our method, (b) DnCNN [50], (c) DANet [68], (d) VDNet (case3) [67].

https://doi.org/10.1371/journal.pone.0275117.g021
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image in Fig 23), our proposed method produces foam effects with insignificant loss notwith-

standing the denoising process.

Table 3 lists the parameters used to produce the experimental results in this study. The

superscripted (A)�(C) in Table 3 clearly shows the quantitative characteristics of the proposed

method. As shown in the above-mentioned results, most of the previous techniques had the

problem of loss of foam effects, and this characteristic was also observed in (A). Notwithstand-

ing the same scene configuration, our proposed method contained the largest number of foam

particles, compared to that in previous methods. This characteristic was also found in (B),

showing that more dissipation problems occurs in previous methods. The dissipation problem

was more serious in water motion with relatively less sloshing than those with large sloshing,

and the water particles with small motion were more dissipated in the existing technique. The

same result was also obtained in (B), and compared with the previous methods, the difference

in the number of foam particles was larger than (A). (C) is the result of applying the proposed

technique to the angular momentum-based foam advection technique [69], which, in the same

tornado scene, produced fewer foam particles Fig 22A. This feature is due to the phase change

of surface foam to wave foam due to angular advection, not dissipation due to our denoising

networks. Nevertheless, our technique expressed the characteristics of angular momentum-

based advection excellently and showed a more relaxed foam dissipation problem than the

Fig 22. Foam effects with our method. (a) Tornado, (b) U-shaped corridor.

https://doi.org/10.1371/journal.pone.0275117.g022

Fig 23. Experimental results by applying our method to the angular advection method of foam particles [69] (inset

image: Without angular momentum based advection [22, 23]).

https://doi.org/10.1371/journal.pone.0275117.g023
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Table 3. Size of our example scene (Water: Water particles, Foam: Foam particles, Solid: Triangles of the solid, Grid res.: Grid resolution).

Figure Water Foam Solid Grid res. Projective space res. Projective spacing

21 1.7 m (A) 21A: 0.6 m 48 1503 400×300 2.0

1.7 m 21B: 0.8 m 48 1503 400×300 2.0

1.7 m 21C: 0.5 m 48 1503 400×300 2.0

1.7 m 21D: 0.6 m 48 1503 400×300 2.0

24 2.5 m (B) 24A: 1.1 m – 1503 400×300 2.0

2.5 m 24B: 1.8 m – 1503 400×300 2.0

2.5 m 24C: 1.4 m – 1503 400×300 2.0

2.5 m 24D: 1.1 m – 1503 400×300 2.0

22A 1.7 m 21B: 0.7 m – 1503 400×300 2.0

22B 1.2 m 21B: 1.6 m 70 1503 400×300 2.0

23 1.7 m (C) 21B: 1.2 m – 1503 400×300 2.0

https://doi.org/10.1371/journal.pone.0275117.t003

Fig 24. Comparison results with our method and previous approaches (scene: Rotating-emitter in water).

https://doi.org/10.1371/journal.pone.0275117.g024
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previous technique. The foam effect in the form of a circular band due to the external force on

the tornado was also expressed excellently without dissipation.

Continuity and foam generation comparisons according to denoising

This section compares and analyzes the frequency of flickering by comparing the continuity of

the acceleration map with time and the foam particle generation generated in a single frame.

Comparison of continuity of acceleration maps over time. As mentioned earlier, our

method offered improvement by minimizing foam dissipation. However, because the anima-

tion data is similar to time series data, not only loss but also flickering problems occurred. This

section compares the frequency of flicking problems in our method, DnCNN [50], DANet

[68], and VDNet [67] approaches. To calculate the flickering level between frames, we simply

measured the difference between frames as follows:
kft � ftþDtk

Dt .

Fig 25 shows the comparison results obtained by expressing the continuity between frames

as a terrain mesh. DANet [68] demonstrated a wide range of values compared to other meth-

ods, and noisy patterns were found even in the violet color (see Fig 25C). In the case of

DnCNN and VDNet, the violet color region appears to be relatively denoised; however, this is

the result of over-smoothing, and this characteristic, described in the Result section, leads to

loss of foam effects. By contrast, the proposed method not only excellently expressed the peak

region in the orange color but also produced denoising results without over-smoothing in the

violet color. This characteristic, described in the Result section, leads to complete foam effects

without dissipation. In addition, variance was calculated to check the seriousness level of

Fig 25. Difference in acceleration map between frames (at frame 160). The chart ranges for each method are as

follows: our method, DnCNN, and VDNet!0(■)�180(■), DANet!0(■)�200(■)). (a) Our method (Var.: 252.61), (b)

DnCNN [50] (Var.: 256.48), (c) DANet [68] (Var.: 290.14), (d) VDNet case3 [67] (Var.: 266.04).

https://doi.org/10.1371/journal.pone.0275117.g025
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flickering in a single frame, and this result also confirmed that our method is the best variance

(see Var. in Fig 25).

Comparison of foam generation in a single frame. Fig 26 shows a comparison of the

flickering frequency through analysis of foam particles generated in a single frame and density

comparison of foam particles for the purpose of observing loss information of foam particles.

Comparison results of foam particles generated in successive frames showed that the proposed

method had fewer flickering problems with time than previous methods (see the resulting

video submitted as S1 Video). Considering a single frame, there was no difference in the

amount and location of foam particle generation between proposed method and VDNet (see

A in Fig 26), and in DnCNN [50] and DANet [68]; dissipation also occurred in the single

frame. Similar to the 3D chart shown above, DnCNN [50], in contrast to the proposed method,

shows dissipation even in a single frame (see Figs 25B and 26B). In the case of DANet [68],

although it seems there is no dissipation, at first glance (see Fig 26C), almost no denoising

effects are applied, so noise is expressed without mitigation, and this pattern is also observed

in Fig 25C.

Fig 27 shows the results of comparing the number of generated foam particles by frame

between previous methods and the proposed method. The proposed method produced more

Fig 26. Comparison of foam particles generated in a single frame (at frame 136). (a) Our method, (b) DnCNN [50],

(c) DANet [68], (d) VDNet case3 [67].

https://doi.org/10.1371/journal.pone.0275117.g026

Fig 27. Comparison of foam particles (number) between the previous methods and our method. (a) Rotating two

boxes, (b) Rotating-emitter, (c) Tornado, (d) U-shaped corridor.

https://doi.org/10.1371/journal.pone.0275117.g027

PLOS ONE Efficient learning representation of noise-reduced foam effects with convolutional denoising networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0275117 October 10, 2022 24 / 30

https://doi.org/10.1371/journal.pone.0275117.g026
https://doi.org/10.1371/journal.pone.0275117.g027
https://doi.org/10.1371/journal.pone.0275117


foam particles compared to VDNet [67] because it removes only noisy particles, not all parti-

cles. This result indicates the effect of the proposed denoising solver on the number of foam

particles, and shows clearly that it generates foam effects in more detail than previous methods

(see Figs 20 & 23).

Table 4 compares the numbers of foam particles generated in each scene. Max denotes the

maximum number of foam particles in that frame and Avg. denotes the average number in

each frame. As shown in the table, the number of foam particles in the proposed method is

higher or lower than that of previous methods because it removes only noisy foam particles.

The pattern of this trend varies by the complexity of the scenes.

Integration and extensibility with screen projection methods

This study adopted the screen-space method among various foam generation algorithms, and

this section describes the reason and possibility of extension. Most foam particle generation

methods require access to all grid or particle momentum to analyze the motion of the underly-

ing fluids. This process is also necessary for the Eulerian and Lagrangian approaches. Consid-

ering that the foam has feature of being generated on the fluid surface, compared to bubble

formed in water, this study used a technique to generate foam particles by projecting fluid flow

onto the screen-space [22, 23]. In this method, the foam quality is determined by the quality

and resolution of the 2D projection map, making it to be compatible with the proposed

method. Although the goal in designing algorithm was foam generation, we expect it to be

applicable to games and real-time applications that mainly use screen-space rendering tech-

niques [20, 32, 70, 71].

Image denoising is still receiving active academic interest. Recently, Xu et al. used class-spe-

cific convolution to efficiently solve the denoising problem based on deep learning [72]. In

addition, Wang et al. proposed a method to practically process image denoising in mobile

devices [73]. Their proposed method can be used in the 2D projective space approach of this

study because it alleviates the noise problem from a practical point of view rather than detail.

Recently, Lin et al. dealt with the image denoising problem using adaptive & overlapped aver-

age filtering [74]. This method is similar to ours as it calculates a non-noisy map from an

image based on the adaptive filtering method and the small-scale details are preserved in most

of the results. However, the image denoising implemented in the 2D image is insufficient for a

complete foam denoising solution, as discussed in this study. However, the utilization of over-

lapped average filtering is expected to improve the robustness of the proposed method. There

are various types of foam, all with various characteristics, such as wave foam that oscillates

strongly according to the underlying motion and surface foam that floats steadily. The adaptive

and overlapped average filter can be an excellent candidate to classify and stably learn these

Table 4. Comparison of foam particles (number).

Figure Type Our method DANet DnCNN VDNet

21 Max 639,024 873,029 593,352 667,256

Avg. 414,053 558,953 360,519 395,710

24 Max 639,024 873,029 593,352 667,256

Avg. 414,053 558,953 360,519 395,710

22A Max 753,895 994,551 783,797 817,981

Avg. 221,483 311,377 221,850 202,904

22B Max 1,683,396 1,950,685 1,590,905 1,696,093

Avg. 674,976 977,552 753,513 662,590

https://doi.org/10.1371/journal.pone.0275117.t004
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characteristics. As Lin et al. demonstrated that the performance of their method is sufficient

based on images, their method is expected to be further improved through integration with

our method in the future.

Conclusions and future work

This study proposed a screen projection method and denoising network architecture that effi-

ciently express foam generation in water simulations. To refine the projection map, data were

collected in the preprocessing process, and a method to mitigate noise using a residual-based

network was introduced. Using the proposed network, Z�, D�, and F� that affect foam forma-

tion were newly calculated.

We obtained and analyzed the results in terms of visual aspects to minimize foam loss and

evaluated the denoising performance. For physics-based simulations in computer graphics, the

visual quality is as important as numerical accuracy. As in the Problem Statement, where the

problem is defined in the visual aspect and a solution is presented to solve it, we focused on

comparison in terms of visual aspect in the Result analysis and Discussion sections. We believe

that the comparison of projective spaces (Fig 25), instead of quantitative comparison of the

numbers of foam particles, is a reliable method to analyze the results because the foam particles

in this study are generated by momentum projection onto the projective space. In addition, the

visualization of foam particles generated in a specific frame shows that denoising is more stable

and the expression of foam is more detailed in our method than in conventional methods.

Based on experiments in various scenes, it was confirmed that the proposed network

method is superior to the sole application of a separable binomial filter in terms of denoising.

Existing techniques for image denoising are unable to fully express small-sized bubbles before

they are lost. Contrarily, the proposed method in this study can effectively visualize diminutive

bubbles stably without dissipation. The proposed method improved the foam quality and effi-

ciency using a network that removes the noise generated in the process of projecting water

particles onto the screen. However, it has a limitation in that the 3D momentum is not accu-

mulated accurately in 2D format because only water particles close to the screen are considered

in the projection process. We plan to expand the research to include a nonlinear mapping

method that reflects the 3D momentum in 2D maps. The successful outcome of this research

is expected to be the generation of foam effects even in occlusion regions, which is a weakness

of screen space.

The technical contribution of this paper lies not in the discovery of a new network architec-

ture but in the discovery of a new noise problem found in the process of projecting foam

effects in 3D onto the projective space and solving it using an image denoising approach. This

is not a network-based re-visitation of the previously solved problem, but a new problem

raised first in physically based simulation. In addition, as this is the first time representation

learning is being performed using the artificial neural network method, we addressed various

issues, from how to build a dataset to training/testing in detail. This resulted in superior per-

formance compared with conventional methods. However, from a network point of view, this

is not a completely new method because it uses the previous convolutional neural network

architecture. The reasons for selecting this type of network for this study include its history of

application in many fields, and thus, algorithm integration stability and ease of reproduction

by readers are expected. We believe that the proposed method did not completely achieve

denoising in foam simulation. There are many types of foam effects depending on the position

or motion generated in the underlying fluids. If we fully represent these various foam particles,

we believe that the network architecture should be redesigned. In the future, the feature points

of the foam particles will be redefined, and a new artificial neural network design is planned.
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The VGG-like model has already been used in representation learning. Although our

model has a relatively shallow architecture, it was sufficient to achieve the purpose of this

study. Our approach can be applied directly to ResNet, a deeper structure, or lightweight Effi-

cientNet; however, there will be almost no difference in performance. In the future, it will be

possible to use the popular Transformer-based model or a GNN-based model by focusing on

the movement of particles. In future work, we aim to expand this study to include a method to

refine the projection map according to the flow level using an adaptive and anisotropic data

structure.

Supporting information
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(ZIP)

Author Contributions

Conceptualization: Jong-Hyun Kim.

Resources: YoungBin Kim.

Supervision: YoungBin Kim.

Validation: Jong-Hyun Kim.

Visualization: Jong-Hyun Kim.

Writing – original draft: Jong-Hyun Kim.

Writing – review & editing: Jong-Hyun Kim.

References
1. Jiang Chenfanfu and Schroeder Craig and Selle Andrew and Teran Joseph and Stomakhin Alexey, The

affine particle-in-cell method. ACM Transactions on Graphics 2015, 34, pp. 1–10.

2. Chentanez Nuttapong and Müller Matthias, Real-time Eulerian water simulation using a restricted tall

cell grid. ACM SIGGRAPH 2011, pp. 1–10. https://doi.org/10.1145/2010324.1964977
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dering. Václav Skala-Union Agency 2013.

33. Müller Matthias and Schirm Simon and Duthaler Stephan, Screen space meshes. Proceedings of the

2007 ACM SIGGRAPH/Eurographics symposium on Computer animation 2007, pp. 9–15.

34. Xie You and Franz Erik and Chu Mengyu and Thuerey Nils, tempogan: A temporally coherent, yrumetric

gan for super-resolution fluid flow. ACM Transactions on Graphics 2018, 37, pp. 1–15.

35. Chu Mengyu and Thuerey Nils, Data-driven synthesis of smoke flows with CNN-based feature descrip-

tors. ACM Transactions on Graphics 2017, 36, pp. 1–14.

36. Werhahn Maximilian and Xie You and Chu Mengyu and Thuerey Nils, A multi-pass gan for fluid flow

super-resolution. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2019,

2, pp. 1–21. https://doi.org/10.1145/3340251

37. Kim Byungsoo and Azevedo Vinicius C and Thuerey Nils and Kim Theodore and Gross Markus and

Solenthaler Barbara, Deep fluids: A generative network for parameterized fluid simulations. Computer

Graphics Forum 2019, 38, pp. 59–70. https://doi.org/10.1111/cgf.13619

38. Tompson Jonathan and Schlachter Kristofer and Sprechmann Pablo and Perlin Ken, Accelerating

eulerian fluid simulation with conyrutional networks. International Conference on Machine Learning

2017, pp. 3424–3433.

39. Xiao Xiangyun and Zhou Yanqing and Wang Hui and Yang Xubo, A novel cnn-based povolon solver for

fluid simulation. IEEE transactions on visualization and computer graphics 2018, 26, pp. 1454–1465.

https://doi.org/10.1109/TVCG.2018.2873375 PMID: 30281463

40. Hong Byeong-Sun and Zhang Qimeng and Kim Chang-Hun and Lee Jung and Kim Jong-Hyun, Acceler-

ated Smoke Simulation by Super-Resolution With Deep Learning on Downscaled and Binarized Space.

IEEE Access 2021, 9, pp. 98615–98629. https://doi.org/10.1109/ACCESS.2021.3095904

41. Dong Chao and Loy Chen Change and He Kaiming and Tang Xiaoou, Image super-resolution using

deep conyrutional networks. IEEE transactions on pattern analysis and machine intelligence 2015,

38, pp. 295–307. https://doi.org/10.1109/TPAMI.2015.2439281

42. Ledig Christian and Theis Lucas and Huszár Ferenc and Caballero Jose and Cunningham Andrew and

Acosta Alejandro and et al. Photo-realistic single image super-resolution using a generative adversarial

network. Proceedings of the IEEE conference on computer vision and pattern recognition

2017, pp. 4681–4690.
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