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Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor that accounts for 2-4%
of all thyroid cancers. All inherited MTC and approximately 50% of sporadic cases are
driven by mutations in the REarranged during Transfection (RET) proto-oncogene. The
recent expansion of the armamentarium of RET-targeting tyrosine kinase inhibitors (TKIs)
has provided effective options for systemic therapy for patients with metastatic and
progressive disease. However, patients that develop resistant disease as well as those
with other molecular drivers such as RAS have limited options. An improved
understanding of mechanisms of resistance to TKIs as well as identification of novel
therapeutic targets is needed to improve outcomes for patients with MTC.
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BACKGROUND

Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor that arises from the calcitonin-
secreting parafollicular cells (C-cells). It has an estimated annual incidence ranging from 0.14 to 0.21/
100,000 population and accounts for 2-4% of all cases of thyroid cancer (1–3). All reported cases of
hereditary MTC as well as 40-50% of sporadic cases are attributed to activating mutations in the
REarranged during Transfection (RET) proto-oncogene (3). The RET gene encodes a transmembrane
receptor tyrosine kinase that regulates a wide variety of cell processes such as survival, proliferation,
motility, and apoptosis. Activating mutations in RAS underly approximately 40% of non-RET
mutated sporadic MTC with most of the remaining cases having no identified oncogenic driver (4,
5). While RET has proved to be an effective therapeutic target, resistant disease can develop in the face
of RET-targeting tyrosine kinase inhibitors (TKIs) and options for systemic therapy of non-RET
driven MTC are limited. We will review the development of RET-targeting TKIs and ongoing efforts
to understand and circumvent mechanisms of resistance. We will also discuss new targets for the
systemic therapy of MTC including novel molecular targets, immunotherapy, and the ongoing
challenges of developing an effective method of targeting RAS-driven tumors.
INITIATION OF SYSTEMIC THERAPY

The optimal timing for initiation of TKI therapy is unclear. Currently, systemic therapy should be
reserved for patients with clear radiographic progression of disease or those with symptomatic disease.
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There is no evidence that TKI therapy is curative and there have
been no completed phase III studies comparing approved agents. It
has been recommended that the choice of TKI usage be patient-
centered with initiation of therapy depending on patient medical
history, concomitant medications, comorbidities and tumor
characteristics (6). While RET-targeting TKIs have provided
clinical benefit to patients with MTC, the development of
resistant disease can occur and the toxicity of both cabozantinib
and vandetanib limit their use in patients with small volume,
asymptomatic or indolent disease. ATA guidelines recommend
considering initiation of TKI therapy for patients with radiographic
evidence of disease progression or symptomatic disease (7). The
National Comprehensive Cancer Network (NCCN) guidelines (V
3.2020) recommend disease monitoring for patients that are
asymptomatic with treatment with TKIs considered for disease
that is unresectable or progressing by RECIST criteria (8).

EXPLOITING RET AS A THERAPEUTIC
TARGET

RET Signaling in MTC
The RET gene encodes a transmembrane receptor tyrosine kinase
important in the regulation of cell growth, proliferation, migration,
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and survival (9). Physiological signaling through the RET
receptor occurs upon binding of one of a family of glial cell-
line derived neurotrophic factor (GDNF) ligands to a
glycosylphosphatidylinositol-anchored coreceptor of the RET/
GDNF family receptors alpha family (GFRa). This interaction
leads to the formation of a dimeric GDNF-GFRa-RET complex
and activation of the intracellular tyrosine kinase domains of both
RET components of the dimer (10). (Figure 1) Physiological
signaling through RET occurs following the phosphorylation of
intracellular tyrosine residues on the RET protein that mediate the
activation of multiple intracellular signaling pathways including
PI3K/AKT,MAPK, JNK and others (10, 11). Oncogenic activating
mutations of RET have been identified at several sites throughout
the protein. Mutations in the cytosine-rich extracellular domain
occur at codon C634 of exon 11 as well as 609, 611, 618, or 620 of
exon 10. Mutation of these cysteine residues leads to formation of
intermolecular disulfide bonds which result in covalent RET
dimerization and kinase activation (12, 13). Germline mutations
at these sites lead to MEN2A. The RET p.M918T mutation
associated with MEN2B is in the intracellular tyrosine kinase
domain 2, this amino acid change increases ATP binding affinity
and leads to constitutive kinase activity in the absence of RET
dimerization (12).
FIGURE 1 | Oncogenic Signaling Pathways in MTC: Potential and confirmed therapeutic targets in MTC are depicted with currently available targeted agents.
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Multi-Target Tyrosine Kinase Inhibitors
Disruption of RET signaling was first tested as a strategy for the
treatment of patients with MTC using the multi-target kinase
inhibitor, vandetanib (14). A 20% partial response rate was seen
in patients treated on this phase II study. Vandetanib inhibits the
activity of RET as well as other receptor tyrosine kinases
including VEGFR-2, VEGFR-3, and EGFR (15) and the
inhibition of each of these tyrosine kinases may play a role in
the impact of vandetanib on MTC tumor growth. The drug was
approved by the Food and Drug Administration (FDA) in April
2011 for the treatment of patients with symptomatic or
progressive MTC with unresectable locally advanced or
metastatic disease based on the results of a phase III trial
which demonstrated a statistically significant improvement in
6-month progression-free survival (PFS) of 83% for patients
treated with vandetanib compared to 63% for placebo (16).
Importantly, the approval did not require the presence of a
RET activating mutation. In 298 patients with sporadic MTC
enrolled in this study a RET mutation was documented in 155
patients with no RET mutation in 8 patients and RET mutation
status unknown in 135 patients. Cabozantinib, another multi-
target TKI approved by the FDA for the treatment of patients
with progressive or symptomatic MTC demonstrated an
improved median PFS of 11.2 months compared to 4 months
in a placebo group (17). A long-term follow-up analysis of this
study after a minimum of 42 months did not show a statistically
significant increase in overall survival with cabozantinib
compared to placebo, although a non-significant 5.5-month
increase was reported (18). A follow-up analysis showed an
overall survival of 44.3 months in patients with tumors with
RET M918T mutations treated with cabozantinib compared to
18.9 months for those treated with placebo. The difference in OS
between cabozantinib and placebo treated patients who did not
have M918T mutated tumors was 20.2 and 21.5 months (18).
Because the cabozantinib study enrolled only patients with
radiographic evidence of progressive disease compared to the
initial phase 3 study evaluating vandetanib, which did not
required evidence of disease progression for enrollment, it is
difficult to compare the efficacy of the two agents. In addition to
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these studies in adult patients both vandetanib and cabozantinib
were also effective for the treatment of pediatric patients with
MTC (19–21). Despite these successes neither vandetanib nor
cabozantinib leads to complete responses in patients with MTC
and the development of resistant disease is a significant problem.
As a consequence of their broad kinase inhibitor activity both of
these agents have a number of toxicities. Toxicities seen with
vandetanib included diarrhea, rash, nausea, hypertension, and
headache (16) and patients who received cabozantinib, which
inhibits hepatocyte growth factor receptor (MET) and VEGFR2
in addition to RET often experienced diarrhea, palmar-plantar
erythrodysesthesia, decreased weight and appetite, nausea, and
fatigue (17). The modest activity as well as the significant side-
effects of multi-target TKIs can limit their utility in the treatment
of patients with MTC.

Other multi-target TKIs have been investigated for the
treatment of patients with MTC (Table 1). Sunitinib had an
objective response rate of 38.5% with median PFS of 16.5 and OS
of 29.4 months in a group of 26 patients (30). In a study of
lenvatinib in 59 patients with MTC an objective response rate of
36% was reported (31). The trial included patients with both
RET-driven and non-RET-driven disease and RET mutation
status was not associated with response or PFS. Responses and
clinical benefit have also been reported in patients with MTC
with other multi-target TKIs including sorafenib (22, 32), and
Anlotinib (23). Taken together, responses in patients with both
RET and RAS-driven disease to TKIs with a range of targets
suggests that the targeting of multiple signaling pathways could
provide therapeutic opportunities for patients with advanced
MTC. Additional TKIs including the multi-target agent
regorafenib as well as next-generation RET-targeting TKIs are
currently being evaluated (Table 2).

RET-Specific Tyrosine Kinase Inhibitors
The recently approved TKIs, selpercatinib and pralsetinib have
more specific RET-targeting activity which leads to an improved
side effect profile. In a phase 1-2 study of selpercatinib in patients
with progressive RET-mutant MTC a 69% response rate was seen
in patients who had previously received vandetanib or
TABLE 1 | Summary of results of completed tyrosine kinase inhibitor trials.

Tyrosine Kinase Inhibitors Target(s) Mutations ORR mPFS (months) mOS (months) Clinical Trial ID

Vandetanib (22) VEGFR2-3, EGFR, RET RET+RAS+UK 45% 30.5 NR NCT00410761
Cabozantinib (23) VEGFR2, KIT, FLT-3, RET, MET RET+RAS+UK 28% 11.2 26.6 NCT00704730

M918T Negative 20% 20.2 5.7
M918T 34% 13.9 44.3

Selpercatinib (24) RET, VEGFR2 RET/Previous TKI 69% NR (1-year PFS 82%) NR NCT03157128
RET/TKI Naïve 73% NR (1-year PFS 92%) NR

Sorafenib (25) BRAF, KIT, FLT-3, VEGFR2, PDGFR ND 25% NR NR NCT02114658
Lenvatinib (26) VEGFR1-3, FGFR1-4, PDGFRa, KIT, RET RET+RAS 36% 9 16.6 NCT00784303
Anlotinib (27) VEGFR1-3, FGFR1-4, KIT FGFR ND 48.4% 22.4 50.4 NCT02586350
Pralsetinib (28) RET, VEGFR2 RET/Previous TKI 60% NR NR NCT03037385

RET/TKI Naïve 71% NR NR
Sunitinib (29) PDGFR, KIT VEGFR1-3, FLT-3, RET ND 38.5% 16.5 29.4 NCT00510640
August
 2021 | Volume 12
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cabozantinib with a 73% response rate in TKI-naïve patients
(33). The drug was well tolerated with grade 3 adverse events
including hypertension (21%) and diarrhea (6%). Results of a
study of pralsetinib in patients with MTC were recently reported
with a response rate of 71% in TKI-naïve patients and 60% in
patients who had previously received vandetanib or cabozantinib
and pralsetinib was also FDA-approved for the treatment of
patients with RET altered thyroid cancer (34). Selpercatinib was
also effective and well-tolerated in five pediatric patients with
cancers with activating mutations in RET including two patients
with MTC (35). Selpercatinib and pralsetinib have several
potential advantages compared to the multi-targeted TKIs
including an improved side effect profile as well as activity
against RET V804L and V804M mutants. However, resistance
has also emerged to these newer TKIs. Solvent front mutations
at RET glycine 810 as well as mutations at RET Y806
within the hinge region of the kinase cause resistance to both
selpercatinib and pralsetinib (24, 36). Amplification of the
MET gene has also been identified as a mechanism of
resistance to selpercatinib in RET fusion non-small cell lung
cancer (28). A combination of selpercatinib and the MET
inhibitor crizotinib was able to overcome resistance due to
MET amplification (28).
TARGETS DOWNSTREAM OF RET

The success of RET inhibitors in the treatment of MTC suggests
that downstream signaling pathways activated by RET may also
be effective therapeutic targets. While the mechanisms that
induce MTC oncogenesis through RET activation have not
been completely defined, there is data supporting the
involvement of a number of cellular signaling pathways in this
process (Figure 1). The phosphatidylinositol 3-kinase (PI3K)/
AKT/mammalian target of rapamycin (mTOR) pathway is
activated in preclinical MTC models as well as cases of MTC
(37, 38). This data as well as the efficacy of everolimus in other
neuroendocrine tumors such as pancreatic NET led to its
evaluation in patients with MTC. Responses have been
reported in patients with MTC in several trials of the mTOR
inhibitor everolimus (29, 39, 40). While dramatic response rates
were not observed, this work provides additional evidence that
the PI3K/AKT/mTOR pathway is important in MTC and may
provide additional therapeutic targets for a subgroup of patients.
Combined inhibition of both the RAS/MEK/ERK and PI3K/
AKT/mTOR pathways has demonstrated activity in preclinical
studies of MTC (25, 26). Unfortunately, combined inhibition of
Frontiers in Endocrinology | www.frontiersin.org 4
both pathways has thus far been limited by toxicity in early
clinical trials (27, 41).
RAS-DRIVEN MTC

RAS Mutant MTC
Approximately 70% of cases of MTC without an identifiable RET
mutation have been attributed to RAS gene mutations (42–45).
RAS genes code for a family of cellular signaling GTPases that
regulate a wide range of downstream pathways including MEK/
ERK and PI3K/AKT and play a role in numerous functions
including cell growth and proliferation, apoptosis, and
differentiation (45–47). Approximately 20% of all cancers have
activating mutations in RAS (48). Activating mutations in HRAS
are the most commonly seen in MTC with a lesser percentage of
KRAS and rare NRAS mutations (44, 49, 50). RAS and RET
mutations are typically mutually exclusive in MTC except for a
small number of anecdotal reports with mutations in both genes
(45). As with other RAS-driven cancers, the mutations seen in
MTC occur primarily in exons 2 and 3 (45, 49). The most
common activating mutations in RAS occur at G12, G13, and
Q61 (51).

Strategies for Targeting RAS
Targeting RAS and its associated signaling pathways has proven
to be challenging. RAS has a lack of sites amenable to small
molecule inhibitor binding and is difficult to target
pharmacologically (52). RAS pathway inhibitors have been
investigated for the treatment of MTC. In a phase I trial of the
multi-kinase inhibitor sorafenib in combination with the
farnesyltransferase inhibitor tipifarnib 5/13 patients with MTC
showed a response, however the mutation status of the patients
for RET and RAS was not reported (53). Post-hoc analysis was
performed on data from a phase III trial of cabozantinib for MTC.
Patients with cancers with mutations in RAS (HRAS, KRAS, and
NRAS) had an overall response rate of 31% compared to a
response rate of 32% in patients with RET-mutation positive
disease with no survival benefit observed in patients with tumors
lacking both RET and RAS mutations (54). Unlike KRAS and
NRAS, HRAS is prenylated only by farnesyltransferase (55). The
farnesyltransferase inhibitor tipifarnib is being tested in patients
with HRAS driven cancers and patients with HRAS mutated
MTC are eligible (NCT02383927).

Several novel strategies are currently being explored for the
treatment of patients with RAS mutant cancers. A number of
small molecule inhibitors of KRAS-G12C have recently been
TABLE 2 | Ongoing early phase trials for patients with MTC.

Drug Molecular Target Phase Eligibility Clinical Trial ID

Regorafenib BRAF, VAGFR1-3 PDGFRa/b, RET, KIT, FGFR1-2 2 MTC NCT02657551
TPX-0046 RET 1/2 RET altered tumors NCT04161391
TAS0953/HM06 RET 1/2 RET altered tumors NCT04683250
GFRa4 CAR T Cells GFRa4 1 MTC NCT04877613
August 2021 | Volume 12
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developed and are being clinically evaluated (56–58). Sotorasib
and adagrasib are in phase II trials. Sotorasib was investigated in
patients with cancers with KRAS-G12C mutation and had a
disease response in approximately 30% of patients with non-
small cell lung cancer (59). Other targeted inhibitors of specific
mutated activated RAS isoforms are in clinical development (58).
Activating mutations of RAS have also been targeted using
immunological approaches. Infusion of expanded autologous
KRAS-G12D-specific CD-8+ tumor infiltrating lymphocytes
led to a response in a patient with RAS mutant colorectal
carcinoma (60). Additional work has identified T-cell receptors
that target activating mutations in KRAS (61–63). Based on this
and other work early-stage trials are now underway using KRAS
G12V and G12D-specific TCR cell therapy approaches
(NCT04146298; NCT03190941; NCT03745326). While these
approaches hold considerable promise, they are limited by
specificity for a specific RAS isoform and mutation as well as
the HLA restriction of TCR-based treatments.
IMMUNOTHERAPY AND OTHER
TARGETED THERAPIES

Peptide Receptor Radionuclide Therapy
Somatostatin receptor is present on a majority of cases of
MTC (64) and can be detected with somatostatin receptor-
based PET modal i t ies (65) . While no randomized
controlled trials of Peptide Receptor Radionuclide Therapy
(PRRT) in MTC have been done to date the use of
radiolabeled somatostatin analogs for the treatment of MTC
has been reported in a number of smaller studies. Patients treated
with 90Y-DOTATOC had a response rate of 29% (9 of 31
patients) in a phase II study (66). In a single-institution
retrospective analysis of patients with MTC treated with 177Lu-
DOTATATE, a 62% response rate (27 of 43 patients) based on
RECIST 1.1 criteria was reported (67). Recent reviews have
summarized the published experience of PRRT in the
treatment of patients with medullary thyroid cancer. Overall
cumulative objective response rates to PRRT in patients with
MTC of 5.1 and 10.6% were reported (68, 69). While these
studies do show promise, the lack of controlled studies of
PRRT in MTC as well as the potential for significant side-
effects including hematologic and nephrotoxicity point to the
need for randomized controlled trials in this area.

Other Immunotherapeutic Approaches
Immunotherapy approaches are being tested for the treatment of
patients with MTC including specific antigen-targeting
approaches as well as strategies that leverage the anti-tumor
immune response. Tumor vaccines incorporating the MTC
secretory product carcinoembryonic antigen (CEA) have been
studied in early phase clinical trials. An early study using
vaccines generated with autologous mature dendritic cells
loaded with calcitonin and CEA were studied in a small study
of 7 patients. A decrease in calcitonin and CEA in 3/7 patients
with one patient showing complete regression in metastatic
Frontiers in Endocrinology | www.frontiersin.org 5
nodules was reported in this trial (70). The CEA vaccine, GI-
6207, was investigated in a phase 1 trial that enrolled 25 patients
with metastatic CEA-expressing carcinomas and included one
patient with MTC (71). The single patient with MTC on this
study did not have a radiographic response, however, a marked
inflammatory reaction at sites of metastatic disease was observed
as well as significant T cell responses. Immune checkpoint
inhibitors are also being explored in the treatment of MTC. A
patient with recurrent MTC who was treated with a yeast-CEA
cancer vaccine followed by anti-PD-L1 inhibitor, avelumab, was
reported to have a 40% decrease in his calcitonin levels with
radiographic stable disease. The tumor was found to express PD-
L1 which may explain the calcitonin response to immunotherapy
(72). Adoptive T-cell therapy has been successful in the
treatment of patients with acute lymphoblastic leukemia and
the strategy is being used to target other cancer types. Bhoj and
colleagues reported preclinical data demonstrating that chimeric
antigen receptor T-cells targeting GDNF family receptor alpha
4 could eliminate MTC in a murine xenograft model (73). An
anti-GDNFa4 CAR T-Cell approach will be tested in a planned
phase I trial (NCT04877613) (Table 2). An improved
understanding of the immune microenvironment of MTC as
well as identification of novel target antigens is needed
to develop new effective immunotherapies for patients with MTC.
CONCLUSION

The development of RET-targeting TKIs has made a substantial
impact on the treatment of patients with MTC. Despite this
advance, important challenges remain. Patients with sporadic
MTC driven by RAS mutations as well as patients with disease
resistant to the available RET-targeting TKIs have limited
therapeutic options. Important questions remain in optimizing
the use of TKIs in the treatment of patients with MTC. As use
of the RET-specific TKIs increases it will be important to
understand the patterns of resistance to these drugs and next-
generation RET-targeting tyrosine kinase inhibitors that circumvent
new resistance mutations will be needed. Improved understanding
of downstream pathways involved in resistance, such as MET
signaling, may inform the design of combination trials. Other
novel strategies such as intermittent or alternating dosing of RET-
inhibitors could also be considered. Another major challenge is the
optimal timing for the initiation of TKI therapy. Large, randomized
trials would be required to determine if initiation of a RET inhibitor
prior to radiographic disease progression would provide any clinical
benefit. RET-agnostic immunotherapy and antigen-targeting
approaches also hold promise for expanding treatment options
for MTC. While responses to PRRT have been reported, well-
controlled prospective trials are still needed to define its role in the
treatment of patients with MTC. T-cell based therapies have been
highly effective in hematopoietic malignancies and the initial steps
in their evaluation and development for the treatment of MTC are
ongoing. These therapeutic strategies targeting specific antigens
distinct from RET, if effective, would be important advances.
Studies of these agents may also improve our understanding of
the immunology of MTC as well as stimulating the search for
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additional targetable antigens in MTC. Metastatic MTC is currently
a treatable but incurable cancer. However, rapid advances in
multiple therapeutic strategies holds promise for an eventual cure
for this disease.
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