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The Ile191Val variant of the TAS1R2 gene of sweet taste receptors causes a partial

loss-of-function and is associated with reduced glucose excursions in a healthy lean

cohort. However, it is unclear whether this polymorphism contributes to the regulation of

glucose homeostasis in metabolically unhealthy individuals. Thus, we used participants

with variable glycemic profiles and obesity to assess the effects of the TAS1R2-Ile191Val

variant. We found that the Val minor allele carriers had lower HbA1c at all levels of fasting

glucose and glucose tolerance. These effects were not due to differences in beta-cell

function or insulin sensitivity assessed with a frequently sampled intravenous glucose

tolerance test. This study extends our previous findings and provides further evidence

that sweet taste receptor function may contribute to glucose regulation in humans.

Keywords: HbA1C, TAS1R2 gene, glucose homeostasis, sweet taste receptors, polymorphism, oral glucose

tolerance test (OGTT), frequently sampled intravenous glucose tolerance test (FSIVGTT), diabetes risk

INTRODUCTION

Sweet taste receptors (STR; TAS1R2/TAS1R3 heterodimer) belong to the nutrient-sensing class
of novel G-protein coupled receptors (GPCRs) that includes free fatty acid (i.e., GPR40,GPR120,
CD36) and amino acid receptors (TAS1R1/TAS1R3; umami receptors). Among various tissues,
these GPCRs are expressed in the gastrointestinal tract to integrate local and peripheral signals
that modulate nutrient digestion and absorption (1). For instance, activation of STR can stimulate
peptide release from mouse and human intestinal L-cells (2–4). In addition, STR promote glucose
absorption in response to high concentrations of luminal glucose dependent on GLP-2 secretion
and the apical translocation of GLUT2 transporter. Thus, genetic ablation of Tas1r2 gene of STR
in mice (TAS1R2-KO)reduces glucose absorption and its plasma excursions (5). Although there is
some evidence that a similar mechanism may be present in humans (6, 7), the direct involvement
of STR has not been clearly demonstrated. Interestingly, intestinal expression of STR in individuals
with type 2 diabetes is linked to glucose absorption, suggesting that the levels and function of STR
may contribute to postprandial hyperglycemia (8, 9).
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We recently demonstrated that the TAS1R2 (Ile191Val)
polymorphism reduces the levels of STR in the plasma
membrane, causing partial loss-of-function (10). Consequently,
Val carriers had a mild reduction in glucose excursions in
response to the ingestion of a glucose load, recapitulating the
phenotype seen in TAS1R2-KO mice (5). Notably, the TAS1R2
(Ile191Val) variant is also associated with carbohydrate intake
(11–13) and fasting insulin (11). Although these observations
establish a strong link between STR function and glucose
control, their clinical significance for the regulation of glycemia
cannot be adequately assessed in metabolically healthy lean
participants. To address this limitation and further explore
the physiological manifestations of STR loss-of-function, we
performed a retrospective observational study to assess the effects
of Ile191Val polymorphism in a cohort of individuals with
variable metabolic and obesity profiles.

METHODS

This prospective observational study was performed in
accordance with the requirements of Good Clinical Practice and
the Revised Declaration of Helsinki. Recruitment, enrollment
and all study-related visits, including specimen collection and
point-of-care laboratory testing, took place at Advent-Health
Translational Research Institute (TRI) Clinical Research Unit
(CRU), as previously described (NCT02226640) (14). The study
was approved by the Institutional Review Board at Advent-
Health and all participants signed an informed consent. All
subjects were required to be at least 18 years of age, in general
good health, with BMI < 25 or > 30 kg/m2, but weight stable
(<3 kg change within the last 8 weeks) and within 10% of their
lifetime heaviest body weight. Non-diabetic participants were
not taking medications known to affect glucose metabolism.
Individuals with diabetes (HbA1c <8.0%) were either non-
treated or were on monotherapy using either a sulfonylurea,
metformin, or GLP-1 analog and were able to maintain accurate
and reliable home glucose monitoring logs. Participants were
excluded if one of the following conditions applied: Treatment
with more than 2 of the following: metformin (Fortamet,
Glucophage, Glumetza, Riomet), sulfonylureas (Glucotrol,
Diabeta, Glynase, Micronase), Glucagon-like peptide-1 analogs
(Byetta) and/or Dipeptidyl peptidase IV inhibitors (Januvia,
Onglyza); Treatment with long acting Glucagon-like peptide-1
agonists within the last 3 months (i.e., exenatide once weekly),
Treatment with thiazolidinediones (TZDs) (i.e. Avandia, Actos,
Rezulin) within the last 3 months; Known, untreated thyroid
disease or abnormal thyroid function blood test; Known
diagnosis of liver disease (except NASH) or elevated liver
function blood test; Known diagnosis of kidney disease or
elevated kidney function blood test; Uncontrolled high blood
pressure (BP > 140 systolic or > 90 diastolic); Start of or changes
in oral contraceptives or hormone replacement therapy within
the last 3 months; Use of drugs or alcohol (>3 drinks per day)
within the last 5 years; Uncontrolled psychiatric disease that
would interfere with study participation; History of cancer within
the last 5 years (skin cancers, with the exception of melanoma,

may be acceptable); History of organ transplant; History of
heart attack within the last 6 months; Current treatment with
blood thinners or antiplatelet medications that cannot be safely
stopped for testing procedures; Current anemia; History of HIV,
active Hepatitis B or C, or Tuberculosis; Presence of clinically
significant abnormalities on electrocardiogram; Current smokers
(smoking any nicotine or non-nicotine product within the past 3
months); Use of any medications known to influence glucose, fat
and/or energy metabolism within the last 3 months (e.g., growth
hormone therapy, glucocorticoids [steroids], etc.).

Participants were genotyped and retrospectively grouped
according to rs35874116 (Ile191Val) or rs9701796 (Cys9Ser)
TAS1R2 non-synonymous single nucleotide polymorphism
(SNP). Mathematical modeling was performed as previously
described for (a) beta-cell function, insulin sensitivity and insulin
clearance (7), and (b) insulin sensitivity (Si) and the acute insulin
response to glucose (AIRg) (15).

Statistical Analysis
All data are represented as mean +/- standard error and
plotted with Prism 9 (GraphPad Software). All participants
were retrospectively assigned to two groups based on TAS1R2
genotypes. Statistical analyses were performed using jamovi 2.2.5
(jamovi team). Allele equilibrium, frequency, and SNP linkage
were analyzed by Chi-square tests. Baseline characteristics and
metabolic responses to the oral glucose tolerance test (OGTT)
and frequently sampled intravenous glucose tolerance test
(FSIVGTT) were analyzed with a general linear model approach
using sex, age, BMI, fasting glucose, and 2 h glucose during the
OGTT as covariates. Area under curve (AUC) glucose, insulin,
and C-peptide were adjusted for baseline values. Non-parametric
variables were log-transformed prior to analysis and all models
were checked for multicolinearity and normal distribution of
the residuals. Possible confounding effects were analyzed by
introducing the variables of interest as covariates in a hierarchical
model. Relationships between glycated hemoglobin (HbA1c)
and other variables were analyzed as partial correlations after
adjustment for sex, age and BMI.

Data and Resource Availability
The datasets generated during and/or analyzed during the
current study are available from the corresponding author upon
reasonable request. No applicable resources were generated or
analyzed during the current study.

RESULTS

The cohort of participants had the expected Hardy-Weinberg
equilibrium and minor allele frequency (Table 1). We specifically
considered glucose tolerance along with gender, age, and BMI
and performed multiple regression analysis between Ile/Ile and
Val carriers (Val/_). We found that, at various levels of fasting
glucose or glucose tolerance, Val carriers had lower HbA1c

(Table 2 and Figures 1A,B). The genotype effect on HbA1c

persisted even when the population was grouped according
to their diabetes status (p = 0.040) based on American
Diabetes Association (ADA) classification criteria (16) (i.e.
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TABLE 1 | Allele frequency, distribution and linkage of participants.

Frequency χ² P Frequency χ² P

Hardy Weinberg Hardy Weinberg

Ile/Ile 35 (44%) Cys/Cys 51 (65%)

Ile/Val 39 (49%) 0.638 0.727 Ser/Cys 25 (32%) 0.000 >0.999

Val/Val 6 (8%) Ser/Ser 3 (4%)

Allele distribution Allele distribution

*Recorded (n = 216,414) *Recorded (n = 114,744)

Ile 68% 0.000 >0.999 Cys 78% 0.121 0.728

Val 32% Ser 22%

Observed (n = 80) Observed (n = 79)

Ile 68% Cys 80%

Val 32% Ser 20%

Linkage between SNPs 0.820 0.662

P values for Hardy-Weinberg equilibrium and allele distribution were obtained using chi square test. Linkage was obtained using chi square for association.
*L. Phan, Y. Jin, H. Zhang, W. Qiang, E. Shekhtman, D. Shao, D. Revoe, R. Villamarin, E. Ivanchenko, M. Kimura, Z. Y. Wang, L. Hao, N. Sharopova, M. Bihan, A. Sturcke, M. Lee, N.

Popova, W. Wu, C. Bastiani, M. Ward, J. B. Holmes, V. Lyoshin, K. Kaur, E. Moyer, M. Feolo, and B. L. Kattman. “ALFA: Allele Frequency Aggregator.” National Center for Biotechnology

Information, U.S. National Library of Medicine, 10 Mar. 2020, www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/.

normal glucose tolerance, pre- type 2 diabetes (T2D) and
T2D) or when we only analyzed participants with normal
fasting glucose and glucose tolerance (Ile/Ile 5.55 ± 0.07 vs
Val/_ 5.34 ± 0.08, p = 0.046). Val/Val participants trended
to have lower HbA1c, but the number of participants (total
n=6) was inadequate to demonstrate statistical differences
(Supplementary Table 1). Nevertheless, even after omitting
Val/Val participants from the analysis, the HbA1c differences
between Ile/Ile and Val/Ile genotypes persisted (5.83 ± 0.05
vs 5.65 ± 0.05, respectively; p = 0.011). This suggests that
heterozygosity is sufficient for the SNP effect on HbA1c. In
contrast, the rs9701796 (Ser9Cys) polymorphism of TAS1R2,
which has comparable allele frequency to Ile191Val (17), had
no associations with HbA1c (Table 2 and Figures 1C,D). No
genotype differences were noted in OGTT variables or in
insulin sensitivity or pancreatic beta-cell responsiveness during
a FSIVGTT (Table 2).

Therefore, we reasoned that HbA1c levels might represent
cumulative differences in other parameters related to glucose
metabolism. Partial correlation analysis, adjusted for sex, age
and BMI, demonstrated anticipated relationships betweenHbA1c

and basal, OGTT, or FSIVGTT parameters. Fasting and 2h
glucose showed the strongest and most significant correlations
with HbA1c (Fasting: r = 0.75, p<0.001 and 2h: r = 0.65,
p ≤ 0.001), suggesting that small changes in these variables,
which are also descriptors of diabetes status, could explain
cumulative differences in HbA1c. We also noted significant
negative correlations with the disposition index (DI) and the
AIRg of the FSIVGTT, and significant positive correlations
with the homeostatic model assessment for insulin resistance
(HOMA-IR), AUC glucose, fasting glucose and 2h glucose of
the OGTT (Figure 1E). Similar correlations were found for both
Ile/Ile and Val carriers (Supplementary Figures 1A,B). However,
the addition of any of these parameters to our full regression
model did not significantly decrease the standardized estimate for

the SNP effect. Instead, the addition of DI further improved the
regression model (1 r2 = 0.04, model p= 0.014).

DISCUSSION

There is accumulating evidence to suggest that taste receptors,
including STRs, regulate endocrine function (18). For instance,
STRs regulate GLP-1 and GLP-2 secretion from intestinal L-
cells to regulate incretin responses and glucose absorption
(2, 5). In addition, STRs regulate insulin secretion directly
on beta-cells in response to ingested sugars (19, 20) and
artificial sweeteners (21, 22). These findings suggest that
receptor-mediated “sweet” nutrient sensing is part of an
intestinal-pancreatic axis that coordinates nutrient absorption
and disposal.

These studies were primarily performed in cells and mice, so
the direct involvement of STRs in human endocrine physiology
is still ambiguous. This is primarily due to the absence of
specific and potent pharmacological inhibitors or methods that
directly assess STR function. Nevertheless, genomics approaches
using SNPs has allowed scientists and clinicians alike to identify
genetic markers that predict the present and development
of a disease or screen for potential novel gene functions
through various associations. STRs (TAS1R2/TAS1R3) are highly
polymorphic (23), but TAS1R2 in particular is characterized by
high levels of nucleotide diversity (24). TAS1R2 also confers
specificity to sweet taste, since TAS1R3 is involved in both
sweet and umami taste (i.e. amino acid) (25). Out of the nine
TAS1R2 nonsynonymous SNPs, the rs35874116 (Ile191Val) and
rs9701796 (Cys9Ser) have a minor allele frequency >0.2 and are
associated with different nutritional and metabolic variables (17).
TAS1R2-(Ile191Val) in particular is associated with sugar and
carbohydrate consumption in adults (11, 13) and in children (12),
but these effects are not due to differences in taste sensitivity
(26). Taken together these observations suggest that, like in mice,
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TABLE 2 | Baseline and metabolic responses to an OGTT and FSIVGTT in adults with various levels of BMI and glucose control grouped by two common TAS1R2

polymorphisms.

Ile/Ile Val/_ P Ser/_ Cys/Cys P

Baseline variables

Total (Male/Female), n 35 (12/23) 45 (17/28) 28 (10/8) 51 (19/32)

Age (y) 43.23 ± 2.13 41.22 ± 1.81 0.473 43.50 ± 2.32 41.39 ± 1.75 0.473

Height (cm) 171.00 ± 1.14 169.00 ± 1.01 0.074 171.00 ± 1.32 169.00 ± 0.97 0.497

Weight (Kg) 93.40 ± 1.38 90.50 ± 1.22 0.106 92.00 ± 1.58 91.00 ± 1.17 0.629

BMI (kg/m2 ) 31.62 ± 1.45 31.31 ± 1.38 0.879 29.49 ± 1.38 32.29 ± 1.33 0.180

Glucose (mg/dL) 97.64 ± 3.26 100.06 ± 3.20 0.604 96.37 ± 3.59 100.40 ± 3.00 0.408

Insulin (µU/ml)* 5.09 ± 1.01 7.10 ± 0.90 0.538 6.12 ± 1.17 6.16 ± 0.87 0.560

HbA1c (%) 5.82 ± 0.06 5.64 ± 0.05 0.012 5.77 ± 0.07 5.70 ± 0.05 0.388

Triglycerides (mg/dL)* 121.00 ± 11.90 128.00 ± 10.50 0.305 134.00 ± 13.42 121.00 ± 9.94 0.895

HDL (mg/dL) 55.90 ± 2.67 52.10 ± 2.37 0.283 51.90 ± 3.04 55.10 ± 2.25 0.395

LDL (mg/dL) 113.00 ± 5.90 101.00 ± 5.14 0.130 105.00 ± 6.79 107.00 ± 4.92 0.725

LDL/HDL 2.11 ± 0.15 2.10 ± 0.13 0.971 2.13 ± 0.17 2.08 ± 0.13 0.814

OGTT variables

Baseline glucose (mg/dL)* 98.50 ± 0.32 98.10 ± 0.29 0.614 98.50 ± 0.36 98.10 ± 0.27 0.574

2h glucose (mg/dL)* 142.99 ± 10.32 155.62 ± 9.09 0.201 139.43 ± 9.84 156.74 ± 9.06 0.957

Baseline insulin (µU/ml)* 5.12 ± 0.90 6.90 ± 0.80 0.637 5.91 ± 1.04 6.09 ± 0.77 0.564

2h insulin (µU/ml)* 57.40 ± 11.11 70.20 ± 9.88 0.508 60.70 ± 12.70 65.60 ± 9.40 0.559

AUC glucose (mg/dL*min*10−3)* 18.35 ± 0.34 18.49 ± 0.30 0.613 18.44 ± 0.37 18.51 ± 0.28 0.707

AUC insulin (µU/L*min*10−3)* 5.49 ± 1.08 7.48 ± 0.96 0.388 5.98 ± 1.22 6.69 ± 0.90 0.712

AUC C-peptide (pmol/L*min) 725.00 ± 60.40 729.00 ± 51.10 0.962 793.00 ± 72.00 701.00 ± 46.40 0.281

HOMA-IR* 1.32 ± 0.26 1.85 ± 0.23 0.689 1.58 ± 0.30 1.60 ± 0.22 0.553

HOMA-B* 54.90 ± 9.09 69.70 ± 8.08 0.667 61.60 ± 10.45 62.80 ± 7.74 0.654

QUICKI 0.409 ± 0.008 0.408 ± 0.007 0.931 0.405 ± 0.009 0.413 ± 0.007 0.534

Matsuda Index 11.40 ± 1.06 11.00 ± 0.94 0.778 10.10 ± 1.19 11.90 ± 0.88 0.226

FSIVGTT modeling analysis

SI (mL/kg/min/µU/mL) 4.40 ± 0.51 3.96 ± 0.41 0.512 3.80 ± 0.56 4.38 ± 0.40 0.412

SG (mL/kg/min*103 ) 13.62 ± 1.06 13.92 ± 0.84 0.827 14.34 ± 1.10 13.33 ± 0.78 0.465

AIRG (µU/mL)* 391.67 ± 109.07 437.50 ± 86.00 0.962 415.93 ± 100.29 369.74 ± 71.10 0.744

Disposition Index (DI) 974.69 ± 130.02 912.11 ± 102.52 0.711 896.95 ± 135.98 924.96 ± 96.41 0.869

All values are mean ± SEM. P value for genotype effect was obtained after adjustments for sex, age, BMI, fasting glucose, and 2h glucose using a general linear model. BMI, body

mass index; HbA1c, glycated hemoglobin A1c. HDL, high density lipoproteins; LDL, low density lipoproteins; OGTT, oral glucose tolerance test; AUC, area under curve; HOMA-IR,

Homeostatic Model Assessment for Insulin Resistance; HOMA-B, β-cell function; QUICKI, quantitative insulin-sensitivity check index; FSIVGTT, frequently sampled intravenous GTT; SI,

insulin sensitivity index; SG, glucose effectiveness index; AIRG, acute insulin response to glucose index.

*Non-parametric data were log-transformed for statistical analyses.

TAS1R2 may have functional roles in peripheral tissues beyond
taste perception. We recently used biochemical approaches to
show that the Ile191Val substitution causes a partial loss-of-
function of TAS1R2 by reducing the availability of the STR
dimer in the plasma membrane (10). Healthy lean Val carriers
had reduced glucose excursions during an OGTT (10), which
resembles the effects seen in mice with a genetic loss-of-function
of TAS1R2 (5, 27), confirming that the Val substitution causes a
partial loss-of-function of STRs.

Because the rate of glucose excursions can affect the duration
and magnitude of postprandial hyperglycemia (28), we explored
contributions of TAS1R2-(Ile191Val) at baseline and during an
OGTT or an FSIVGTT in a cohort of adults with various degrees
of glucose control. We found that TAS1R2-(Val) carriers had
reduced HbA1c, a measure that assesses progression of glycemic
burden and predicts diabetic complications. The Ser9Cys
substitution is located in the putative signal peptide of TAS1R2
and has been associated with dietary and anthropometric
variables in children (17). However, the Ser9Cys variant did

not affect HbA1c levels or any other assessed variable. Although
we cannot exclude the possibility of linkage disequilibrium
with another causal polymorphism, the interactions of HbA1c

with the Ile191Val are not linked to Ser9Cys polymorphism.
Unlike direct measures of fasting or postprandial plasma
glucose, HbA1c reflects mean glycaemia in the past 2–3 months,
integrating total glucose exposure during fed and fasted states
(29). Postprandial hyperglycemia significantly contributes to
total daytime hyperglycemia and strongly correlates with HbA1c

(30). This finding is aligned with the reduced OGTT glucose
excursions seen in metabolically healthy lean Val/_ participants
(10). However, we did not observe a direct genotype effects
in glucose or insulin responses during an OGTT. This may
be partially explained by the population characteristics and
the physiological factors affecting an OGTT. Previously, we
used healthy lean adults with very homogeneous metabolic
characteristics. This was deliberate in order to make phenotypic
comparisons with corresponding healthy lean mouse models.
Presently, the objective was to retrospectively assess the effects of
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FIGURE 1 | The TAS1R2-(Val) variant is associated with HbA1c in humans. Association between (A) Fasting glucose, or (B) 2h glucose post OGTT (2h glucose) with

percent glycated hemoglobin (HbA1c) in Ile/Ile (black) and Val carriers (red) using a linear regression model (p value for intercepts). (C) Fasting glucose, or (D) 2h

glucose post OGTT (2h glucose) with percent glycated hemoglobin (HbA1c) in Cys/Cys (black) and Ser carriers (red) using a linear regression model (p value for

intercepts). All values shown in A-D are unadjusted. (E) Correlation coefficient (Pearson) and statistical significance [–Log(p)] volcano plot for all assessed variables

(i.e., baseline, OGTT and FSIVGTT) with HbA1c. Horizontal dotted line shows statistical significance of p < 0.05 or higher. Only variables with p < 0.05 are labeled.

AUC, area under curve; DI, disposition index; AIRg, acute insulin response to glucose index; HOMA-IR, homeostatic model assessment for insulin resistance.

TAS1R2 SNPs in a population with variable glucose status. This
may have slightly reduced the power of our study considering
that OGTT responses are not homogeneous across different
levels of glucose intolerance and obesity status. This is likely
due to the many factors that contribute to the development of
glucose dysregulation (i.e., beta-cell function, insulin sensitivity,
rate of glucose absorption) (31). Thus, interactions between these
parameters can have differential effects on the OGTT responses.

To overcome this limitation, we reasoned that the HbA1c

differences might represent cumulative effects, so we set to
identify which set of variables from the OGTT and FSIVGTT
can account for the genotype association with HbA1c. The
strongest correlations were noted with fasting and postprandial
glucose (i.e., 2h post OGTT and AUC) along with indices
of beta-cell function (i.e., AIRG and DI). Although this is
predictable, none of these variables reduced the regression
coefficient of the model when added as covariate. Instead,
adding DI as a covariate magnified the genotype effect. This
suggests that the reduced HbA1c in Val carriers could be
mediated through amelioration of postprandial hyperglycemia
linked to mechanisms that alter glucose absorption (32), instead
of beta-cell function or insulin sensitivity. Although this is

consistent with finding from animal models (5), to confirm
this hypothesis in humans, clinical studies that directly measure
glucose absorption are required. Notably, the genotype effect on
HbA1c persisted in normoglycemic participants, after exclusion
of participants with abnormal glucose control (16). In addition,
the Val allele is associated with lower consumption of sugars in
obese (11), which could ameliorate themagnitude of postprandial
hyperglycemia in this population. Therefore, although food
intake was not recorded in this study, habitual differences in
food choices and consumption may partially explain the lower
HbA1c. Regardless of the associated mechanism, loss-of-function
of STRs may predispose individuals to lower HbA1c levels and
confer a mild protective effect in daily glycaemia during the
development of diabetes. This hypothesis should be confirmed
through direct experimental evidence, such as in patients with
continuous glucose monitors (33).

In conclusion, our studies highlight that, beyond taste
perception, STR can act as peripheral carbohydrate sensors
for the regulation of glucose homeostasis in humans.
Particularly, partial loss-of-function of STRs through the
TAS1R2-(Ile191Val) variant may confer beneficial effects
in the regulation of daily glucose control. Our study
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was not adequately powered or designed to identify the
mechanisms, but the genotype effects may be linked to
differences in food preference and consumption, glucose
excursions or other, yet unknown, peripheral mechanisms of
glucose disposal. Notably, genome-wide association studies
have yet to reveal independent contributions of TAS1R2
polymorphisms on metabolic dysregulation, but careful
consideration of appropriate covariates may be required to
evaluate undelaying associations.
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