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The liver is a central immunomodulator that ensures a homeostatic balance between
protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the
deregulation of this tightly controlled immunological network. Immune response in the liver
involves a complex interplay between resident innate, innate, and adaptive immune cells.
The immune response in the liver is modulated by its continuous exposure to toxic
molecules and microorganisms that requires a degree of immune tolerance to protect
normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role
that includes the elimination of malignant cells, as well as the repair of damaged liver tissue
to maintain homeostasis. Immune response in the innate and adaptive immune systems
extends to the cross-talk and interaction involving immune-regulating non-hematopoietic
cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the
different immune responses of resident immune cells in the tumor microenvironment.
Current FDA-approved targeted therapies, including immunotherapy options, have
produced modest results to date for the treatment of advanced HCC. Although
immunotherapy therapy to date has demonstrated its potential efficacy, immune cell
pathways need to be better understood. In this review article, we summarize the roles of
specific resident immune cell subsets and their cross-talk subversion in HCC
pathogenesis, with a view to identifying potential new biomarkers and therapy options.

Keywords: immunology, tumorigenesis, adaptive, innate, cells, liver
INTRODUCTION

The liver is a central player in immune regulation because of its constant exposure to gut-derived
pathogens that require its multitude of innate and adaptive immune cells to respond to some
pathogens and tolerate others. Immune response in the liver must carefully balance pro-
inflammatory cytokines (IL-2/IL-7/IL-12/IL-15/IFN-g) and anti-inflammatory cytokines (IL-10/
IL-13/TGF-b) to coordinate resident and periphery leukocytes like T cells, B cells, macrophages
(KCs/monocytes), natural killer (NK) cells, natural killer T (NKT) cells, and hepatic stellate cells
(HSCs). Hepatocellular carcinoma (HCC), which accounts for approximately 90% of primary liver
cancers, arises almost exclusively in a setting of chronic inflammation, which is a hallmark of HCC
pathogenesis. This inflammation causes liver damage, compensatory tissue regeneration, and the
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activation of non-parenchymal cells that promote the
development of fibrosis/cirrhosis. Over time, these conditions
lead to chromosomal instability and the development of the
tumor microenvironment (TME) (1).

The TME can be broadly classified into cellular and non-
cellular components. The major cellular components include
HSCs, fibroblasts, immune, and endothelial cells. These cell types
produce the non-cellular components of the tumor stroma,
including extracellular matrix (ECM) proteins, proteolytic
enzymes, growth factors, and inflammatory cytokines. The
non-cellular component of the tumor stroma regulates HCC
pathogenesis by influencing cancer signaling pathways in the
TME, tumor invasion, and metastasis (2). In these conditions,
HCC pathogenesis promotes the constant expression of pro-
inflammatory cytokines that outweigh the anti-inflammatory
response to drive fibrogenesis resulting in the progressive
buildup of fibrotic tissue, cirrhosis, and progression to HCC
(3). Simultaneously, T-cell tolerance develops in the presence of a
reduction in CD4+ effector T cells and an increase in T reg cells
and T-cell exhaustion in the face of upregulated KCs and
elevated IL-10/TGF-b (Table 1).

Despite the approval of a range of FDA-approved drugs for
the treatment of HCC, the results have been disappointing and
survival time has only been modestly extended. Innovative
developments in immunotherapy, however, have improved the
probability of developing a successful treatment for advanced
HCC. In this review article, we summarize the roles of specific
resident immune cell subsets and their pathways in HCC
pathogenesis to outline potential new biomarkers of disease
and therapy options.
RESIDENT MYELOID IMMUNE CELLS IN
THE LIVER

Macrophages
Macrophages are an umbrella term for a diverse group of
phagocytic cells (4). Hepatic macrophages are the first line of
defense against pathogens, and this group of non-parenchymal
cells consists mainly of resident and non-resident macrophages.
Liver-resident macrophages that reside in the space of Disse
consist of Kupffer cells (KCs) and monocytes that play a crucial
role in chronic liver inflammation and the TME. Macrophages
Frontiers in Oncology | www.frontiersin.org 2
abundantly infiltrate the HCC microenvironment and tumor-
associated macrophages (TAMs) promote tumorigenesis by
regulating the immune responses to HCC cells and secreting
various cytokines (5, 6) that promote ECM development and
angiogenesis in tumorigenesis (7). Macrophages include two
distinct polarization phenotypes, namely, M1 and M2
macrophages, that are triggered by their response to different
microenvironments. M1 macrophages exert a cytotoxic function
by releasing IL-1a, IL-1b, IL-12, IL-18, iNOS, and TNF-a, which
are induced by LPS, IFN-g, and GM-CSF. Conversely, M2
macrophages exert anti-inflammatory activities by expressing
low levels of IL-12 and high levels of IL-10, arginase 1 and PD-
L1, which are induced by IL-4, IL-10, IL-13, M-CSF, and
helminth (5).

Monocyte-derived macrophages (MoMfs) are derived from
monocytes that are synthesized from hematopoietic stem cells
(HSCs) in the bone marrow and enter the liver via the
bloodstream (8). MoMfs can also be classified as Ly-6Chigh and
Ly-6Clow monocytes. Ly-6Chigh monocytes play an essential role in
initiating HSC activation through secreting high levels of CCR2 (9)
while the accumulation of Ly-6Clow monocytes attenuates liver
fibrosis (10). Targeting CCR2 expression, therefore, has been
demonstrated as a feasible therapeutic intervention (11).
Interestingly, CD14+CD16− monocytes in humans correlate with
Ly6Chigh monocytes in mice and are associated with
Ly6Clow monocytes in mice (12).

Glucose homeostasis, which is mainly controlled by the liver,
is vital for the energy demand of human organs and is partly
mediated by SUV39H1, which makes it a potential target for
therapy interventions (13). The importance of modulating
glucose homeostasis is emphasized by its role in the promotion
of inflammatory cytokines in macrophages (14).

Tumor-activated macrophages (TAMs) are associated with
poor prognosis, as are two separate genes in TAM-like
signatures, SLC40A1 and GPNMB (15). Therefore, TAMs that
target the oncogenic expression of Wnt2b offer an exciting
potential therapeutic strategy in HCC immunotherapy (16). In
addition, Miz1 is a tumor suppressor that limits the ability of
tumor hepatocytes to activate tumor-infiltrating macrophages
and drive inflammation. Miz1 expression in HCC is negatively
correlated with the phosphorylation of RelA and MTDH, as well
as poorer overall survival and higher recurrence rates (17).
Targeting the Miz1–MTDH–RelA axis, therefore, may also
provide a potential therapeutic strategy for HCC. HOMER3-
AS1 also drives HCC progression by regulating the behavior of
tumor cells and macrophages, and HOMER3-AS1 may be
another promising prognostic and therapeutic target for HCC
(18) (Figure 1). Finally, TAM-elevated CCL2 levels are
associated with reduced survival in HCC patients, thus
demonstrating a new potential CCL2-targeted therapy for
HCC (19).

Notch blockade impedes the differentiation of moTAMs but
upregulates the Wnt/b-catenin signaling pathway to promote
KclTAM proliferation and tumor-promoting cytokine production
during hepatocarcinogenesis (20). CD74 is an independent
predictor of HCC prognosis and CD74+ macrophages are closely
associated with immunoreactive TME with CD8+ CTL function.
TABLE 1 | Expression of innate and adaptive immune cells.

Immune cells Expression in HCC

CD8+ T cells
CD4+ effector T cells
Treg cells
B cells
KCs or monocytes
NKT cells
NK cells
HSCs
DCs
Neutrophils

Dysregulated up/down
Dysregulated up/down
Upregulated
Dysregulated up/down
Upregulated
Downregulated
Downregulated
Upregulated
Upregulated
Upregulated
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Therefore, CD74 can be used as a predictive biomarker and
potential therapeutic target for HCC (21).

Kupffer Cells
KCs are tissue macrophages located in the lumen of the hepatic
sinusoids. They are important members of the innate and
adaptive immune systems. As antigen-presenting cells, KCs
bridge the gap between the innate and adaptive immune
systems. Following their activation by danger signals, KCs
modulate inflammation and recruit immune cells, including
large numbers of monocytes to the liver. KCs are a specific
type of macrophage, and a combination of KCs and monocytes is
involved in inflammation and wound healing by adjusting their
phenotypes according to local signals (22). KCs in the liver act as
sentinel cells to capture antigens and pathogens to maintain liver
tolerance. Recruitment of macrophages is highly bactericidal and
is a response to liver damage caused by acute inflammation,
playing a key role in rapid infection control. Thus, the KCs that
reside in the liver and the macrophages that they recruit are
functionally different (23). Their constitutive ability reflects the
potential of preserving tolerance of KCs in homeostasis by
secreting IL-10, which can be stimulated in the presence of
lipopolysaccharides (LPS). Under LPS challenges, IL-10,
secreted by KCs plays a critical role in maintaining liver
homeostasis (24), which involves a dynamic balance between
inflammatory substances initiated by KCs and immune
regulatory molecules. If this balance is broken, liver injury
rises (25).

SNHG20 induces hepatic KC M2 polarization, through
activation of STAT6, to promote the progression of NAFLD to
Frontiers in Oncology | www.frontiersin.org 3
HCC (26). Therefore, silencing SNHG20 expression could delay the
progression of NAFLD to HCC. Upregulation of FTX inhibits the
conversion of NAFLD to HCC by promoting M1 polarization of
KC and provokes another effective target for the treatment of
NAFLD-HCC (27). Taking an RNAi-based approach, microRNA-
15a/16-1 attenuates immunosuppression by disrupting CCL22-
mediated communication between KCs and Tregs, thus
representing an additional potential immunotherapy approach for
HCC (28).

Dendritic Cells
DCs are antigen-presenting cells that not only participate in the
intrinsic immune response but also serve as a bridge between
intrinsic and adaptive immunity. DCs recognize and ingest
exogenous antigens, present them to immature T cells and
induce T-cell activation and proliferation. The unique DC
compartment in the liver contains multiple DC subpopulations
that secrete type I interferons, regulate NK cell activity, and
induce antiviral immune responses (29). DCs also play an
essential role in regulating the microenvironment by capturing
and presenting antigens to activate effector cells in the immune
system. Hepatic DCs also interact with CD4+ T cells during liver
injury and tolerogenic DCs in the liver suppress the activation
and proliferation of liver effective T cells to reduce the I/R injury
(30). It has been demonstrated that a subset of human
CD14+CTLA-4+ DCs can suppress CD4+ T cells by secreting
IL-10 and IDO (indoleamine-2,3- dioxygenase) (31). DC-derived
IDO is vital for the function of the immune regulating ability of
liver-resident DCs and IFN-g or low-level LPS is the main
upstream activator that enhances the IDO signal (32).
FIGURE 1 | Innate immune response in HCC-BM. In HCC pathogenesis, hepatic stellate cells (HSCs) drive fibrogenesis by promoting extracellular matrix (ECM), as
well as directly influencing proliferation by expressing pro-inflammatory cytokines like interleukin-6 (IL-6) and hepatocyte growth factor (HGF). HSCs also express the
glycoprotein CD44v3 that promotes cell migration and invasion in HCC. Natural killer T (NKT) cells also promote fibrogenesis while neutrophils express vascular
endothelial growth factor (VEGF) to promote angiogenesis and proliferation. Neutrophils also activate monocytes that can both repress HCC by expressing
interferon-gamma (IFN-g) and promote HCC by expressing interleukin-10 (IL-10). Kupffer cells (KCs) also play a crucial role in HCC pathogenesis by promoting
monocytes by expressing C-C motive chemokine ligand-2 (CCL2), which acts as a monocyte attracting protein. KCs also express damage-associated molecular
pattern molecules (DAMPs) and are activated by HSC. Expression of histamine (HA) and epidermal growth factor (EGF), as well as HCC expression of reactive
oxygen species (ROS) and hepatocyte growth factor (HGF). However, KC expression is modulated by myeloid-derived suppressor cells (MDSCs).
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Importantly, IL-6-mediated STAT3 activation is necessary for
the DC differentiation of IDO-producing regulatory DCs in the
liver. In addition, foreign DNA and HMGB1 immune complexes
also activate liver-resident DCs via interacting with the receptors
of TLR9 and RAGE (33).

Hypoxia-inducible factor 1-a (HIF-1a) transcriptionally
upregulates the expression of the ectonucleotidases CD39 and
CD73 in HCC cells and induces the production of extracellular
adenosine (eADO) that significantly promotes pDC recruitment
into tumors via the adenosine A1 receptor (ADORA1). High-
density tumor-infiltrating pDCs are associated with poor
prognosis in HCC patients offering a potential role for
targeting pDC recruitment as a potential adjuvant
immunotherapy for HCC (34). Intratumor pDCs may promote
HCC progression and recurrence through induction of immune
tolerance by Treg cells and an inflammatory TME of IL-17+ cells.
Targeting anti-immune responses induced by TA-pDCs,
therefore, may become an additional new strategy for the
clinical treatment of HCC (35). In addition, CD40L co-
stimulation could also provide a promising tool for enhancing
DC immunotherapy in liver cancer (36).
LIVER LYMPHOID IMMUNE CELL
POPULATIONS

T Cells
T cells occupy a central position in the adaptive immune
response. Mature T cells are divided into CD4+ T cells and
Frontiers in Oncology | www.frontiersin.org 4
CD8+ T cells, which are mainly involved in the transduction of
T-cell activation signals (Figure 2). CD4+ T cells and CD8+ T
cells are crucial mediators of the intrahepatic antiviral immune
response. Liver parenchymal and non-parenchymal cells protect
against the tolerogenic environment by suppressing T-cell
responses (37, 38). This mediation commonly leads to the
balance between immune response and tolerance under steady-
state conditions. Liver injury mediated signals, though, may
override the tolerance and induce immune effector cellular
activation. Upregulation of ICAM-1, VCAM-1, and VAP-1
and other adhesion molecules are crucial factors that induce
the activation of T cells (39–42). Interestingly, TGF-b is essential
for the survival and development of T-cell subsets and could be
reverted by silencing SUV39H1. SUV39H1 inhibits TCR-
mediated IL-2 transcription via the TGF-b-Smad pathway.
Knockdown of SUV39H1 partially blocked TGF-b-mediated
IL-2 inhibition; thus, SUV39H1 may become a new target for
autoimmune disease therapy (43). SUV39H1-deficient Th2 cells
express Th1 characteristic genes, and intervention of SUV39H1
may have a therapeutic effect in Th2 cell-mediated inflammatory
diseases (44).

In another study, it was demonstrated that norisoboldine
downregulated the glycolytic process of CD4+ T cells under
hypoxic conditions, reduced NAD+ and SIRT1 levels,
promoted ubiquitin-proteasomal degradation of SUV39H1
protein, and inhibited the enrichment of H3K9me3 in the
Foxp3 promoter region of CD4+ T cells, thereby enhancing
Treg polarization (45). Since Th1, Th2, and Treg cells are
essential for liver immunology, the SUV39H1 network needs
to be further investigated.
FIGURE 2 | Adaptive immune response in HCC-BM. CD8+ T cells are considered the primary anti-cancer cells in HCC pathogenesis but their function is modulated
by both the TME and the innate immune system. CD8+ T cells are modulated by regulatory T cells (T-reg cells) that express interleukin 10 (IL-10); T-reg cells can also
promote the expression of transforming growth factor beta (TGF-B), which promotes HCC. Regulatory B cells (B-reg cells) can also directly promote HCC by
expressing IL-10 or modulating CD8+ T-cell expression. HCC tumors can express programmed death ligand-1 (PD-L1) and galactin-9 (GAL-9) to repress CD8+ T
cells that can also be repressed by liver sinusoidal endothelial cells (LSECs) that can express PD-L1 and dendritic cells (DCs) that express programmed cell death
protein 1 (PD-1). Natural killer (NK) cells can repress both CD8+ T cells and HCC pathogenesis.
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The relationship between the liver and Treg cells under
various pathophysiological conditions is being gradually
revealed in recent years. KCs can induce Treg cells via the
secretion of prostaglandins (PG) E2 and 15d-PGJ2 (46, 47). In
another study, pre-treatment of KCs by IFN-g indicated an
upregulation of the enzyme IDO in vitro (48). Under
pathological conditions, the strong immunosuppressive ability
of Treg can control liver inflammation, reduce liver damage, and
regulate immune tolerance during liver transplantation.
However, the Treg cell’s ability to suppress the immune
response may also lead to chronic viral hepatitis and speed up
the growth of tumors by helping the tumors evade immune
response (49).

Natural Killer T Cells
NKT cells are a particular subset of T cells with both T-cell
receptors (TCRs) and NK receptors on the cell surface. NKT cells
can produce a large number of cytokines and induce the same
cytotoxic effect as NK cells. Liver sinusoidal endothelial cells
(LSECs) and KCs can secrete CXCL6 that promotes the homing
of CXCR6+ NKT cells (50, 51). Liver dendritic cells (DCs) also
interact and activate patrolling NKT cells by expressing IL-4 and
IFN-g through IL-12 (52, 53).

The nuclear factor TOX promotes CD8+ T-cell depletion in
HCC by regulating the intracellular recycling of PD-1.
Downregulation of TOX expression in CD8+ T cells has a
synergistic effect with anti-PD-1 treatment. Thus, TOX may be
a promising target for reversing T-cell depletion and enhancing
anti-tumor immunity (54). Moreover, 4-1BB co-stimulation
further enhances T-cell activation after PD-1 blockade, and
immunotherapy targeting co-stimulatory receptor 4-1BB, in
combination with anti-PD-1 therapy, may be an effective
therapeutic strategy (55).

Innate Lymphoid Cells
ILCs are vital in maintaining metabolic balance and act as an
anti-infection immune response. The ILC family includes ILC1,
which mainly secretes IFN-g; ILC2, which primarily secretes IL-
5, IL-9, and IL-13; and ILC3, which mainly expresses IL-22 and
IL-17 (56). In the liver, ILC1 reduces the severity of acute liver
injury by regulating Bcl-xL expression by hepatocytes (33) while
ILC2 controls liver fibrosis and tissue repair by interacting with
macrophages following injury (57, 58). A human experiment
study showed that ILC3 promoted fibrosis by expressing IL-17
and IL-22 (59) and that the tumor cytokine microenvironment
controls the composition of ILC and the prognosis of HCC. In
addition, patients with a high ILC2/ILC1 ratio that express IL-33
in their tumors promote the production of ILC2 and induce an
increase in CD8+ T cells and a decrease in regulatory T cells
(Treg) in tumors, resulting in improved patient survival. Thus,
modulation of the cytokine gradient of ILC may enhance the
antitumor immune response in HCC (60). In other studies, ILC3,
which lacks the natural cytotoxic trigger receptor (NCR-ILC3),
promotes HCC development in response to interleukin 23 (IL-
23). Furthermore, NCR-ILC3 initiates IL-17 production in
response to IL-23 stimulation and directly suppresses CD8+ T-
Frontiers in Oncology | www.frontiersin.org 5
cell immunity by promoting lymphocyte apoptosis and limiting
their proliferation (61). Thus, NCR-ILC3 should also be
considered a target for future tumor immunotherapy.

Natural Killer Cells
NK cells are essential liver-resident lymphocytes in the innate
immune system. The phenotypes/functions of NK cells in the
liver are different from those of peripheral circulation NK cells,
containing subsets with tissue-resident characteristics to resist
viral infection and tumor immune surveillance. NK cell
phenotypes are altered and dysfunctional in the disease
environment, indicating that NK cells are essential in
mediating the immunology of the liver under steady-state
conditions. Liver-resident NK (LR-NK) cells also play a crucial
role in liver immune homeostasis maintenance. LR-NK cells co-
locate with CD4+ T cells and can significantly suppress T-cell
proliferation and function. In contrast, NK cells from the
circulation system do not have this ability (62). Recently
published data also indicated that liver-resident NK cells
suppressed T cells’ antiviral ability through controlling PD-1/
PD-L1 signaling (63).

Multiple studies have investigated various signaling pathways
influencing NK expression. SIRT2, for instance, may enhance the
tumor-killing effect of NK cells by activating the ERK1/2 and
p38MAPK signaling pathways and is potentially a new
therapeutic target for immunotherapy of liver cancer (64). In
another study, Glypian-3 (GPC3) was shown to be a suitable
target for Chimeric antigen receptor (CAR) therapy in HCC, and
therapeutic approaches using GPC3-targeted antibodies or
peptide vaccines are safe (65). Patients with high CD96
expression in tumors have a poor clinical prognosis, and the
blockade of CD96–CD155 interaction or TGF-b1 restores NK
cell antitumor immunity by reversing NK cell depletion (66).
Interestingly, the expression of failure-associated checkpoint
molecules such as PD-1, CD96, and TIGIT on CD49a+ NK
cells within the tumor is upregulated, allowing tumor cells to
escape from immune surveillance, and CD49a+ NK cell
accumulation in liver tumor tissue is associated with disease
progression and poor prognosis (67). In addition, blocking the
inhibitory receptors NKG2A, TIGIT, LAG3, or KIR, expressed
on NK cells with antibodies, is a potential therapeutic strategy
(68). Finally, micro-RNA like miR-561-5p promotes HCC
metastasis by inhibiting its target CX3CL1, thereby blocking
NK cell recruitment and infiltration. One study demonstrated
that miR-561-5p/CX3CL1/CX3CR1

+ components of the NK cell
axis are potential immunotherapeutic targets in HCC (69).

B Cells
B cells not only mediate humoral immune responses through
antibody production but also present antigens and participate in
immune regulation. However, the role of tumor-infiltrating B
cells (TIBs) remains controversial. Experimental data using mice
deficient for B cells [Igh6(-/-), mMT] and data on mRNA
expression in human HCC suggest that T cells prevent initial
tumor formation, while B cells critically limit the growth of
established tumors (70). In addition, the number of TIBs in HCC
July 2022 | Volume 12 | Article 931995
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correlates with T cells and tumor-infiltrating T- and B-cell
density correlates with high survival rates in HCC (71). The
density of TIBs also correlates with the activation of bothCD8+ T
and CD56+ NK cells intratumorally, which may lead to an
enhanced local antitumor immune response (71). The critical
role of T-cell and B-cell interactions in cancer progression
provides new ideas for immunotherapy. In particular, CD40 is
a co-stimulatory molecule expressed on B cells that activates T
cells and B cells when linked to CD40 ligands, making CD40 a
promising target for immunotherapy (1).

B-cell-mediated IL-10 expression is known to suppress CD4+

T cell proinflammatory cytokine expressions, such as TNF-a,
IFN-g, and IL-17; inhibit CD8+ T-cell cytotoxicity; and promote
Treg cell differentiation (72). The increase of IL-10-expressing B
cells could contribute to the immune inhibition in the liver
microenvironment (73) and TLR-2 and TLR-9 agonists were
shown to increase IL-10 production in B cells (74). In addition,
the presence of IgA+ plasma cells expressing PD-L1 and IL-10 in
the tumor environment was associated with poor T-cell
immunity in human liver cancers (75). Recently, it was found
that GABA secreted by B cells promotes the differentiation of
monocytes into anti-inflammatory macrophages, which secrete
IL-10 and suppress the anti-tumor response of CD8+ T cells (76).
IMMUNE-REGULATING LIVER
NON-HEMATOPOIETIC CELLS

Liver Sinusoidal Endothelial Cells
In the liver, up to 50% of the non-parenchymal cells are LSECs.
LSECs are interrelated with the apoptosis of activated T cells and
affect the function of DCs in several ways. LSECs are located in
an ideal anatomical position that can absorb exogenous antigens
efficiently and rapidly and their expression eventually promotes
immune tolerance to a specific antigen (77). The space of Disse is
a narrow space of approximately 0.4 mm between LSECs and
hepatocytes, which is in continuity with the sinusoidal lumen.
Stellate cells are found in the space of Disse, while KCs and
intrahepatic lymphocytes are arranged in the lumen of the
hepatic sinusoids. The slow blood flow in the hepatic sinusoids
and the unique structure of LSECs facilitate prolonged contact
between lymphocytes and antigen-presenting cells and promote
lymphocyte extravasation. In addition, hepatocytes and LSECs
secrete the chemokine CXCL9 to recruit lymphocytes into the
liver (78). Similar to DCs, LSECs are crucial in receptor-mediated
endocytosis and/or phagocytosis, antigen processing and
presentation (78). Human LSECs express ICAM-1, TNF a and
IFN-g, and induce high expression of MHC-II, CD40, ICAM-1,
and VCAM-1. LSECs can also activate the interaction between
hepatic sinusoidal endothelial cells and immune cells. Under
normal circumstances, hepatic sinusoidal endothelial cells will
trigger an anti-inflammatory response after antigen presentation
to create a self-balanced environment. KLF2-NO signaling in
LSECs can also inhibit tumor progression by inducing CXCL16
overexpression and recruiting NKT cells (79). Finally, the
overexpression of PD-L1 by LSECs inhibits CD8+ T-cell
activation, leading to a poor prognosis of HCC (77).
Frontiers in Oncology | www.frontiersin.org 6
Hepatocytes
Hepatocytes, which express a wide array of innate immune
receptors, account for 90% of all liver cells. With the immune
receptors, they play an irreplaceable role in metabolism, protein
production, toxin neutralization, pathogen detection, and the
host immune response. Hepatocytes express toll-like receptors
(TLRs) that respond to TLR2 and TLR4 ligands (80), as well as
act as antigen-presenting cells to naive T cells by physically
interacting in an ICAM-1/MHC-dependent pathway (81).
Hepatocytes are responsible for the production of most of the
acute phase proteins and their complement components that are
the first line of defense against pathogens (82).

AXIN1 is a negative regulator of the Wnt/b-linked protein
signaling pathway. AXIN1 mutant HCC induces the Notch and
YAP pathways, and these pathways also provide new therapeutic
targets for AXIN1 mutant HCC (83). Finally, siRNA-mediated
transient GPC3 silencing inhibits the invasion and migration of
hepatocellular carcinoma cells. Therefore, GPC3 can be
investigated as an immunotherapeutic target for HCC (84).

Hepatic Stellate Cells
HSCs exist in the space of Disse and account for 30% of non-
parenchymal cells. In normal liver conditions, HSCs are at rest and
have a low ability to synthesize collagen and their primary function is
to store retinoids. TLR4 and TLR9 are expressed in HSCs (85) and
TLR4 directly stimulates HSCs to secrete chemokines (CCL2, CCL3,
andCCL4), thus exhibiting pro-inflammatory features. Interestingly,
TLR9 signaling enhances collagen production in HSCs but inhibits
HSCmigration to regulate liverfibrosis. In addition, a series of related
transcription factorsmaybe involved in the formationof liverfibrosis
through different mechanisms (86, 87). For example, the c-Abl-
MRTF-A positive feedback loop contributes to HSC activation and
liver fibrosis, andMKL1 interacts with AP-1 and SMAD3 to activate
CTGF transcription to promote HSC activation in a non-
autonomous fashion (88, 89).

GDF15 is an important mediator in the TME linking HSCs and
hepatic tumorcells, topromote theprogressionofHCC.Therefore, the
anti-GDF15neutralizingantibodymaybeanovel therapeuticagent for
patients withHCC (90). HSC-induced N-methyltransferase (NNMT)
promotes HCC cell invasion and tumor metastasis by enhancing the
expression of CD44v3, making it a promising prognostic biomarker
and therapeutic target forHCC (91).HSCs promoteMDSCmigration
via the SDF-1/CXCR4 axis, thereby promoting tumor progression
(92). In this regard, themiR-1246-RORa-Wnt/b-cateninaxis isanovel
pathway for HSCs to promote HCC progression, and thus miR-1246
and RORa may become new therapeutic targets for HCC (93). The
Sox9/INHBB axis also promotes the growth and metastasis of HCC
tumors in situ by activating HSCs in the TME, which may also be a
potential target for HCC therapy (94).
CROSS-TALK BETWEEN INNATE AND
ADAPTIVE IMMUNE SYSTEMS

In HCC pathogenesis, immune cells in both pathways are both
activated and repressed (see Table 1). In HCC progression
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leading to metastasis, the homeostatic cross-talk between the
innate and adaptive immune system is dysregulated in an
increasing manner (4). In general, CD8+ T cells are often
considered to be the main anti-cancer immune cells (95) and a
common feature is the subversion of their priming, which occurs
in three ways. This occurs via the repression of TCR interaction
with MHC class 1 peptides, the absence of co-stimulation of
other receptors (CD28), and the repression of cytokine signals
such as IL-12 IFN-1 (96).

Immune escape is also facilitated by dysfunction or a reduced
number of DCs that facilitate CD8+ T-cell priming (97). In
addition, NK interaction with DCs (cDC1) is essential to
promote their effectiveness and abundance (98). In the TME,
the stimulation of CCL2 often promotes the abundance of
monocytes that can act as a barrier to intratumoral penetration
of antigen-specific T cells that gather in the surrounding stroma
(99). Myeloid-derived suppressor cells (MDSCs) consist of
monocytes and neutrophils. In carcinogenesis, a wide range of
cancer-induced monocytes repress CD8+ T cells and IFN-g
(100), as well as promote Tregs to promote tumor growth.
Interestingly, monocytes can also promote NKs (101). Treg
stimulation also occurs via TAM-stimulated CCL2 (102), as
well as via TAM expression of PD-L1/2 to repress TCR/CTLs
to promote a strong immunosuppressive effect to illustrate the
cross-talk between TAMs and the adaptive immune system
(103). In another example of cross-talk, CD8+ T cells can also
be repressed by neutrophils in the metastasis stage (104). Treg
expression that is promoted by DCs (105) can also repress CTLs
and promote NK apoptosis (106, 107). Finally, Breg expression
that is promoted by B-cell production of IL-10 (108) can
promote CD4+ T-cell stimulation of FOXP3 Tregs (109).
DISCUSSION

Immune response in the liver incorporates a network of
lymphocytes to both respond to pathogens and injury, and
maintain homeostasis. Dysfunctional inflammatory mechanisms
may lead to liver injury, non-resolving hepatitis, and eventually
carcinogenesis. The function of hematopoietic progenitor cells may
decrease this inflammatory activity and maintain liver homeostasis
to protect from tissue damage and reduce infection and metastasis.
Frontiers in Oncology | www.frontiersin.org 7
Many other studies have defined the characteristics, function, and
mechanism of several other organ-specific immune cells including
skin, lung, and other tissue; however, limited attention has been
focused on the liver’s residential immune cells. Further studies,
using new technologies such as single-cell sequencing and mass
spectrometry streaming, may contribute to a more profound
understanding of liver-specific immunology to maintain
homeostasis, as well as respond to carcinogenesis. The limited
efficacy of immunotherapy to date for the treatment of HCC
requires the investigation of new immunogenic targets.
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