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ABSTRACT: We present a general framework for the
construction of a deep feedforward neural network (FFNN)
to predict distance and orientation dependent electronic
coupling elements in disordered molecular materials. An
evolutionary algorithm automatizes the selection of an optimal
architecture of the artificial neural network within a
predefined search space. Systematic guidance, beyond
minimizing the model error with stochastic gradient descent based backpropagation, is provided by simultaneous maximization
of a model fitness that takes into account additional physical properties, such as the field-dependent carrier mobility. As a
prototypical system, we consider hole transport in amorphous tris(8-hydroxyquinolinato)aluminum. Reference data for training
and validation is obtained from multiscale ab initio simulations, in which coupling elements are evaluated using density-
functional theory, for a system containing 4096 molecules. The Coulomb matrix representation is chosen to encode the explicit
molecular pair coordinates into a rotation and translation invariant feature set for the FFNN. The final optimized deep
feedforward neural network is tested for transport models without and with energetic disorder. It predicts electronic coupling
elements and mobilities in excellent agreement with the reference data. Such a FFNN is readily applicable to much larger
systems at negligible computational cost, providing a powerful surrogate model to overcome the size limitations of the ab initio
approach.

1. INTRODUCTION

Dynamics of electronic excitations drives the functionality of
molecular nanomaterials in many energy applications, e.g., in
organic photovoltaics, photocatalysis, thermoelectricity, or
energy storage. The dynamics is governed not only by the
chemical structure, architecture, or electronic structure of
molecular building blocks but also by the local and global
morphology of the materials and molecular interactions on the
mesoscale.1−3 It is essential to understand how elementary
dynamic processes, such as electron or energy transfer, emerge
from an interplay of morphology and electronic structure. Such
fundamental insight will eventually allow for controlling the
above processes and pave the way for a rational design of
molecular materials. While macroscale information can be
obtained experimentally, zooming into the electronic dynamics
at an (sub)atomic scale is nearly impossible.4

Computational modeling of, e.g., charge dynamics can
provide valuable insight in this situation. The Gaussian
disorder model and its various extensions5−8 have been used
to study general aspects of transport, such as temperature or
carrier density dependence.9,10 For material specificity, they
require information about the width of the density of states,
which is typically obtained by fitting to macroscale or device-
scale observables, for instance, a current−voltage curve. These

more descriptive models cannot provide detailed information
about underlying intermolecular processes.
In contrast, bottom-up simulations of charge and exciton

dynamics in large-scale morphologies aim to explicitly zoom in
to elementary charge transfer reactions at molecular level and
predict the mesoscale charge dynamics using multiscale
strategies which link quantum and supramolecular scales.11−13

Such approaches have shown a remarkable level of
predictiveness3,14−16 but come at the price of high computa-
tional costs. They typically involve the determination of
bimolecular electron transfer rates in explicit material
morphologies, which in turn requires the calculation of
intermolecular electronic coupling elements,17,18 or transfer
integrals, of the form

J Hij i j= ⟨Ψ| ̂ |Ψ⟩ (1)

where |Ψi⟩ and |Ψj⟩ are diabatic states of molecules i and j,
respectively, and Ĥ is the Hamiltonian of the coupled system.
Practical evaluation of eq 1 relies on quantum-mechanical
information about the relevant electronic states of the two
individual monomers, as well as of the dimer formed by them.
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Based on density-functional theory (DFT) the necessary
calculations for a morphology consisting of a few thousand
molecules of moderate size can consume several hundreds of
days of CPU time, even with techniques optimized for large-
scale systems. Many relevant materials or processes, e.g., the
system-size dependence of carrier mobility in dispersive
transport, realistic carrier densities, or disordered interfaces
in heterojunctions, can only be studied using significantly
larger systems that are currently not accessible to multiscale
models.
Surrogate stochastic models have been developed to

overcome some of these limitations.19,20 They represent the
molecular morphology by (random) point patterns and assign
coupling elements between them by drawing from distribu-
tions with distance-dependent means and standard deviations,
fitted to microscopic data. These models manage to reproduce,
e.g., the field-dependence of the mobility stochastically, i.e.,
averages over several realizations are required to obtain a
comparable behavior. While the generation of larger surrogate
systems is computationally inexpensive, information about the
molecular details is lost, and the models are not transferable to
interfaces or heterostructures.
In this paper, we develop an alternative surrogate model

which allows application to system sizes currently inaccessible
to the multiscale ab initio approach while retaining its
molecular level details. Focus is on removing the computa-
tional bottleneck associated with the explicit quantum-
mechanical evaluations of electronic couplings using eq 1
with the help of Machine Learning (ML). ML has attracted
considerable interest as a tool to save computational costs in
large scale calculations21 or in exploring chemical space, e.g., by
predicting material properties.22−25 Different models differ by
the representation of the molecular information (features) and
the choice of a suitable ML algorithm, and their combinations
have been optimized accordingly.23,26

For our goal of predicting electronic coupling elements, an
appropriate data representation must accurately take distance
and mutual orientations between two molecules of the same
type, as given by the explicit atomic coordinates, into account.
The machine learning algorithm must be capable of reliably
predicting values of Jij that can easily span several orders of
magnitude, in particular in amorphous molecular materials. In
this situation we turn to biologically inspired computational
models known as artificial neural networks (ANNs).27

However, the construction of an appropriate network
architecture is not trivial and may require a trial-and-error
approach. We deal with this problem in a systematic way by
using search algorithms such as evolutionary algorithms
(EA).28 The advantage of using an EA approach to
constructing a neural network is that it not only minimizes
the model error but is also capable of taking into account
additional physical principles providing systematic guidance to
designing architectures.
Specifically, we employ such an evolutionary method to

construct a multilayered (deep) feedforward neural network
(FFNN) for the prediction of electronic coupling elements
based on the Coulomb Matrix representation26 of molecular
orientations. As a prototypical system, we consider an
amorphous morphology of tris(8-hydroxyquinolinato)alumi-
num (Alq3). An ab initio model of hole transport explicitly
determined for a system containing 4096 molecules serves as a
reference for the training of the FFNN. The electric-field
dependence of the hole mobility is used as an additional fitness

parameter in the evolutionary algorithm. The final FFNN
model provides inexpensive predictions of Jij with which hole
mobilities are obtained in excellent agreement with the ab
initio data, both without and with energetic disorder. We
demonstrate that it is readily applicable to systems of larger
size containing 8192 and 32768 molecules, respectively.
This paper is organized as follows: In section 2, we briefly

recapitulate steps in the multiscale ab initio model to obtain
the reference data. Details about the data representation and
processing and the evolutionary approach for constructing the
feedforward neural network including the definition of its
fitness are given in section 3. Validation of the model and
prediction results are discussed in section 4. A brief summary
concludes the paper.

2. MULTISCALE AB INITIO MODEL
In what follows, we briefly summarize the steps of the
multiscale model of charge transport in disordered molecular
materials, needed to generate the ab initio reference for the
FFNN. More in-depth discussion of the procedures can be
found in ref 11. The starting point is the simulation of an
atomistic morphology using classical Molecular Dynamics
(MD). 4096 Alq3 molecules are arranged randomly in a cubic
box, which is then first equilibrated above the glass transition
temperature in an NpT ensemble at T = 700 K and p = 1 bar
and subsequently annealed to T = 300 K. The Berendsen
barostat29 with a time constant of 2.0 ps and the velocity
rescaling thermostat30 with a time constant of 0.5 ps are used
throughout. All calculations make use of an OPLS-based force
field specifically developed31 for Alq3 and are performed using
Gromacs.32

In the obtained room-temperature morphology, the centers
of mass of the molecules define the hopping sites for charge
carriers. Pairs of molecules for which any intermolecular
distance of the respective 8-hydroxyquinoline ligands is less
than 0.8 nm are added to a neighborlist of possible charge
transfer pairs. Transfer rates between two molecules i and j are
calculated within the high-temperature limit of nonadiabatic
transfer theory33 using the Marcus expression, which is given
by
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where ℏ is the reduced Planck constant, T is the temperature,
λij is the reorganization energy, kB is the Boltzmann’s constant,
ΔGij is the free energy difference between initial and final
states, and Jij is the electronic coupling element, as defined in
eq 1. A hole reorganization energy of 0.23 eV is obtained from
DFT calculations with the B3LYP functional34 and a triple-ζ
basis set.35 Site energies Ei are determined from a classical
atomistic model that takes into account the effects of local
electric fields and polarization in the morphology.36,37 Their
distribution is approximately Gaussian with σ = 0.20 eV. The
influence of an externally applied electric field F is added to the
site energy difference as ΔGij = ΔEij + ΔEij

ext = ΔEij + eFrij,
where rij is the distance vector between molecules i and j.
Electronic coupling elements are calculated using a dimer-
projection technique based on DFT18 with the Perdew−
Burke−Ernzerhof functional38 and the triple-ζ basis. All DFT
calculations are performed with the Orca software package,39

while the VOTCA package11,40 is used for all charge transport
related steps.
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The molecular centers of mass and the hopping rates
between the molecules can be interpreted as the vertices and
edges of a weighted directed graph. In a system with only one
charge carrier, the time evolution of the occupation
probabilities Pi is described by the Kolmogorov forward
equation (Master equation)

P
t

P P
d
d

i

j
j ji

j
i ij∑ ∑ω ω= −

(3)

However, in this work, we are interested in a system that is
in a steady state. This restriction allows us to write eq 3 as

P P Wp0 0
j

j ji
j

i ij∑ ∑ω ω− = ⇒ =
(4)

Here, the matrix W can be constructed from the Marcus
rates ωij. The field-dependent mobility μ(F) can be obtained
from steady state occupation probabilities via the relation

Pv r r F F( ) ( )
i j

j ji i j∑ ∑ ω μ⟨ ⟩ = − =
(5)

where ⟨v⟩ is the average velocity.

3. MACHINE LEARNING MODEL
3.1. Data Representation. Explicit structural information

on molecular pair geometries is extracted from MD simulations
and used to construct the features of the data set. Featurization
is the process of encoding molecules into vectors, where each
vector gets a label, in this case log10[(Jij/eV)

2].
Coupling elements between molecular pairs are translation

and rotation invariant, which is not accounted for in the plain
atom coordinates Ri. The Coulomb matrix (CM)23,26,41

representation is capable of capturing this invariance and is
used in the following to encode crucial information into the
data set’s features.
For every molecular pair the entries cij of the corresponding

Coulomb matrix C are computed according to
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where Zi is the nuclear charge of atom i. Figure 1 illustrates the
building blocks of the CM representation applied to a pair of
molecules. One obtains a symmetric matrix that consists of
four equally sized block matrices. The upper-right block

Figure 1. Visualization of a Coulomb matrix for molecular pairs. (a) The Coulomb matrix contains values corresponding to the inter- and
intramolecular electrostatic interactions. Lowest values (dark red) correspond to the relations of hydrogen atoms, whereas interactions among
heavy atoms of the ligands lead to values near 10 (yellow). (b) Schematic representation of how the arrangement of two Alq3 molecules is encoded
in specific regions of the upper right block of the CM.

Figure 2. Overview of the data flow from raw molecular dynamics information to a neural network input. (a) Explicit atomic coordinates of
molecular pairs is extracted from an MD snapshot. (b) A symmetric Coulomb matrix with dimension given by the sum of the number of atoms per
molecule N N( )A A

mol mol
2

1 2
+ is constructed. (c) To only keep relevant and nonredundant information in the vectorized form of the Coulomb matrix,

preprocessing techniques such as feature selection (upper triangle) and data scaling (to [0,1]) are introduced. (d) The final vectorized CM enters a
feedforward neural network with the hidden layers h1,...,h5 to predict the electronic coupling elements Jij

FFNN.
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indicates the intermolecular orientations, whereas the upper-
left and lower-right matrices represent the intramolecular
conformations.
Before being usable as input for the FFNN, the calculated

CMs must be preprocessed, as illustrated in Figure 2(b,c). This
step involves the removal of the lower triangular entries
including the diagonal elements and scaling of the values to the
interval [0,1]. Subsequent vectorization yields the instances of
the descriptor space as input to an artificial neural network.
3.2. Deep Feedforward Neural Networks and Evolu-

tionary Algorithms. Artificial neural networks consist of a
number of artificial neurons typically arranged as layers with
specific connectivity referred to as topology. Among the
ANNs, feed forward neural networks arrange a certain number
of consecutive layers of neurons where each neuron in each
layer is directionally connected to all neurons within the next
layer. The activation ai

m of neuron i in layer m is computed
from the activations of neurons in the m−1-th layer according
to

a f ai
m

j
ij
m m

j
m

0

1, 1
i

k

jjjjjjj
y

{

zzzzzzz∑ ν= ·
=

− −

(7)

where νi,j is the weight of the connection between the neurons,
and f is an activation functions. For our purposes this
activation function is given by a sigmoid function.
One of the conventional ways of training the FFNNs is the

backpropagation algorithm with stochastic gradient descent.
However, the number of layers and the number of neurons per
each layer should be defined before the training. These
parameters are referred to as hyperparameters and play an
important role in the performance of the networks. Although
there are some “rule of thumb” guidelines established based on
empirical studies, the selection of a proper set of hyper-
parameter settings may require a great deal of expert
knowledge and/or trial-and-error. This can be avoided by
search algorithms like Genetic Algorithms (GAs). GAs are
population based global search algorithms inspired by
biological evolution.28 The research field known as Neuro-
evolution employs evolutionary computing approaches to
optimize artificial neural networks.42 Adopting the terminology

from biology, the genetic material of a population of
individuals encodes parameters of the ANNs. The encoding
depends on the parameters of the ANNs to be optimized
(topology and/or weights).43,44 The workflow of such a
genetic algorithm is shown schematically in Figure 3. It starts
with randomly initializing a population of individuals (Figure
3(a)), where each individual is evaluated and assigned a fitness
value (Figure 3(b)) to measure its performance. The main part
of the algorithm performs selection, crossover, and mutation
operations aimed at iteratively improving the fitness values.
The selection operator (Figure 3(c)) selects the individuals
with better fitness values to construct a next generation of
individuals. One of the most commonly used selection
operators is roulette wheel selection, in which individuals are
selected with a probability proportional to their fitness values.
The stochasticity of this selection process may occasionally
cause the best individuals to disappear from the population. It
can be combined with the elitist selection scheme, which
selects the top best ranked individuals, such as n1 and n2 in
Figure 3(c), and transfers them unchanged directly to the next
generation. The crossover operator combines two individuals
selected by the roulette wheel operator (parents, n3 and n4 in
Figure 3(d)), to generate two new individuals (offspring, n′
and n″). In particular, the 1-point crossover operator selects,
with a probability of pc, a random point to copy two different
parts of two parents to generate offspring. Subsequently, a
mutation operator flips the bit value in components of the
binary representation of the offspring individuals randomly
with a small probability pm. Overall, the GA is run for a certain
number of iterations or until a satisfactory solution, defined,
e.g., by a threshold fitness value, is found.

3.3. Construction of a Deep FFNN for Prediction of
Electronic Coupling Elements. In this work, we use a
genetic algorithm to optimize the topology parameters (the
number of hidden layers and the number of neurons in each
hidden layer) of the feedforward neural networks. Each
individual ni ∈  in the population is represented as five
dimensional strings, where

n i i i( , ..., ) 0,50,100, ..., 1000j1 5= { ≔ | ∈ ≔ { }}

(8)

Figure 3. Flowchart of the evolutionary algorithm used for optimizing the deep FFNN. The initialization process consists of generating k = 30
arbitrary FFNN architectures {n1,...,nk}. (a) The weights of the networks are then optimized with a backpropagation algorithm. (b) For every
optimized network ni the predicted electronic coupling elements Jij

FFNN are used in eq 2 to determine the matrix W. After solving the stationary
Master eq (eq 4) and calculation of the field-dependent mobility, the fitness of the architectures is evaluated. (c) The architectures are then ordered
based on their fitnesses and selected according to the roulette wheel principle. (d) After applying the crossover and mutation operators, a new
generation of feedforward neural networks is generated, and the whole process is repeated until one of the stopping criteria is satisfied.
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which encodes an ANN topology. Therefore, the maximum
number of hidden layers a network can have is set to 5, and the
number of neurons each hidden layer is taken from the set of
21 discrete values. We limit the FFNN topologies in this
manner to reduce the search space and computational
complexity. Consequently, our genetic algorithm aims to find
the optimum model settings in 215 = 4084101 number of
possible networks.
The FFNNs are trained on a training data set using

backpropagation to minimize the error between the target
log10[(Jij

DFT/eV)2] (actual labels of the input data) and
predicted outputs log10[(Jij

FFNN/eV)2]. We use three distinct
snapshots extracted from different MD simulations for training
and validation. Each snapshot contains 4096 Alq3 molecules
with approximately 24000 pairs in the neighbor list as
described in section 2. The first snapshot is used to optimize
the weights of a chosen neural network, while the second
snapshot is used for selecting the neural network architectures
based on their fitness values. The third data set is used to
analyze the performance of the constructed final neural
network on completely unseen data.
The fitness value of a given feedforward neural network

architecture is determined by evaluating the mean squared
error of the difference between the mobility μFFNN and the
reference mobility μDFT
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where NF stands for the number of field values. For each |F| =
b·107 V/m with b ∈ {3,4,5,7,9}, the mobility is obtained as an
average over ±x, ±y, ±z directions of the applied field.
Our GA starts with randomly initializing 30 individuals and

evaluating the fitness of the constructed FFNNs, respectively,
as illustrated in Figure 3. We use the roulette wheel selection
with the elitism of 2= and standard 1-point crossover
operators with the probability of pc = 1. The mutation operator
selects a random component of a string with a probability pm =
0.1 and replaces it with a randomly selected value from . The
probability of selecting 0 ∈ for the mutation is 0.3, and the
rest of the values share 0.7 with equal probabilities to
encourage smaller networks. The GA was run until there is
no fitness improvement for 20 generations.

4. RESULTS

In Figure 4 we show the calculated field-dependence of the
hole mobility in Alq3 for various different models (a) without
(μ(ΔEij = 0)) and (b) with (μ(ΔEij)) energetic disorder taken
into account in eq 2. The data indicated by the orange squares
has been obtained by the ab initio model as described in
section 2 and serves as the reference for the FFNN model.
In particular, we chose the disorder-free case as in Figure

4(a) in the evaluation of the fitness (eq 9) during the
evolutionary FFNN optimization. Here, the rates and
concomitantly the mobility are solely determined by the
topological connectivity of the charge transporting network
given by the electronic coupling elements.45 The reference
mobility has a minimally negative slope with increasing field
strength, which is attributed to the system being in the inverted
Marcus regime for ΔEij = 0. Light green triangles show
μFFNN(F) as it results from two individuals in the first
generation FFNN, with vastly different performances. The first

one yields completely unphysical behavior with mobilities on
the order of 104 cm2/(V s), about 5 orders of magnitude larger
than the ab initio reference. In comparison, the second model
is much closer but underestimates μDFT(F) consistently by
about a factor of 10. While this agreement appears acceptable,
a closer inspection of Figure 5(a) reveals a low fitness value (Ξ
= 1.5 × 103 V2 s2/cm4). The predicted log10[(J

FFNN/eV)2]
shows a MAE of 1.80 and is only weakly correlated to the DFT
reference, as can be seen in Figure 5(c). From this starting
point, the evolution of the FFNN results in an initially slowly
increasing fitness. Going through 25 generations the fitness

Figure 4. Field-dependent hole mobility (Poole-Frenkel plot) of Alq3,
for systems containing 4096, 8192, and 32768 molecules. In (a) the
mobility μ for the disorder-free case, i.e. ΔEij = 0, is given, whereas
(b) illustrates the mobility μ for the case with disorder, i.e., ΔEij ≠ 0.

Figure 5. (a) Fitness evolution of the best performing feedforward
neural network in each generation, showing a slow growth followed by
rapid improvement reminiscent of punctuated equilibrium. (b)
Correlation of predicted and reference data for the coupling elements
of the final optimal FFNN model, compared to (c) the one in the first
generation.
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only improves by a factor of 2. This slow growth is followed by
a rapid fitness evolution that takes place within only six
generations, after which it stops quickly, and the process ends
up in an equilibrium situation. Such a phenomenon of
instantaneous change is not unique to our evolutionary
FFNN, and it has also been observed in evolutionary biology
with similar patterns in the fossil records known as punctuated
equilibrium.46 The last generation FFNN consists of two layers
with 800 and 550 neurons, respectively, and is characterized by
a fitness value of Ξ = 2 × 106 V2 s2/cm4, an improvement of 3
orders of magnitude over the first model. This is also reflected
by the obtained hole mobility (circles) in Figure 4(a), which is
practically indistinguishable from the ab initio reference, see
also Table 1. The MAE is reduced to 0.55, and the correlation
in Figure 5(b) is clearly improved.
With a FFNN model at hand that shows good characteristics

and performs well for the disorder-free case, we now evaluate
its applicability in the realistic scenario with energetic disorder
taken into account. This constitutes an important test for the
FFNN model of the electronic coupling elements. While
optimization of the model based on the disorder-free case
should, ideally, predict the connectivity of the charge
transporting network accurately, it does so for a completely
flat energy landscape. It cannot be excluded a priori that
coupling elements that are below the percolation threshold (J2

< 4 × 10−7 eV2), and hence insignificant for μ(ΔEij = 0),
provide low-probability, but crucial, additional pathways to
avoid or escape low-energy regions (traps) in the ΔEij ≠ 0
case. With the large energetic disorder of σ = 0.20 eV the ab
initio reference model exhibits a mobility reduction of about 6
orders of magnitude, see orange squares in Figure 4(b), and a
noticeable positive field-dependence known as Poole-Frenkel
behavior with μ(F) = μ0 exp(αF). The FFNN model
reproduces this behavior extremely well, with an observed
maximum error of 5.0 × 10−9 cm2/(V s) and a MAE of 2.7 ×
10−9 cm2/(V s), which are both smaller than the average
standard error of the mean of μDFT of 5.4 × 10−9 cm2/(V s),
see Table 1. Poole-Frenkel slopes of αDFT = 4.2 × 10−3 (cm/
V)1/2 and αFFNN = 3.2 × 10−3 (cm/V)1/2 are in reasonable
agreement with each other, taking the bounds of the respective
errors of the individual mobility values as given in Table 1 into
account.
Based on this comparison, we conclude that the FFNN

provides very reliable predictions of electronic coupling
elements in Alq3 over a wide range of magnitudes taking
into account explicit details of molecular orientations in large-
scale morphologies. It also comes at a significantly reduced
computational cost compared to the ab initio model. For a
single frame containing N molecules and (on average) κN
hopping pairs, the total CPU time for the coupling elements is
TN = κNTcoupl, where Tcoupl is a typical CPU time per coupling
element. Using the DFT based method as described in section
2 consumes about Tcoupl = 20 min on one thread of an Intel(R)
Xeon(R) CPU E7-4830 v4 @ 2.00 GHz for Alq3. With κ ≈ 5.5,
one obtains T4096 = 312 d. These calculations are however
easily parallelizable in high-throughput settings, so that
transport simulations can be performed within an acceptable
total simulation time of, e.g., 1 week. For the 4096 molecule
system of Alq3, this can be achieved by using about 45 threads
simultaneously. It is apparent that due to the linear scaling of
TN with the number of molecules, studying even slightly larger
systems (which might be necessary when transport properties
are system-size dependent or to investigate realistic carrier T
ab
le

1.
H
ol
e
M
ob

ili
ti
es

(i
n
cm

2 /
(V

s)
)
of

A
lq

3
fo
r
D
iff
er
en
t
V
al
ue
s
of

E
xt
er
na
lly

A
pp

lie
d
E
le
ct
ri
c
Fi
el
da

3
×
10

−
7
V
/m

4
×
10

−
7
V
/m

5
×
10

−
7
V
/m

7
×
10

−
7
V
/m

9
×
10

−
7
V
/m

w
ith

ou
t
di
so
rd
er

Δ
E i

j
=
0

40
96

D
FT

4.
7
×
10

−
2
±

2.
1
×
10

−
4

4.
6
×
10

−
2
±

1.
7
×
10

−
4

4.
4
×
10

−
2
±

2.
0
×
10

−
4

4.
2
×
10

−
2
±

2.
1
×
10

−
4

4.
1
×
10

−
2
±

4.
3
×
10

−
4

40
96

FF
N
N

4.
6
×
10

−
2
±

1.
8
×
10

−
4

4.
5
×
10

−
2
±

2.
1
×
10

−
4

4.
3
×
10

−
2
±

2.
5
×
10

−
4

4.
0
×
10

−
2
±

3.
0
×
10

−
4

3.
7
×
10

−
2
±

4.
3
×
10

−
4

81
92

FF
N
N

3.
9
×
10

−
2
±

3.
6
×
10

−
4

3.
8
×
10

−
2
±

3.
8
×
10

−
4

3.
6
×
10

−
2
±

4.
0
×
10

−
4

3.
3
×
10

−
2
±

4.
3
×
10

−
4

3.
0
×
10

−
2
±

4.
4
×
10

−
4

32
76
9

FF
N
N

3.
0
×
10

−
2
±

5.
1
×
10

−
5

2.
9
×
10

−
2
±

6.
0
×
10

−
5

2.
8
×
10

−
2
±

6.
7
×
10

−
5

2.
6
×
10

−
2
±

7.
6
×
10

−
5

2.
4
×
10

−
2
±

7.
8
×
10

−
5

w
ith

di
so
rd
er

Δ
E i

j≠
0

40
96

D
FT

8.
2
×
10

−
9
±

1.
5
×
10

−
9

1.
1
×
10

−
8
±

2.
3
×
10

−
9

1.
5
×
10

−
8
±

4.
4
×
10

−
9

3.
0
×
10

−
8
±

8.
8
×
10

−
9

4.
1
×
10

−
8
±

9.
8
×
10

−
9

40
96

FF
N
N

1.
0
×
10

−
8
±

4.
6
×
10

−
10

1.
3
×
10

−
8
±

1.
2
×
10

−
9

1.
7
×
10

−
8
±

1.
9
×
10

−
9

2.
5
×
10

−
8
±

2.
6
×
10

−
9

3.
6
×
10

−
8
±

4.
2
×
10

−
9

81
92

FF
N
N

9.
8
×
10

−
10
±

4.
6
×
10

−
10

2.
1
×
10

−
9
±

1.
2
×
10

−
9

3.
6
×
10

−
9
±

1.
9
×
10

−
9

7.
8
×
10

−
9
±

2.
6
×
10

−
9

1.
5
×
10

−
8
±

4.
2
×
10

−
9

32
76
9

FF
N
N

2.
1
×
10

−
10
±

1.
2
×
10

−
10

3.
2
×
10

−
10
±

1.
7
×
10

−
10

4.
7
×
10

−
10
±

2.
8
×
10

−
10

1.
5
×
10

−
9
±

1.
1
×
10

−
9

4.
3
×
10

−
9
±

3.
0
×
10

−
9

a
R
es
ul
ts
fo
r
ca
se
s
bo
th

w
ith

ou
t
(Δ

E i
j
=
0)

an
d
w
ith

en
er
ge
tic

di
so
rd
er

(Δ
E i

j
≠
0)

ar
e
gi
ve
n
fo
r
th
e
th
re
e
di
ff
er
en
t
sy
st
em

si
ze
s
co
ns
id
er
ed
,a
s
ob
ta
in
ed

fr
om

D
FT

an
d
FF

N
N

ba
se
d
co
up
lin
g
el
em

en
ts
,

re
sp
ec
tiv
el
y.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b01285
J. Chem. Theory Comput. 2019, 15, 1777−1784

1782

http://dx.doi.org/10.1021/acs.jctc.8b01285


concentrations) implies a linear increase in either total
simulation time or number of simultaneously used threads.
Note that we are not addressing issues related to memory or
storage. Compared to the cost of the DFT calculations of the
reference data, the cost for training the FFNN is small. Within
the search space, training of a single neural network, making
use of a Nvidia Titan Xp GPU (3840 CUDA cores running at
1.6 GHz), takes about 5 min. Solving the Master equation (eq
4) for fitness evaluation as part of the EA approach was
performed on a single CPU thread in a few seconds. The
complete training procedure as in Figure 5 takes in total about
3 days. With the trained FFNN at hand, the evaluation of a
coupling element is practically instantaneous, which removes
the above costs and restrictions of the ab initio model.
To demonstrate the applicability of the FFNN in this

context, we have also simulated Alq3morphologies containing
8192 and 32769 molecules, respectively, following the same
procedure as before, except for the calculation of the Jij

DFT,
which would have taken T8192 = 624 d and T32769 = 2496 d.
Applying the FFNN model, the hole mobilities are calculated,
and the results are shown in Figure 4 and in Table 1. In the
disorder-free case (Figure 4(a)), the mobility is as expected
practically independent of system size. With energetic disorder
taken into account, the situation in Figure 4(b) is markedly
different. Doubling the system size from 4096 to 8192
molecules lowers the mobility by about 1 order of magnitude,
while another quadrupling further reduces the mobility by the
same amount. Such a behavior is indicative of dispersive
transport47 and is related to the fact that the mean transport
energy of the charge carrier depends on the system size.
All in all, the FFNN constructed with the evolutionary

approach described in this work based on fitness evaluation in
the ΔEij = 0 case has not only proven to work well for the more
realistic, unseen ΔEij ≠ 0 simulation but also in application to
larger systems that are inaccessible to the standard ab initio
model.

5. SUMMARY
To summarize, we have presented a general framework for the
construction of a deep feedforward neural network to predict
electronic coupling elements. The final FFNN model
constructed for an amorphous organic semiconductor, tris(8-
hydroxyquinoline)aluminum, showed good agreement with ab
initio reference data with and without energetic disorder.
Additionally, we have shown that the final model is applicable
to larger systems, which makes the presented approach a
promising candidate to overcome system size limitations
inherent to computationally expensive multiscale approaches.
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