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Detection of the modular structure of biological networks is of interest to researchers

adopting a systems perspective for the analysis of omics data. Computational systems

biology has provided a rich array of methods for network clustering. To date, the

majority of approaches address this task through a network node classification based on

topological or external quantifiable properties of network nodes. Conversely, numerical

properties of network edges are underused, even though the information content which

can be associated with network edges has augmented due to steady advances in

molecular biology technology over the last decade. Properly accounting for network

edges in the development of clustering approaches can become crucial to improve

quantitative interpretation of omics data, finally resulting in more biologically plausible

models. In this study, we present a novel technique for network module detection, named

WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster’s notable features, compared

to current approaches, lie in: (1) the simultaneous exploitation of network node and

edge weights to improve the biological interpretability of the connected components

detected, (2) the assessment of their statistical significance, and (3) the identification

of emerging topological properties in the detected connected components. WG-Cluster

utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm

detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects

connected components which are then scored and selected according to the statistical

significance of their scores, and (iii) an analysis of the convolution between sub-graph

mean edge weight and connected component score provides a summarizing view of

the connected components. WG-Cluster can be applied to directed and undirected

networks of different types of interacting entities and scales up to large omics data

sets. Here, we show that WG-Cluster can be successfully used in the differential analysis

of physical protein–protein interaction (PPI) networks. Specifically, applying WG-Cluster

to a PPI network weighted by measurements of differential gene expression permits to

explore the changes in network topology under two distinct (normal vs. tumor) conditions.

WG-Cluster code is available at https://sites.google.com/site/paolaleccapersonalpage/.

Keywords: protein–protein network, weighted network, node weight, edge weight, clustering, connected

component, entropy
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1. Introduction

With biology increasingly becoming a data-rich field, objectives
of systems biology research include organizing molecular
interactions as networks and characterizing their structure,
dynamics, and controllability. Since the turn of the century, high-
throughput interaction mapping has emerged as an extremely
useful approach to identify the constituents and connections
of these networks. For instance the systematic identification of
pairwise protein interactions (Rual et al., 2005; Petschnigg et al.,
2014) or protein associations into complexes (Havugimana et al.,
2012) has been enormously valuable both for understanding the
function of individual proteins and for elucidating the organizing
principles of the cellular physical architecture. Additional types
of interactions have been charted including protein-DNA (Chen
et al., 2015), protein-RNA (Moore et al., 2014; Re et al., 2014)
and kinase-substrate (Linding et al., 2007; Varjosalo et al.,
2013) interactions. Many of the molecular interaction data
generated find their way into database resources that are available
online (Turner et al., 2010; Horn et al., 2014; Orchard et al.,
2014). The ability to generate, process and integrate omics
data is instrumental to increasingly faithful reconstructions of
the information flow in biological systems. In this vein, the
conceptualization of biological systems as networks and the
subsequent reconstruction of their modular organization acquire
great interest (Barabási and Oltvai, 2004; Barabási et al., 2011;
Ideker and Krogan, 2012). The notion of a module refers
to a discrete entity whose constituent elements are similar
in some quantifiable (e.g., chemical, physical, or functional)
property and/or in the profile of their relationships. Biology
displays many examples of modules which generally accomplish
relatively separable functions such as nucleic acid synthesis, DNA
replication, mitotic spindle assembly and protein degradation
(Hartwell et al., 1999; Barabási and Oltvai, 2004).

In recent years, a rich collection of computational approaches
has emerged for module detection in weighted networks,
where weights can be constrained by topological or alternative
numerical properties of nodes (for example, node molecular
activity extracted from transcriptomics profiling) and edges (for
example, edge confidence). Aside from weight assignment either
to nodes (Ideker et al., 2002; Bader and Hogue, 2003) or to
edges (Tanay et al., 2004; Liu et al., 2009; Pandey et al., 2014),
clustering algorithms differ in the procedures for findingmodules
including, for example, simulated annealing (Ideker et al., 2002),
greedy (Chuang et al., 2007; Nacu et al., 2007), genetic (Klammer
et al., 2007), and network propagation (Vandin et al., 2011; TCGA

Research Network, 2013) algorithms. Despite all of this exciting

research in network clustering, some limitations stand out as
remarkable. First, processing tens of thousands of nodes and
the edges among them is hard to accomplish in fast timescales.
Second, albeit equally interesting properties, it remains unclear
how to meaningfully account for both node and edge weights in
a module detection procedure.

Here, we present a novel algorithm for modular structure
detection, named WG-Cluster (Weighted Graph CLUSTERing),

which seeks to address previous shortcomings to detect modules.

Within WG-Cluster, a module is defined as a connected

component where nodes are characterized by homogeneous
weights and are connected by edges of homogeneous weights.
To this aim, WG-Cluster combines an edge-based network
clustering with a fast-gready algorithm. The treatment of
network edge weights within WG-Cluster represents a novelty
compared to most clustering algorithms since, by the initial
edge-based network clustering, network edge weights underlie
the subsequent detection and prioritization of the connected
components. Furthermore, the procedural choice adopted by
WG-Cluster permits to obtain modules, homogeneous not
only in node weights but also in edge weights, without
discernible additional cost in computational efficiency. Module
prioritization can become particularly useful in applications
related to differential network analysis where the primary goal
is to identify modules changing across different conditions.
Finally, it is worth mentioning here also the introduction
of a measure of the significance of the returned connected
components which is based on node weights. WG-Cluster is
here applied for the analysis of a differential network, i.e.,
a network where node and edge weights are defined by the
changes observed in node and edge numerical properties between
two conditions. Differential network analysis is useful to tackle
the dynamic nature of molecular interactions, for instance
as a consequence of environmental shifts. Computational
integration of a network with molecular profiles acquired in
different contexts has shown a popular approach to extract
context-dependent responsive modules, which mark strikingly
changed regions of the network. The input network for
the current WG-Cluster application is a differential network,
which was obtained by integrating a physical protein–protein
interaction (PPI) network with changes in gene expression
between a normal and tumor conditions. Our analysis showed
that WG-Cluster is useful for comprehensively analysing the
quantitative changes affecting nodes or interactions in the
network and for recognizing modules which link to functional
properties.

2. Materials and Methods

2.1. Data Description and Pre-processing
We gathered multi-assay omics data to define the weighted
network which is the primary input to WG-cluster. We collected
PPIs from the open-access IntAct database which adopts a
merging algorithm and a scoring system to provide richly
annotated molecular interaction data. IntAct PPIs are described
in the controlled vocabulary specified by the Proteomics
Standards Initiative for Molecular Interaction (PSI-MI) data
(Hermjakob et al., 2004) and adhere to the guidelines (Orchard
et al., 2007) about the Minimum Information required for
reporting a Molecular Interaction Experiment, which were
supplied by the International Molecular Exchange (IMEx)
consortium. PPIs involving human protein entities were selected
and downloaded along with their confidence scores. Protein
identifiers defined by the Universal Protein Resource (Uniprot)
protein accessions (http://www.uniprot.org/) were mapped to
gene identifiers defined by the HUGO Gene Nomenclature
Committee (HGNC) gene symbols (http://www.genenames.
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org/). We next integrated the IntAct PPIs with tumor-
dependent changes in messenger RNA (mRNA) expression
profiles. Processed gene expression data related to colon
adenocarcinoma were downloaded from The Cancer Genome
Atlas (TCGA) (http://cancergenome.nih.gov/). mRNA profiles
were generated from 155 tumor and 19 normal tissue samples.
Processed data were lowess normalized and collapsed by gene
symbol (log2 scale). A differential co-expression score was
computed for each gene pair, by subtracting the pairwise
Pearson’s correlation coefficient in the tumor condition from
that in the normal condition. Next, the IntAct PPI confidence
scores were multiplied by the differential co-expression scores
to estimate the change in the interaction strength resulting
from the differential co-expression of the mRNAs encoding
the interacting proteins. The product between the IntAct score
and the differential co-expression score defines the final weight
of an edge in the differential network. The weight of a node
in the differential network was obtained by computing the
ratio between the average values of mRNA expression across
samples in the normal and tumor conditions (mRNA fold
change). This differential network, where both nodes and edges
were weighted, was the primary input to the WG-Cluster
algorithm.

2.2. WG-Cluster
The WG-Cluster algorithm is implemented in R (R software
available at http://www.r-project.org), which provides one of
the most widely used, most flexible and mature open source
environments. For the most computationally intense tasks
WG-Cluster employs built-in R functions implemented as a
C(++) or Fortran code, that are optimized and faster than
functions coded in R from scratch. The input data consist of
the network edges reported in Simple Interaction File (SIF)
format (Cytoscape, 2015) and of node weights reported in tabular
format (node, weight). The algorithm sequentially executes
three computational modules. First, it estimates the optimal
number of clusters (sub-graphs) that split up the graph (i.e.,
network) and executes a Lloyd’s K-means clustering (Du et al.,
2006) of the edge weights to detect sub-graphs with edges of
similar weights. Second, a fast-greedy modularity optimization
procedure (Clauset et al., 2004) finds (if any) the connected
components (i.e., modules) in each sub-graph. An entropy
score is computed for each connected component and is used
as a measure of the statistical significance of the connected
component. Finally, an analysis of the convolution between sub-
graph mean edge weight and connected component entropy
allows for a summarizing view of both properties in the
detected connected components (Figure 1). In the following,
we give the details about each computational module of WG-
Cluster. Hereafter, we will denote with V the number of
vertices and with NE the number of edges in the input
graph.

2.2.1. Detection of Sub-graphs
The optimal number of sub-graphs which partition the input
graph is estimated by minimizing the total within-clusters sum of
squares (WCSS) obtained with a K-means procedure. For a set of

edge weights w = (w1,w2, . . . ,wNE), K-means clustering tries to
find a set of K sub-graphs S = (S1, S2, . . . , SK) that is a solution
to the minimization problem:

WCSS =

K
∑

i=1

∑

w∈Si

||w− µi||
2

where µi is the mean of the edge weights w in the sub-graph Si.
An elbow in the curve interpolating the points (nsub-graphs,

WCSS) suggests the appropriate number of sub-graphs noptimal.
In our implementation, noptimal is estimated as the minimum
value of nclusters at which the first derivative of WCSS w.r.t.
nsub-graphs is null within a tolerance 0 < ǫ≪ 1, i.e.,

∣

∣

∣

∣

d WCSS

dnsub-graphs

∣

∣

∣

∣

≤ ǫ.

The first derivative of the curve (nsub-graphs, WCSS) is calculated
by the Stineman algorithm (Johannesson and Bjornsson, 2012).
Algorithm 1 reports the pseudo-code of the first module of
WG-Cluster.

The problem of WCSS minimization is known to be NP-
hard, implying long running times, that can become unacceptable
in case of biological networks with thousands of nodes and
tens of thousands of edges. Furthermore, if the input data
do not have a strong clustering structure, the procedure may
not converge. For this reason, WG-Cluster adopts the Lloyd’s
algorithm whose complexity is linear in the number of edges
and number of sub-graphs, and is recommended in case of
data poorly clustered (Du et al., 2006). Algorithm 2 presents
the pseudo-code of the Lloyd’s K-means. Those iterations are
repeated until the centroids stop changing, within a tolerance
quantified by the parameter threshold (see the pseudo-
code 2).

In Supplementary Material (Section 1.1) we present the
exploratory analysis of other clustering approaches and the
motivation of the choice of the K-means algorithm in WG-
Cluster.

2.2.2. Detection of Connected Components
Each sub-graph Si (i = 1, . . . ,K) returned by the K-means

clustering is decomposed into connected components C(i)
l

(with
l = 1, 2, . . . , Li, where Li is the number of connected
components in the sub-graph Si) via a fast-greedy optimization
procedure (Clauset et al., 2004), as illustrated in Figure 2. The
entropy of each connected component is calculated as follows:

E
C
(i)
l

= −

N(C(i)
l
)

∑

j=1

pj log2 pj

dj
(1)

where N(C(i)
l
) is the number of nodes in the connected

componentC(i)
l
, pj is the fold change of the expression level (from

normal to tumor condition) of gene j (normalized between 0 and
1) and dj is the sum of the weights of the edges adjacent to the
node representing gene j (known as node strength). Denoting
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FIGURE 1 | Algorithmic modules of WG-Cluster. WG-Cluster takes as

input the SIF file of the network edges and a text file reporting node

labels in the first column and node weights in the second one. If the

second file is not available, WG-Cluster by default assigns an equal

weight to all nodes. WG-Cluster implements three computational

modules: (i) an unsupervised version of the K-means algorithm identifies

sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects

the connected components of each sub-graph utilizing similarity in node

topological properties, (iii) the estimates of the convolution of connected

component entropy and sub-graph mean edge weight guide the

selection of significant connected components representative of global

trends in the network. Complexity of modules for estimating the optimal

number of sub-graphs and for running the Lloyd’s K-means is linear in

the number of edges NE and number of iterations; the complexity of

the module for detecting connected components is O(V (log V )2 ), where

V is the number of vertices.

with D(j) the number of nodes directly connected to node j, dj
is thus defined as

dj =

D(j)
∑

h=1

wjh.

where wjh is the edge weight between the node j and its directly
connected node h.

The entropy is used as a measure of significance of the
connected components. In order to establish a threshold on

the entropy significance, we generated for each connected

component C
(i)
l

an ensemble of 100 random connected
components with the same degree distribution of the reference

connected component C(i)
l
.

A connected component is considered significant, and
retained, if its entropy value is more than three standard
deviations far from the mean entropy of the corresponding
ensemble of random connected components. Let denote with

{C
(i′)
l′
}, where l′ ∈ {1, 2, . . . , L′i} with L′i ≤ Li, and i′ ∈

{1, 2, . . . ,K ′} with K ′ ≤ K.
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Algorithm 1 | Compute the optimal number of sub-graphs K

1: procedure FIND_NR_SUB_GRAPHS(edge.weights,
max.n.sub.graphs, seed)

2:

3: NE← Number of edges of the graph
4:

5: 1. Calculate the within-cluster sum of squares (wcss) via a

K-means solution.

6:

7: wcss[1]←(NE - 1)× Variance(edge.weights)
8:

9: set.seed(seed)
10: for (i in 2:max.n.sub.graphs) do
11: wcss[i] ←

∑i
1

(

calculate.wcss
(

K-means(edge.weights, centroids= i)
) )

12: end for

13:

14:

15: 2 Estimate d WCSS/dn.sub.graphs with the Stineman

algorithm.

16:

17: n.sub.graphs← 1:max.n.sub.graphs
18: wcss.derivative ← Stineman.derivative(n.sub.graphs,

wcss)
19:

20: 3. Set a tolerance value.

21:

22: tolerance← ǫ

23:

24: 4. Find the first local minimum of d WCSS/dn.sub.graphs
25:

26: wcss.derivative.null← {−ǫ ≤ wcss.derivative≤ ǫ }
27: K← wcss.derivative.null[1]
28:

29: 5. Return the optimal number of sub-graphs K.
Return K

30:

31: end procedure

2.2.3. Convolution of Mean Edge Weight and Entropy
Both the connected component entropy and the mean
weight of the edges of the sub-graph to which a connected
component belongs are considered to classify the connected
components.

The convolution of the entropy of selected connected
components (Eselected) with the mean edge weight MW
of the sub-graphs to which they belong is performed as
follows:

Eselected[h] ∗MW[h] =
∑

q

Eselected[q] ·MW[q− h] (2)

where Eselected = {E
C
(i′)
l′
} is the vector of the entropies

of the significant connected components, and MW =

Algorithm 2 | Lloyd’s K-means algorithm

1: procedure LLOYD_K_MEANS(edge.weights, K, distance)
2:

3: 1. Randomly choose K items from the edge weights

vector and use these as the initial means.

4:

5: 2. Iterations of assignments and centroid

recalculation.

6: while distance(centroids, edge.weights) > threshold do

7: a. Assign edge weights to the centroids
8: for i ≤ NE do

9: Assign edge.weights[i] to closest sub-graph
according to the distance measure.

10: end for

11: b. Recalculate centroids.
12: end while

13: end procedure

{(1/NE(i
′))

∑NE(i
′)

l=1 wl} is the mean edge weight of the sub-graph
to which they belong.

The convolution in Equation (2) calculates the area overlap
between the probability distributions of the entropy and of the
mean edge weight as a function of the amount by which one
of the distribution is translated. The area of the overlap of the
two distribution measures the similarity between the entropy and
mean edge weight distribution. The density of the convolution
is a spectrum of the frequency of this similarity score and
offers a way to classify the connected components by their
membership to intervals of frequency corresponding to local
maxima or minima of the convolution density. Maxima of the
convolution density correspond to the most frequent values of
similarity between entropy and mean edge weight, whereas local
minima correspond to the least frequent values of similarity.
Then, connected components can be classified according to
the frequency of the convolution between their entropy and
the mean edge weight of the sub-graph to which they belong.
Algorithm 3 provides the steps of the pseudo-code implementing
the procedure of detection and selection of significant connected
components.

2.3. Functional Analysis of Connected
Components
Enrichment analysis based on the generic Gene Ontology
(GO) slim (http://geneontology.org/), a cut-down version of the
Gene Ontology annotations, was conducted for each retained
connected component (hypergeometric test). GO enrichment p-
values were transformed in Benjamini-Hochberg false discovery
rate (FDR) values and retained at the significance level of 0.05.

3. Results

3.1. Performances on synthetic data
We evaluated the performances of WG-Cluster in processing
Erdös-Rényi random graphs, consisting of 500 nodes and an
increasing number of edges, in terms of user CPU running time.

Frontiers in Genetics | www.frontiersin.org 5 August 2015 | Volume 6 | Article 265

http://geneontology.org/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Lecca and Re Entropy-based selection of edge-based connected components

FIGURE 2 | Sub-graph decomposition into connected components. The algorithm first clusters the input graph into sub-graphs consisting of similar edge

weights and next detects the connected components present within each sub-graph.

Algorithm 3 | Detection and selection of connected components

1: procedure DECOMPOSE_GRAPH(sub-graphs, node.weights)
2:

3: 1. Detection of connected components and calculation of

their entropy.

4:

5: for (i in 1:K) do
6:

7: a. Fast-greedy decomposition of the i-th sub-graph

into connected components.

8: connected.components[[i]] ←

fast.greedy.decomposition(sub-graph[i])
9:

10: b. Entropy calculation.

11:

12: for (l in 1:Li) do
13: (b.1) entropy of connected components with

Equation (1).

14:

15: connected.components.entropy[l]
16: ←

entropy(connected.components[[i]][l], node.weights)
17:

18: (b.2) Generate an ensemble of random

weighted Erdös-Renyi connected components.

19:

20: for (v in 1:100) do
21: random.cc.component
22: ←

erdos.renyi.graph(nr.of.nodes=N(C(i)
l
),

nr.of.edges=NE(C(i)
l
))

23: edge.weights.random.cc.component ←

Unif(0, 1)
24: node.weights.random.cc.component ←

Unif(0, 1)
25: random.cc.entropies[v]
26: ← calculate.entropy(random.cc.

component,node.weights.random.cc.component,edge.
weights.random.cc.component)

27: end for

28:

29: (b.3) Calculate the mean of the entropies of the

ensemble of random connected components.

30: random.cc.entropy[l]
31: ← calculate.mean.entropy(random.cc.

entropies)
32: (b.4) Select connected components.
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33: if cc.entropy[l] /∈
[

-3 σ + random.cc.entropy[l] ,
+3 σ + random.cc.entropy[l]

]

then

34: selected.connected.components← C
(i)
l

35: else

36: discard C
(i)
l

37: end if

38: end for

39: end for

40:

41: 2. Convolution of Entropy (E) and mean edge weight

(MW).

42:

43: (a) Calculate the density of the convolution estimated

by Equation (2).

44: density.of.convolution← density(convolve (E, MW))
45: (b) Detect the maxima of the convolution density.

46: (c) Select and return the connected components whose

values of convolution of (E, MW) fall under convolution

density maxima.

47: end procedure

Edge weights were drawn from a uniform distribution
between 0 and 1 and clustered in 10 groups. A uniform
distribution between 0 and 1 was also used to obtain node
weights.We comparedWG-Cluster running times to the running
times of three widely used deterministic hierarchical approaches
to graph clustering: (i) edge betweenness based clustering, (ii)
label propagation, and (iii) InfoMap, which were selected because
they handle directed (as well as undirected) and weighted
networks as WG-Cluster does (see Table 1 for a summary
of the currently available deterministic clustering methods
implemented in R). Non-deterministic clustering algorithms
[e.g., Walktrap (Pons and Latapy, 2005), Spinglass (Reichardt
and Bornholdt, 2006), and label propagation (Raghavan et al.,
2007)] were left out of this comparative analysis since they
require the determination of the number of runs needed to
build a consensus partition. This parameter often depends on
the topological structure of the graph and can remarkably affect
the performances (that are usually satisfactory on single runs).
We also excluded from the comparison the algorithms that do
not handle the processing of undirected networks [e.g., Leading
eigenvectors, (Newman, 2006)]. From this analysis, WG-Cluster
showed to outperform the alternative algorithms (Figure 3).

In Supplementary Material, Section 1.2, we provide a more
comprehensive analysis of the time complexity of WG-Cluster
applied to random graphs of increasing number of edges and
number of nodes.

Finally, further improvements in efficiency will be tested in
the next version of WG-Cluster by the usage of recent libraries
developed specifically to perform an optimized memory-efficient
management of large datasets. The input/output and data
rearrangement operations on large datasets are computationally
time consuming, and their speeding is one of the main
research topic engaging the developers of the majority of
programming languages. R proposed two major solutions to
optimize the efficiency of massive dataset processing (Kane
and Emerson, 2013; Adler et al., 2014). Using these solutions,

TABLE 1 | Summary of widely used hierarchical methods for module

detection.

Method Type of graph Weighted

edges

Weighted

nodes

Edge-Betweenness (Girvan

and Newman, 2001)

Directed and

undirected

True False

Fast-greedy (Clauset et al.,

2004)

Directed and

undirected

True False

InfoMap (Rosvall and

Bergstrom, 2008)

Directed and

undirected

True True

“True” and “False” in the two last columns stand for “the method can process also”

and “the method does not process,” respectively. For instance, edge-betweenness

clustering method can process and take into account edge weights, but it does not handle

information about node weights.

FIGURE 3 | Running times to cluster random weighted graphs with

increasing number of edges. WG-Cluster running time on a random

weighted graph of 500 nodes and an increasing number of edges is compared

with that achieved by the edge betweenness graph clustering algorithm

(Girvan and Newman, 2001) and that of InfoMap (Rosvall and Bergstrom,

2008). Each algorithm was utilized in its R implementation on a desktop

Windows 8.1 PC with a 3.1 GHz CPU. WG-Cluster ensured faster running

time and a RAM usage inferior to 3Gb.

WG-Cluster could take advantage of the benefits of R (i.e.,
interactive data analysis and rich, flexible statistical programming
environment), and, at the same time, of the benefit of C(++)
language, i.e., an optimized memory-efficient management of big
datasets.

3.2. Application
Biological systems are highly dynamical entities by depending
on environment, tissue type, disease state or development.
Nonetheless, relatively little effort has been spent in differential
network analysis, i.e., the analysis of the changes occurring in
a network in response to different conditions. Even though an
increasing number of studies seek to analyse the dynamics of
networks directly, through experimental mapping of networks
across multiple conditions (Grossmann et al., 2015; Martin et al.,
2015), a longstanding approach in differential network biology
is to construct differential networks by integrating static (at
standard laboratory conditions) molecular interaction networks
(e.g., PPI networks) with changes observed in messenger RNA
expression in different biological conditions (de Lichtenberg
et al., 2005). The resulting differential network is a weighted
network where node weights reflect the changes in mRNA
expression levels and where edge weights reflect the changes in
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interaction strengths due to differential mRNA co-expression
levels under the two conditions. It is worth noting that the
strongest differential interactions are not necessarily the strongest
ones in the static networks. Since both node and edge properties
are deeply ingrained in the clustering procedure,WG-Cluster can
provide a unique view of the differences in network topology
between any two biological conditions.

As a proof-of-principle, we applied the WG-Cluster approach
to analyse the differential PPI network that arises when tumor
and normal conditions are contrasted. The current application
focused on the colorectal cancer which stands among the
most common cancers with more than 1.2 million new cases
and about 600,000 deaths per year worldwide (Jemal et al.,
2011). Messanger RNA expression data were obtained from
The Cancer Genome Atlas which, importantly, provides samples
from tumor tissues and from matched normal tissues. We
acquired PPIs from the IntAct database because it provides a
heuristic scoring system which relies on the available annotation
evidences associated with an interacting pair of proteins. The
differential network was constructed as follows: a node was
weighted by the mRNA fold change and an edge was weighted by
multiplying the IntAct PPI confidence score with the difference
of the mRNA co-expression scores between the normal/tumor
conditions. In the Supplementary Material (Sections 1.3 and
1.4), we provide a full description of this network edge weight
model. Furthermore, we show that this network edge weighting
approach leads to improved clustering quality compared to
the classical approach which is based only on differential co-
expression. The differential network consisted of 5569 nodes
and 18,078 edges, out of which 8880 were strengthened and
9198 weakened in the tumor condition compared to the
normal one.

Applying WG-cluster to the differential network detected
6215 connected components which were arranged in 29
sub-graphs of distinct mean edge weights. Upon connected
components detection, WG-Cluster allows the estimation of
the statistical significance of the entropy of each connected
component by comparing the observed value against the
distribution of entropies obtained from appropriately
randomized connected components. The rate of connected
component exclusion appeared stably moderate when
we incremented the number of standard deviations from
the expected entropy value; setting this number at three
resulted in the exclusion of 26.87% of connected components
(Figure 4A). Statistically significant connected components can
be prioritized by any sort of network property such as mean
edge weight of the sub-graph, or entropy or number of nodes
by connected component. It is noteworthy that the numerical
features associated with each connected component provide
complementary information. For instance, correlation between
mean edge weight and entropy values was not statistically
significant (Spearman’s coefficient = −0.02, P = 0.15). Since
the mean weight of the edges in a sub-graph reflects the mean
change in interactions strength and the entropy of a connected
component reflects the mRNA expression changes, the observed
lack of correlation is interesting because it is in agreement with
previous data showing that the strongest differential interactions

do not necessarily involve the strongest differential genes (Ideker
and Krogan, 2012).

The last WG-Cluster step implements the convolution of the
probability distribution of the connected component entropy
with that of the sub-graph mean edge weight. This operation
offers an appealing way to classify connected components in
terms of both of those properties which, in our vision, are
of equal interest. Since we were interested into obtaining a
summarizing view of the network clustering, we selected the
connected components yielding the most frequent convolution
values (Figure 4B).We then interpreted those convolution values
in terms of the corresponding sub-graph mean edge weight and
connected component entropy values.

The number of the connected components obtained was
found to increase in sub-graphs yielding lower mean edge weight
(Figure 4D); conversely, no trend was detectable by analysing the
mean entropy of the selected connected components resulting
from each sub-graph (Figure 4E). Since the edge scores in the
differential network result from the product of the IntAct scores
with the differential co-expression scores, we verified that a low
mean edge weight depended on low differential co-expression
score, which resulted to be the case; indeed, the percentage of
interactions where the differential co-expression score was higher
than the IntAct score positively correlated with the sub-graph
mean edge weight (Figure 4C).

In summary, by a general survey of WG-Cluster outcome, the
majority of the detected connected components were found to
consist of moderately changing interactions. More interestingly,
the arrangement of the detected connected components by
decreasing sub-graphmean edge weight (as shown in Figure 4D),
which is inherent to WG-Cluster, streamlined the identification
of connected components of markedly changing interactions.
Those connected components, albeit limited in number, are
undoubtedly the most interesting for unveiling the most striking
changes in network topology between tumor/normal conditions
(Figure 4D). Gene Ontology enrichment analysis was conducted
to broadly assess the functional significance of module selection
since exploring the fine details of specific modules is out
of the scope of our study. This analysis showed that sub-
graph clustering by mean edge weight broadly corresponded
to a clustering of GO biological processes (Figure 5). Genes
involved in cell cycle, cell death, mRNA processing and protein
modification processes were found to be overrepresented in
modules of weakened interactions in the tumor compared to the
normal condition (sub-graph positive mean edge weight). On the
other hand, genes acting in cell adhesion, extracellular matrix
organization and cell-cell signaling resulted overrepresented in
modules of interactions which were found strengthened in the
tumor vs normal condition (sub-graph negative mean edge
weight). It is reassuring that the GO categories overrepresented in
the connected components were largely found in agreement with
a previous survey of pathways consistently overrepresented in a
large collection of signatures of differentially expressed genes of
prognostic value in colorectal cancer (Lascorz et al., 2011). This
case study showed that WG-Cluster allows shedding light into
the network organization by fast and statistically robust module
detection. In the context of a differential network analysis, it
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FIGURE 4 | Network properties of WG-Cluster reconstructed

modules. (A) Bar plot displaying the fraction of connected components

which are discarded / retained according to the number of standard

deviations of the entropy from the mean value of the distribution of

entropy derived from randomized connected components. (B) Density

plot of the convolution between the connected component entropy and

mean edge weight of the respective sub-graph. Maximum points in the

density plot are highlighted by arrows. The number at each arrow

denotes the number of selected connected components, i.e., connected

components whose entropy and mean edge weight correspond to

convolution intervals at the maxima of the density plot. (C) Dot plot

displaying the percentage of interactions yielding differential

co-expression scores higher than IntAct scores as a function of

subgraph mean edge weight. Scores are taken in absolute value.

(D) Bar plot showing the fraction of connected components retained in

each sub-graph. (E) Bar plot showing the mean entropy of connected

components selected solely on the basis of entropy significance or on

the basis of convolution analysis in each sub-graph.

delivers emergent information about the quantitative changes of
interaction strength and gene mRNA abundance between two
conditions, and allows the user to pursue specific modules on the
basis of any available biological rationale, including the extent of
changes in interaction strength, the extent of mRNA fold change
or the functional characterization of modules.

4. Discussion

Molecule interconnectivity in human cells is daunting with ∼
20,000 protein-coding genes and ∼ 87,000 protein isoforms.
Consequently, a network formalization of cellular processes
is extremely useful to analyse the growing amount of data
on many types of interactions, which include but are not

limited to physical PPIs. A rich array of methods is currently
available to detect network modular organization (Andreopoulos
et al., 2009; Chen et al., 2014). Major limitations of most
clustering methods, in very general terms, include the high
computational cost and the inefficiency in exploiting the
knowledge on edge strength (Toubiana et al., 2013). These
aspects appear increasingly limiting in the light of the steady
increase in the size of interaction maps and of the efforts to
achieve interaction scoring standards (Villaveces et al., 2015).
In this work, a new algorithm for network clustering has been
developed that leverages existing information on both network
nodes and edges to efficiently provide statistically significant
modules. The detected modules are allowed to overlap, which
reflects a common biological scenario, where, for instance,
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FIGURE 5 | Module enrichment in Gene Ontology categories. Heat map showing in each sub-graph the number of connected components which resulted

statistically significant enriched in GO Biological Process categories (adjusted P-value < 0.05). Vertical bar colors denote the sign of sub-graph mean edge weights.

proteins can participate in multiple functions by participating to
multiple functional modules. Within WG-Cluster, the connected
components are homogeneous in terms both of node weights
and of edge weights. We required homogeneity to extend to
the numerical properties assigned both to network nodes and
edges as both of them are expected to be biologically informative
and useful to prioritize the study of the clustering results. To
detect the modules, not only the reachability among nodes but
also the homogeneity in the edges connecting the nodes has
to be verified. To avoid the simultaneous verification of both
requirements, which is highly time-consuming, WG-Cluster
separates the two operations, firstly by identifying sub-graphs of
homogeneous edge weights and, secondly, by detecting modules
within each sub-graph. This procedural choice ensures, in an
efficient way, connected components to be homogeneous in
edge weights by construction. Furthermore, an entropy score
is assigned to each connected component, which reflects the
weights of nodes included in the connected component. The
entropy score is utilized to measure the statistical significance
of each component. Although not submitting node weights
is allowed in WG-Cluster, it is worth noting that this choice
invariably leads to entropy estimates which only depend on

purely structural node properties. Therefore, partial input data
limits the richness of information which could be made available
by WG-Cluster. Finally, a convolution analysis of the entropy
of the connected components with the mean edge weight of
the sub-graphs was introduced to provide a global overview of
the returned connected components and inform downstream
analysis.

WG-Cluster is a method to cluster weighted networks
into connected components, where nodes are homogeneous in
their weights and are connected to each other by edges of
homogeneous weights, and therefore WG-Cluster is suitable for
many applications. A prominent applicative context is related
to differential network analysis, which can discern cellular
processes differently active under different conditions, such
as with or without treatment by a pharmacological agent,
with or without disease. Differential approaches have begun
to drive considerable efforts in network biology, through
the development of experimental assays to directly capture
condition-specific networks (Ochoa and Beltrao, 2015) or
through the integration of networks with condition-specific
molecular profiles (Ideker et al., 2002; Jansen et al., 2002; Guo
et al., 2007).
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The case study presented here suggests WG-Cluster as a
possible method for differential network analysis. A network of
physical PPI interactions, which are scored utilizing community
standards and are deposited in the IntAct database, was
integrated with mRNA expression data acquired from colon
adenocarcinoma tumor samples or from normal samples. Our
integrative approach relied on the rationale that the strength
of a protein–protein interaction depends on the extent of
congruent protein levels and on their protein affinity. Under
the assumption that protein expression can be approximated
with mRNA expression and that the interaction score in IntAct
reflects the interaction affinity, we specified nodes and edge
weights of the differential network as follows. Node weights
were defined by the mRNA level fold changes while edge
weights were defined by the product of the IntAct scores
with the differential mRNA co-expression scores between
the two conditions. Applying WG-Cluster to the differential
network permitted to prioritize modules in the PPI network
representing regions of progressively decreasing changes between
the tumor and normal conditions. Despite the fact that the
majority of interactions changed moderately between the two
conditions, the organization of the detection of weighted
connected components by sub-graph, which is implemented
in WG-Cluster, permitted to streamline the identification of
modules of markedly changing interactions. Furthermore, it
was possible to discern modules of interactions which get
weakened or strengthened in the tumor compared to the
normal condition. Interestingly, separating the modules by
average increase or decrease in the strength of their interactions

reflected also on their functional enrichment into distinct GO
categories.

WG-Cluster is available as an open-source tool at https://sites.
google.com/site/paolaleccapersonalpage/ for the community of
computational biologists to encourage its further development
and/or its integration in general analytical workflows.
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