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Background. Robust household sampling, commonly applied for population-based investigations, requires sampling frames or 
household lists to minimize selection bias. We have applied Google Earth Pro satellite imagery to constitute structure-based sam-
pling frames at sites in Pikine, Senegal; Pietermaritzburg, South Africa; and Wad-Medani, Sudan. Here we present our experiences 
in using this approach and findings from assessing its applicability by determining positional accuracy.

Methods. Printouts of satellite imagery combined with Global Positioning System receivers were used to locate and to verify 
the locations of sample structures (simple random selection; weighted-stratified sampling). Positional accuracy was assessed by 
study site and administrative subareas by calculating normalized distances (meters) between coordinates taken from the sampling 
frame and on the ground using receivers. A higher accuracy in conjunction with smaller distances was assumed. Kruskal-Wallis 
and Dunn multiple pairwise comparisons were performed to evaluate positional accuracy by setting and by individual surveyor in 
Pietermaritzburg.

Results. The median normalized distances and interquartile ranges were 0.05 and 0.03–0.08 in Pikine, 0.09 and 0.05–0.19 
in Pietermaritzburg, and 0.05 and 0.00–0.10 in Wad-Medani, respectively. Root mean square errors were 0.08 in Pikine, 0.42 in 
Pietermaritzburg, and 0.17 in Wad-Medani. Kruskal-Wallis and Dunn comparisons indicated significant differences by low- and 
high-density setting and interviewers who performed the presented approach with high accuracy compared to interviewers with 
poor accuracy.

Conclusions. The geospatial approach presented minimizes systematic errors and increases robustness and representativeness 
of a sample. However, the findings imply that this approach may not be applicable at all sites and settings; its success also depends on 
skills of surveyors working with aerial data. Methodological modifications are required, especially for resource-challenged sites that 
may be affected by constraints in data availability and area size.

Keywords. satellite imagery; geospatial sampling frame; positional accuracy; sub-Saharan Africa.

Household sampling is a common and resource-efficient 
method for rapid, in-depth investigations in population-based 
studies. This includes assessment of health indicators, morbidity 
and mortality rates, vaccination coverage, healthcare behavior, 
and relevant sociodemographic, socioeconomic, and ecological 
information among the population of interest [1–3]. Data de-
rived from a representative sample allow inference findings to 

an entire population under investigation [1–4]. A comprehen-
sive sampling frame or household list largely reduces the pos-
sibility of selection bias. Ideally, a sampling frame is available 
through a demographic surveillance system (DSS), which lon-
gitudinally records demographic and vital statistics of individ-
uals [5, 6]. However, DSSs are limited to distinct sites and their 
implementation and maintenance require long-term planning 
and enduring financial support [6].

Sampling procedures in resource-limited settings inherently are 
affected by distinct drawbacks, such as scarcity of demographic 
and geographic data and lack of a comprehensive sampling frame. 
There are, however, several options to cope with the absence of 
a household list by using convenience samples [7], choosing a 
random starting point, and selecting sampling units by applying 
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systematic sampling [8–10]. Moreover, chain or respondent-
driven sampling may be applied [11, 12]. In such a design, study 
subjects recruit additional subjects until a desired sample size is 
achieved. Further approaches include segment sampling, where 
subunits in a study area are divided into segments and all sam-
pling units of a selected segment are enrolled [13], mosaic forma-
tion or rasterizing with continuous geographic data of a study area 
transformed into a raster sampling frame from which sampling 
units are drawn [14], or overlaying study areas with grid cells to 
establish a sampling frame [15–17]. Geographical information 
systems (GISs) are also used if household lists are not available [2, 
4, 18]. Kondo et al [2] have described spatial sampling with modi-
fications for postdisaster scenarios and ecological, environmental, 
and social studies. Satellite imagery has been applied to generate 
sampling frames for research on mosquito-borne diseases [19] 
and the impact resulting from natural and humanitarian crises in 
addition to healthcare behavior [20].

We have applied satellite imagery to establish sampling 
frames to assess healthcare behavior at three resource-limited 
sites (Table 1) of the Typhoid Fever Surveillance in Africa 
Program (TSAP) [21]. The TSAP network investigated the 
incidence of Salmonella infections at thirteen sentinel sites 
in ten countries (Burkina Faso, Ethiopia, Ghana, Guinea-
Bissau, Kenya, Madagascar, Senegal, South Africa, Sudan, 
Tanzania) during the period 2010–2014 [22]. Satellite maps 
combined with Global Positioning System (GPS) receivers 
were used to locate and to verify the locations of selected 
structures on the ground. We present our experiences of this 
approach and findings from assessing its applicability by de-
termining positional accuracy. Findings on the assessment of 
healthcare behavior within the TSAP study were presented 
elsewhere [23].

MATERIALS AND METHODS

The study was implemented at sites in Pikine, Senegal 
(September 2012–January 2013), Pietermaritzburg, South 
Africa (September–December 2013), and Wad-Medani, Sudan 
(August–September 2013). It was approved by the ethics com-
mittees of the collaborating institutions and the ethical review 
board of the International Vaccine Institute.

Study Sites

Details of the selection of study sites have been described previ-
ously [21, 23]. In brief, the sites were chosen based on reports on 
human Salmonella infections, an infrastructure suitable for the 
surveillance of acute febrile conditions, and access to healthcare 
[22]. Pikine is a semiurban region in the east of Senegal’s cap-
ital, Dakar. Pietermaritzburg is the capital of the KwaZulu-Natal 
Province and located at the southeastern coast of South Africa. 
Wad-Medani is southeast of Sudan’s capital Khartoum and the 
capital of the Al Jazirah State.

Sites were highly diverse with respect to population and 
study area sizes, including administrative subunits, or AdSubs 
(Table 1). They varied in topography and vegetation, the road 
network, and formal and informal settlements (Supplementary 
Figure 1A–C). Across all sites, single-story and single-family 
households were common compared to multistory and 
multifamily households. A household was defined as a person 
or a group of related or unrelated persons living in the same 
dwelling unit, acknowledging one adult individual as household 
head, sharing the same housekeeping arrangements, and inde-
pendently procuring food and other essentials for living [23].

Population sizes and boundaries of each site and its AdSubs 
were determined by combining different sources. Among them 
were up-to-date demographic information, population sum-
mary figures and growth rates [24–32], records of healthcare fa-
cilities [23], and administrative and geographic data, including 
sketch-maps [31, 33–37]. Boundaries of a study area and its 
AdSubs were transferred from sketch maps, or the sketch maps 
were digitized and superimposed onto Google Earth Pro im-
agery (version 6.2.2.6613; Google, Mountain View, California).

Sampling Frame

We used the latest satellite imagery available from Google Earth 
Pro (Pikine: June 2012; Pietermaritzburg: July 2013; Wad-
Medani: March 2013; Table 1). Every single-standing structure 
defined as an edifice not connected to another structure in the 
respective satellite image, of appropriate size and rectangular 
or square shape was enumerated by positioning a placemark 
at its approximate center. Irregularities in size, shape, and spa-
cing between structures made manual enumeration preferable 
(Supplementary Figure 1A–C). Buildings of nonresidential 
character based on best local knowledge were not enumerated. 
Figure 1 shows the sampling frame in Pikine. Sampling frame 
data were exported from Google Earth Pro and imported into 
ArcGIS version 10.2 (Esri, Redlands, California) to assign a 
unique identifier and coordinates to each placemark.

Random Sample Selection

The minimum number of household interviews required (N0) 
was 492 at each site. Sample size calculations were based on 
the Cochran formula for categorical data; their assumptions 
(95% confidence interval, 5% precision, 2.0 design effect) have 
been described previously [23]. N0 was distributed by applying 
weighted-stratified sampling and selected from a sampling frame 
by serial simple random selection using Microsoft Visual FoxPro 
(version 9.0; Microsoft, Redmond, Washington; Figure 2).  
Approximately 10%–20% replacement structures by AdSub 
(Figure 2) were chosen using the same selection procedure as 
for N0 if a sample structure was a nonresidential building, el-
igible respondents were not available after three consecutive 
visits, or participation was refused.
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Structure Identification

The study teams were comprised of community nurses and 
healthcare workers experienced in conducting household sur-
veys (Pikine: eight interviewers; Wad-Medani: eight inter-
viewers; Pietermaritzburg: twenty interviewers). They were 
trained on all study procedures and, in particular, on the locali-
zation and the verification of locations of selected structures by 
using satellite maps and GPS receivers as not all interviewers 
were familiar with observing study areas from an aerial per-
spective. The assignment of AdSubs and sample structures to 
the surveyors was done arbitrarily across all sites.

Poster-sized (60 × 60 cm to 60 × 90 cm) printouts of Google 
Earth Pro satellite imagery with high resolution (approximately 
500–600 m “eye altitude” in high-density and approximately 
1700–1800 m “eye altitude” in low-density settings; Table 1 and 
Supplementary Figure 1A–C) were prepared to depict selected 
structures flagged and labeled with the respective identifiers 
(Figure 2). “Eye altitude” is a term used in Google Earth for 
viewing heights. GPS receivers (Garmin-eTrex, GPS accuracy 
<10 m; differential GPS [Wide Area Augmentation System], ac-
curacy 3 m; 12-channel receiver; Garmin Ltd, Lenexa, Kansas) 
set in World Geodetic System 1984 were used to verify locations 
of sample points. Once a structure was identified on the ground 
with reference to a landmark, interviewers took the GPS read-
ings allowing sufficient time to obtain satellite signals with an 
accuracy of ≤  three meters. The GPS receiver was positioned 

to the structure as close as possible, in a static position, and an 
open area, strictly avoiding tree cover, roof cover, balconies, or 
verandas to ensure barrier-free reading, reduction of interfer-
ences, and increased accuracy. A  structure was replaced if it 
could not be identified correctly.

Positional Accuracy

We have evaluated the applicability of the described approach 
by determining the positional accuracy of sample points. This 
was performed by analyzing distances (meters) between geo-
graphic coordinates taken from the sampling frame and on the 
ground by receivers, assuming zero distances and approxima-
tion of earths radius based on the Pythagorean theorem [7]. We 
surmised that the smaller the distances, the more accurately 
structures were identified and, thereby, the more representative 
were our samples by AdSubs and sites. The computed distances 
were normalized for improved comparability (Supplementary 
Table 1). Microsoft Office Excel version 2010, expanded with 
Excel add-on tools, was applied for all calculations. The equa-
tions are explained in Supplementary Table 1.

Distances by each site and AdSub were assessed by generating 
medians, interquartile ranges (IQRs), and quartiles displayed 
by box plots, and root mean square errors (RMSEs) [38, 39]. 
Obtained distances were categorized into quintiles and graded 
correspondingly as very good (lowest quintile), good, fair, 
poor, and very poor (highest quintile). Furthermore, distances 

Figure 1. Sampling frame of the study area and the administrative subunits (AdSubs) in Pikine, Senegal. Different colors depict the structures belonging to each AdSub. 
Illustration top left: enlarged illustration of enumerated structures for subunits 2, 3, and 6 (blue highlighted rectangle in main figure).
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by AdSub of Pietermaritzburg only were classified into tertiles 
based on population and structure density (Supplementary 
Figure 2) and graded as low, medium, and high; medians, 
IQR, and quartiles by grade or setting are given in box plots. 
The positional accuracy of the described approach was also as-
sessed for each interviewer of Pietermaritzburg by computing 
medians, IQRs, and quartiles displayed by box plots, RMSEs, 
and quintiles of distances, followed by grading. In addition, the 
nonparametric rank-based Kruskal-Wallis test was performed 
to evaluate distance differences by setting and interviewer of 
Pietermaritzburg. The test was followed by Dunn multiple pair-
wise comparisons, assuming rejection of the null hypothesis 
(H0) of no difference in the distribution of distances by setting 
or interviewer. Bonferroni correction was applied to compen-
sate for incorrectly rejecting the H0 [40, 41].

RESULTS

Sampled Structures

The number of enumerated structures constituting the sam-
pling frame was 45  510 in Pikine (Figure 1), 100  439 in 
Pietermaritzburg, and 32  905 in Wad-Medani. The enumera-
tion and preparation of the satellite maps, including random 

selection and visualization of selected sample points using 
Google Earth Pro, took approximately two weeks per site.

In Pikine, 597 structures were included into the study, of 
which 495 (83%) were initially selected and 101 (17%) were 
substituted. In Pietermaritzburg, 2402 sample points were iden-
tified of which 461 (19%) were replaced; of those replaced, 164 
(36%) were nonresidential, 143 (31%) were excluded due to re-
fusal in participation, and in 154 (33%) household members 
were not addressable after 3 consecutive visits. A  total of 549 
structures were enrolled in Wad-Medani, of which 412 (75%) 
were initially selected and 137 (25%) were replaced.

Accuracy of Sample Identification

The median normalized distances (formula, refer to 
Supplementary Table 1) and RMSEs were 0.05 (IQR, 0.03–0.08) 
and 0.08, respectively, in Pikine; 0.09 (IQR, 0.05–0.19) and 
0.42 in Pietermaritzburg; and 0.05 (IQR, 0.00–0.10) and 0.17 
in Wad-Medani. Quartiles of distances by AdSub of each site, 
including RMSEs, are displayed in Figure 3. The quintile cate-
gorization by site and AdSub revealed largest proportions in the 
categories “good” and “fair” in Pikine, “poor” and “very poor” 
in Pietermaritzburg, and “very good” and “fair” in Wad-Medani 

Figure 2. Weighted-stratified random sampling of structures in Pikine, Senegal. 1Selected structures (N0) as per sample size calculation for the total survey area and each 
administrative subunit (AdSub) (flagged black) and replacement structures for the total survey area and each AdSub (flagged white). 2Selected structures (N0) for the total 
survey area and each AdSub (flagged black). 3Replacement structures for the total survey area and each AdSub (flagged white). 4Identifiers (6–250, 6–304, 6–311) and the 
geographic coordinates (6–250: N14°44.702′/ W17°23.408′; 6–304: N14°44.632′/W17°23.284′; 6–311: N14°44.708′/W17°23.289′) obtained from Google Earth Pro.
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(Figure 4); 4 of Pietermaritzburg’s AdSubs [5, 7, 16, 17] with 
the largest proportions in the categories “very good” and “good” 
showed also low median values, IQRs, and RMSEs.

The median distances and RMSEs were 0.09 (IQR, 0.05–0.18) 
and 0.40 in the low-density, 0.11 (IQR, 0.05–0.23) and 0.37 in 
the medium-density, and 0.09 (IQR 0.00–0.15) and 0.47 in 
the high-density setting of Pietermaritzburg; quartiles of dis-
tances by AdSub and setting are illustrated in Supplementary 
Figure 2. The quintile categorization revealed largest pro-
portions in the categories “poor” and “very poor” in the low- 
and medium-density settings, and “very good” and “poor” 
in the high-density setting. An Hc (2) = 5.991 with P <  .0001 
(Hc_observational  =  28.202  ≥  Hc_critical  =  5.991; rejection of H0) was 
found by using Kruskal-Wallis test. The two-tailed P values of 
Dunn multiple pairwise comparisons (Bonferroni significance 
level  =  .0167) indicated significant differences between the 
low- and medium-density settings (P = .0007) as well as the me-
dium- and high-density (P = .0001) settings.

Quartiles of distances by interviewers of Pietermaritzburg are 
displayed in Supplementary Figure 3, including the RMSEs. The 
quintile categorization is depicted in Supplementary Figure 4. 
Largest proportions were found in the categories “very good” 
and “good” for one-third of the interviewers (interviewers 3, 6, 
8, 10, 15, and 16)  in addition to small median values, narrow 
IQRs, and low RMSEs. In contrast, the largest proportions were 
seen in the categories “poor” and “very poor” for one-fifth of 

interviewers (interviewers 5, 14, 18, and 19) besides large me-
dian values, wide IQRs, and high RMSEs. The Kruskal-Wallis 
test revealed an Hc (19)  =  30.144 with P  <  .0001 (Hc_observa-

tional = 239.317 ≥ Hc_critical = 30.144; rejection of H0); P values of 
Dunn comparisons by interviewer are given in Supplementary 
Table 2.

DISCUSSION

The application of satellite imagery is an efficient tool as also 
shown by other research conducted, even for sampling frames 
of varying sizes and in diverse sites as seen in our multicountry 
study. While we have chosen this particular approach for con-
ducting household surveys in our TSAP study sites, we did not 
conduct a head-to-head comparison to other methods and, 
hence, can only report here on the experiences we made. With 
regard to its applicability we observed here, the evaluation of 
the described geospatial approach revealed a lower accuracy 
for Pietermaritzburg and a higher accuracy for Pikine and 
Wad-Medani in the identification of structures. This finding 
is based on largest median values, IQRs, RMSEs, and outliers 
of distances (Figure 3), as well as greatest proportions in the 
high and highest quintile categories (Figure 4) observed for 
Pietermaritzburg.

Though the analyses revealed only minor discrepancies in the 
statistical parameters (median, IQR, RMSE, outliers, quintile 
categorization) by setting of Pietermaritzburg, Kruskal-Wallis 

Figure 3. Normalized distances by administrative subunit (AdSub) in Pikine (Senegal), Pietermaritzburg (South Africa), and Wad-Medani (Sudan). Each individual box 
plot shows the range of normalized distances indicated as vertical line; bottom whisker (minimum normalized distance to first quartile; non-outlier), first quartile (25% of 
normalized distances/25th percentile), second quartile or median (50% of normalized distances/50th percentile), third quartile (75% of normalized distances/75th percentile), 
top whisker (third quartile to maximum normalized distance; non-outlier), and outliers plotted as circles. Senegal: The root mean square error (RMSE) of normalized distances 
by AdSub was 0.04, 0.06, 0.06, 0.06, 0.07, and 0.13 (ascending order). South Africa: The RMSE of normalized distances by AdSub was 0.32, 0.21, 0.40, 0.63, 0.29, 0.25, 0.32, 
0.16, 0.32, 0.98, 0.56, 0.69, 0.28, 0.35, 0.38, 0.22, 0.10, 0.41, 0.35, 0.22, 0.54, and 0.31 (ascending order). Sudan: The RMSE of normalized distances by AdSub was 0.08, 0.11, 
0.22, 0.10, 0.06, 0.43, 0.11, 0.06, 0.07, and 0.09 (ascending order).
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and Dunn tests indicated significant differences in distances be-
tween low- and medium-density and medium- and high-den-
sity settings. This suggests that the approach presented could be 
followed more accurately in the low- and high-density settings, 
supporting findings of previous studies [2]. Moreover, this result 
may explain why the geospatial method was more successful in 
Pikine and Wad-Medani, both settings of high population den-
sity (Table 1). However, further investigations are required to 
assess if this is a real finding or just a result caused by an almost 
one-third smaller sample size in the medium-density setting 
of Pietermaritzburg. Future investigations should also include 
thorough research on drivers of accuracy. However, since we 
performed a retrospective assessment of our geospatial ap-
proach, this is not available, which is a major limitation.

Interviewers in Pietermaritzburg performed the presented 
approach with varying exactness, corroborated by the interre-
lation observed between the quintile categorization, medians, 
IQRs, and RMSEs by interviewers. For interviewers yielding the 
largest proportions in the lowest and low quintiles, small me-
dian values, IQRs, and RMSEs were observed. In contrast, if lar-
gest proportions were found in the high and highest quintiles, 

large median values and wide IQRs and high RMSEs were seen. 
Kruskal-Wallis and Dunn tests revealed statistically significant 
differences for those interviewers showing high accuracy com-
pared to interviewers with poor accuracy in carrying out this 
approach and vice versa. However, we cannot provide a plau-
sible explanation for this finding. A much larger team of inter-
viewers might have resulted in a general poorer success.

A limitation is that we could not directly compare our rig-
orous method with alternatives as we have no quantifiable data 
on whether the method utilized in the TSAP program justifies 
the extra work and cost compared to other methods. A pitfall 
of satellite imagery is the lack of structure differentiation into 
residential or nonresidential from the aerial perspective. In fact, 
this applied to all sites [2, 4, 20]. The need of replacing structures 
may increase the sample size and prolong the study conduct. 
Incorrect identification of terrestrial sample points is a further 
weakness that applied to all sites, in particular in areas where 
buildings were not lined up as described in an earlier study [2], 
clustered, or interlaced. The latter problems were likely caused 
by interfering factors like reflective materials (water, metallic 
objects), obstructive buildings, and environmental diversity 

Figure 4. Normalized distances (meters) categorized into quintiles and graded accordingly by administrative subunit (AdSub) of each site. Each bar shows the frequency of 
normalized distances categorized into quintiles by AdSub and graded correspondingly as very good (lowest quintile), good, fair, poor, and very poor (highest quintile). Senegal: 
very good, 19.4%; good, 33.6%; fair, 36.8%; poor, 7.3%; and very poor, 2.9%. South Africa: very good, 20.4%; good, 14.6%; fair, 12.9%; poor, 22.2%; and very poor, 29.9%. 
Sudan: very good, 28.3%; good, 16.1%; fair, 27.7%; poor, 25.0%; and very poor, 2.9%.
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influencing the accuracy of GPS readings, and resulting in po-
sitional errors (multipath effect) [7, 38, 39, 42]. A further lim-
itation is that there may have been some degree of inaccuracy 
in obtaining GPS readings of selected sample points in the field 
due to the intrinsic inaccuracy, which we have not adjusted 
for in the analysis. Structures were enumerated by positioning 
a placemark at the approximate center, whereas GPS readings 
on the ground were performed simply as close as possible to 
structures.

Nevertheless, the use of satellite maps was beneficial across 
all sites. They guided interviewers on the ground, facilitated 
identification of structures, and allowed the recording of the 
daily study progress. This is in accordance with previous ob-
servations [20, 43]. Geospatial approaches relying on compu-
terized random selection of sample points was applied across 
all three sites. This assures that each point has the same prob-
ability of being chosen and thus increases the degree of ran-
domness of samples selected. It also minimizes the possibility 
of introducing selection bias by study staff by allowing a pri-
oritized sample selection in densely inhabited areas, or near a 
study area’s center or random starting point for instance, and 
a nonprioritized selection of structures in remote areas [2, 7]. 
We believe that this makes spatial sampling frames superior to 
other techniques that use no or inappropriate sampling frames 
such as convenience sampling [7], systematic sampling [8, 9] 
or chain or respondent-driven sampling [11, 12], and which 
rely on a homogeneous study population as applied in seg-
ment sampling [13]. An advantage of manual enumeration 
as performed across our sites overautomated techniques such 
as mosaic formation, rasterizing [14], or grid cells [15–17] is 
that it is particularly suitable if buildings are irregular in size, 
shape, and spacing.

CONCLUSIONS

The application of satellite imagery offers a broad spectrum for 
research and has been deployed in the TSAP program. Actual 
healthcare utilization data are part of the manuscripts that were 
published previously [22, 23]. The evaluation of this approach 
conducted in a comparable and standardized manner indicates 
that sources of selection bias are reduced and robustness is in-
creased, if performed with high accuracy. However, our find-
ings imply that the applicability of this geospatial approach may 
not be suitable for all sites and settings, in particular not for 
medium-density settings due to an overall poorer study success. 
They also indicate that the skills of staff working with aerial 
data considerably affect the outcome of this approach, as seen 
for Pietermaritzburg. A potential modification of the method 
may be to apply ArcGIS tools to randomly spread geographic 
points across study areas based on a required sample size and 
the sampling strategy instead of enumerating individual struc-
tures. This needs to be examined in other resource-limited sites 

that are even more affected by data availability and constraints 
in area size than those selected for the present study.
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