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The notion and relevance of  
biochemical recurrence (BCR)

Definition and clinical outcomes
In contrast to other malignancies, prostate cancer 
(PC) is characterized by a lower mortality and the 
majority of patients living with PC have a progno-
sis of many years. Globally, PC accounts for 7.3% 
of the overall number of new cancer cases (14.1% 
for males), and 3.8% of deaths, with an all-stage 
10-year survival rate at 98%.1,2

Except when it isn’t. Most patients with prostate 
cancer are diagnosed at a localized or locoregional 
stage, which explains the better survival rates. 
However, for men diagnosed with metastatic PC, 
the 5-year survival rate is estimated to be 31%; 
patients diagnosed with upfront metastatic dis-
ease contribute to half of PC deaths.3 In the US, 
owing to the high incidence of the disease (first in 

males, 21% of all new cancer cases), mortality 
from metastatic PC ends up being the second 
highest cause n males (10% of deaths).4

The critical moment that often points towards a 
less optimistic prognosis is the failure of primary 
treatment, be it radical prostatectomy (RP), radi-
otherapy (RT), brachytherapy, high-intensity 
focused ultrasound (HIFU), cryosurgery, or other 
focal therapy options. This failure will most fre-
quently be in the form of a rising prostate-specific 
antigen (PSA), without macroscopically detecta-
ble disease in the first instance, i.e., a biochemical 
recurrence (BCR). The definition of BCR 
depends on the type of prior definitive therapy. In 
patients who have undergone RP, the European 
Association of Urology (EAU) 2020 guidelines 
propose that a rising serum PSA level should be 
considered a BCR.5 Ultrasensitive PSA levels 
>0.01 ng/ml, in combination with clinical 
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characteristics such as the International Society 
of Urological Pathology (ISUP) grade and surgi-
cal margin status, may be predictive of PSA pro-
gression after RP. In patients treated with RT, the 
RTOG-ASTRO Phoenix Criteria define BCR as 
a rise in PSA level of 2 ng/ml or more above the 
nadir, regardless of androgen deprivation therapy 
(ADT) use or of the nadir value.6

Several nomograms have been created for the 
estimation of BCR risk, such as the CAPRA-S, 
the MSKCC, and the Walz nomograms.7–9 A 
recent update of the latter seems to provide an 
elegant estimates BCR risk at 12 and 24 months 
post-RP based on PSA, Gleason score (GS), pT 
stage, surgical margin, and lymph node status.10

The rate of BCR within 10 years following defi-
nite treatment is 2040% after radical prostatec-
tomy (RP)11–13 and 30–50% following 
radiotherapy (RT).14,15 BCR represents a true 
progression: it is associated with a 24–34% risk of 
developing metastasis,10,16 with a PSA of 0.4 ng/
ml a better predictor of this. The median time 
from RP to PSA failure is reported to be between 
2 years13 (Freedland et  al.) and 3 years,17 with a 
median metastasis-free survival (MFS) reported 
at 8–10 years.11,17 After RT, PSA-doubling time 
(PSA-DT) correlates with the site of recurrence. 
While patients with local recurrence have a 
PSA-DT of 13 months, those with a PSA-DT of 
3 months present with distant metastases.18 EAU 
guidelines utilize PSA-DT (cut-off: 1 year) and 
GS (cut-off: 8) to define low and high-risk BCR 
post-RP, and interval to primary therapy (cut-off: 
18 months) and GS (cut-off: 8) to define the 
respective BCR groups post-RP.19,20

Does MFS translate into PC-specific mortality? 
Overall, in unselected patients, the median time 
from metastasis to death was historically reported 
as 5 years.11 However, this data was validated 
before the recent therapeutic advances in meta-
static castration-sensitive (mCSPC) and castra-
tion-resistant (mCRPC) prostate cancer. In a 
cardinal mCRPC study, at a median follow-up 
(FU) of 6 years (rather limited for such purposes), 
the 5-, 10-, and 15-year cause-specific survival 
from the respective time of biochemical recur-
rence was 93% [95% confidence interval (CI), 
90–96%), 73% (95% CI, 66–79%), and 55% 
(95% CI, 41–67%), but varied widely between 
the highest and lowest risk subgroups.13 PSA-DT 
(especially if less than 3.0 months), pathological 
GS (8–10), and time from surgery to biochemical 

recurrence (⩽3 years) are strong predictors of 
metastasis and PC-specific mortality,11–13 
although the latter factor has not been retained in 
more recent analyses.17 These factors stratify 
patients at distinct risk groups, with a median 
MFS ranging from 1.0 year in the highest risk 
group to 15.0 years in the lowest risk group.17 For 
example, the median MFS is 15 years and PC–
specific survival is approximately 90% in patients 
with a PSA-DT of ⩾15 months, whereas these are 
approximately 1 year and 20% respectively for 
patients with a PSA-DT of <3 months.13,17 The 
EAU BCR risk stratification has been externally 
validated post-RP and found to be significantly 
predictive of 5-year MFS [hazard ratio (HR): 
3.46; p < 0.001) and PC-specific mortality (HR 
5.12; p < 0.001).19

Biology of disease recurrence.  The identification 
of the earliest alterations in PC can give impor-
tant insights into the relationships among primary 
and metastatic sites. Across cancer types, metas-
tases have been reported to originate from single 
clones in the primary tumour (monoclonal seed-
ing), or multiple clones (polyclonal seeding), 
however the distribution of these patterns across 
specific tumour types is not fully known.21 This 
polyclonal seeding is a frequent event in prostate 
cancer and has also been found to be associated 
with oncogenic alterations of ADT resistance, 
such as MYC amplification or pathogenic AR 
substitution, suggesting that the tumour cell pop-
ulations with a significant survival advantage are 
not confined within the boundaries of an organ 
site but can successfully spread to and reseed 
other sites.22 In fact, in metastatic PC, multiple 
metastases were found to be more closely related 
to each other than any of them were to the pri-
mary prostate tumour, with sharing of sub clonal 
alterations by different metastases, indicating 
possible inter clonal cooperativity or re modelling 
of metastatic niches by initial colonizing prostate 
cancer clones, making them attractive habitats 
that other clones can colonise.22 Multiple sub-
clones achieve a metastatic potential through 
early alterations, such as tumour protein 53 
(TP53) or phosphatase and tensin homolog 
(PTEN). TP53 mutations, in particular, appear 
to be strongly implicated in metastatic spread and 
can be easily detected with a liquid biopsy even 
before the appearance of metastatic lesions.23 
Secondary lesions appear to develop in the form 
of spread between distant sites, rather than single 
waves coming from the primary tumour. AR 
alterations are rarely present in the primary 
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tumour but seem to develop in the CRPC setting. 
AR aberrations are found to be heterogeneous 
and involve multiple events at different sites.

If such findings are further exploited and con-
firmed, primary tumour sequencing and liquid 
biopsies might prove helpful in detecting occult 
clones even before they become clinically visible. 
Importantly, the better understanding of the 
complex patterns of sub clonal differentiation 
between different metastases from distinct ana-
tomical sites, with individual subclones able to 
seed polyclonally from one metastasis to another, 
support the rationale for an approach combining 
the local control of the primary with ablation of 
all oligometastatic tumour deposits.22–25 
Implementation of metastasis-directed therapies 
(MDT), together with systemic therapies, there-
fore represents an interesting therapeutic option 
to potentially eliminate sources for metastatic 
spread and improve oncological outcome in 
patients with relapsing prostate cancer (see dis-
cussion below).

Impact of novel imaging technologies
The notion of BCR is recently challenged by 
technological advances. Molecular and functional 
imaging shrink the space of PSA-only relapse by 
increasing the abilities of detecting and localizing 
sites of otherwise occult recurrent disease. The 
most sensitive positron emission tomography 
(PET) tracers currently available are the class of 
prostate-specific membrane antigen (PSMA)-
targeted radiotracers. Its comparative detection 
sensitivity in the BCR setting has been assessed 
against a previous-generation tracer, choline, 
demonstrating the superiority of Ga-PSMA in 
terms of detection rates at any PSA level,26–28 and 
has now been included as a recommendation in 
this setting in international guidelines.29

At the usually low PSA levels BCR features, even 
with PSMA-PET and more so with conventional 
imaging, the eventual identification of macro-
scopic disease is invariably limited to an oligo-
recurrence context. Other than enlarging this 
space as it shrinks the true BCR space, the avail-
ability of such imaging has also shifted the treat-
ment paradigm towards metastasis-directed 
treatment, both in the CSPC and the CRPC set-
ting. This has shown clinically meaningful benefit 
such as ADT-free survival, CRPC-free survival, 
or time to treatment escalation.30–34

Precision medicine and molecular  
strategies for risk stratification
DNA-repair pathway alterations have gained sig-
nificance in the therapeutic arena of advanced 
prostate cancer. The prognostic significance of 
such mutations, notably for the BRCA2 gene, 
was noted in the last decade, with identified asso-
ciation with poor survival outcomes, including 
metastatic relapse and cancer-specific survival 
post local treatment.35,36 In a relevant meta-anal-
ysis, BRCA2 mutations have been shown to pre-
dict poor survival outcomes in prostate cancer 
patients in terms of cancer-specific survival and 
overall survival (OS), with pooled HRs of 2.53 
(95% CI: 2.10–3.06, p < 0.001) and 2.21 (95% 
CI: 1.64–2.99, p < 0.001), respectively.37

Specifically, in BCR, overexpression of BRCA1/2 
in prostatectomy specimens seems to be indepen-
dently predictive of biochemical recurrence.38 No 
information exists on specific phenotype-geno-
type prognostic correlations for the BRCA or 
other DNA repair pathway genes.

Multigene panels, such as the 17-gene Oncotype 
Dx,39 the 31-gene Prolaris,40 and the 22-gene 
Decipher41 assess BCR risk at the time of diagnosis 
or post-RP. Although independently validated, 
these panels have not yet entirely revolutionized 
localized and loco-regional prostate cancer manage-
ment for two main reasons. Firstly, their predictive 
ability is not uniform across the spectrum; for exam-
ple, Oncotype DX does not significantly predict 
BCR in certain subgroups such as patients less than 
56 years old, nor are all its components individually 
predictive. In addition, the impact of such tests in 
treatment decision-making and on PC mortality is 
unclear, as is their cost-effectiveness and their influ-
ence of BCR surveillance post-definite treatment. 
The Decipher genomic classifier41 attempts to pre-
dict distant metastasis following RP, as a result 
assessing PC-specific mortality.42,43 Its predictive 
ability seems to improve if combined with 
CAPRA-S.44 In a prospective evaluation of its clini-
cal utility (PRO-IMPACT trial), the use of Decipher 
test influenced treatment decisions regarding the 
choice between adjuvant and salvage treatment, and 
reduced levels of PC-related anxiety.45,46

An interesting classifier is the 15-gene 
SigMuc1NW signature, which exploits the bio-
marker potential of tumour-associated antigens 
(TAAs) such as mucin 1 (MUC1) and opa inter-
acting protein 5 (OIP5). The signature was 
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validated to strongly predict BCR (HR, 2.44; 
95% CI, 1.53–3.87; p = 1.62e-4) after adjusting 
for clinico-pathological factors such as GS, surgi-
cal margin status, age, and stage.47 These TAAs, 
although previously investigated in other cancer 
types, are relatively novel PC-associated TAAs. 
Despite this, the signature has not been indepen-
dently validated on other large databases.

In our era of large data and bioinformatics, 
attempts have been made to assess the predictive, 
biomarker potential of other signatures involving 
miRNAs or lncRNAs; however, these are as yet 
immature for PC.48–52

Finally, although checkpoint inhibition has not 
yet proven of meaningful benefit in metastatic 
prostate cancer, there is some recent limited evi-
dence that increased programmed death-ligan 1 
(PD-L1) expression is associated with biochemi-
cal recurrence.53,54

Liquid biopsy technology has further enhanced the 
detection possibilities related to PC recurrence, 
using more sophisticated techniques compared to 
measurements of PSA levels, upon which the con-
ventional notion of BCR is based. Such methods 
include targets such as circulating tumour cells 
(CTCs), cell-free nucleic acids (such as mRNA), 
and extracellular vesicles, detected on readily acces-
sible body fluids such as blood, semen, or urine.55 
An example of success in PC is the detection of the 
androgen receptor (AR) splice variants, such as 
AR-V7, in CRPC, predicting resistance to systemic 
treatments such as enzalutamide or abiraterone 
acetate. This new modality is slowly entering the 
space of PC diagnostics and accurate distinction 
from benign conditions.56 Circulating mRNA tech-
nologies and second-generation CTC technologies 
have also entered the BCR space, with positive ret-
rospective associations with a higher risk for bio-
chemical recurrence following RP, even in the 
context of negative PSA.56–58 Although it is still very 
early for such technologies to translate into clinical 
practice and guide treatment decisions, also due to 
the low abundance of circulating biomarkers in 
localized or early-recurring PC, it nevertheless 
incites strong interest for the future.

Hormonal therapy

Immediate versus deferred ADT
Androgen-deprivation therapy, as the mainstay 
for macroscopically recurrent disease, is an 

obvious option for the management of BCR. 
Given that the volume of not yet macroscopic dis-
ease in BCR is low, the obvious question is 
whether such management would be beneficial in 
a BCR setting. Similarly, it is necessary to esti-
mate the potential benefit and optimal timing of 
any intervention need to be in order for it to be 
clinically meaningful.

Initial evidence was obtained from two large ret-
rospective studies. The CaPSURE trial (2096 
patients with BCR post-RP or RT) demonstrated 
no significant advantage to immediate ADT ver-
sus deferred (at metastatic disease or ⩾2 years 
after BCR) (HR for mortality: 0.91, 95% CI, 
0.52–1.60) at a median FU of 54 months. The 
estimated 5-year OS (95% CI) was 85.7% versus 
87.7%, the 10-year OS was 69.8.1% versus 
69.3%.59 In a larger retrospective study (5804 
men), salvage ADT was associated with OS or 
PC-specific mortality in both the post-RP (HR: 
0.35 and HR: 0.43 respectively) or the post-RT 
cohort (HR: 0.62 and HR: 0.65 respectively) in 
patients with PSA-DT < 9 months.60

The prospective phase III TOAD (TROAG 
03.06) trial questioned the optimal timing of 
ADT in patients with rising PSA.61 Interestingly, 
however, the trial was not strictly homogeneous 
in regard with the eligibility criteria; in addition to 
the pure PSA relapse patients (post-RT or post-
RP with or without post-operative RT), the study 
also included patients with a de novo incurable 
disease (due to age, comorbidities, or locally 
advanced disease), the latter amounting to 11% 
of the total cohort. The study assessed an imme-
diate versus deferred ADT; although the sched-
uled delay for the trial was at least 2 years, 52% of 
patients started ADT within 2 years, and patients 
with poor risk features (such as short PSA-DT) at 
the time of relapse started with a median delay of 
12.3 months. Immediate ADT borderline 
improved 5-year OS (91.2% versus 86.4%, log-
rank p = 0.047; unadjusted HR: 0.55, p = 0.05; 
adjusted HR: 0.54, p = 0.047; n = 293). Survival 
curves seem to start to separate after 5 years, with 
6-year and 7-year survivals estimated at 76.4% 
versus 85.6% and 65.5% versus 81% respectively. 
However, this was not maintained in the PSA 
relapse only cohort, despite more patients in this 
group (5-year OS 78.2% versus 83.4%, log-rank 
p = 0.10; unadjusted HR: 0.58, p = 0.10; adjusted 
HR: 0.59, p = 0.19; n = 261). The time to local 
progression was significantly in favor of the imme-
diate ADT arm (adjusted HR: 0.51, p = 0.001), 
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while time to a PC complication did not differ 
(adjusted HR: 0.78, p = 0.16). No significance 
could be demonstrated for PC-specific mortality, 
as the number of events was low. Intriguingly, the 
time to development of castration resistance from 
treatment start differed significantly between the 
two arms in favor of immediate ADT (HR: 0.30, 
p < 0.001). As the use of continuous versus inter-
mittent ADT was similar between the two arms, 
this seems to be a true effect. The authors suggest 
that this may reflect the development of clonal 
resistance in the untreated patient as the disease 
progresses, with a reduction of treatment respon-
siveness and effectiveness in overt metastatic dis-
ease.61 A biological explanation for this reduction 
in the risk of CRPC development with the use of 
immediate ADT versus referred observed by 
Duchesne et al.61 might be related to the fact that 
the timing of ADT corresponds to a state of early 
versus more advanced disease; evidence from 
mHSPC indicates that disease volume is a predic-
tive factor for progression to CRPC,62 and in the 
same direction there seems to be differentiation 
towards a more ‘drug resistant’ disease in late 
advanced metachronous disease, often driven by 
the use of systemic treatment in the localized dis-
ease stage.21 Finally, the higher percentage of 
high and very high-risk cancers in the delayed 
ADT arm (42% versus 33% in the immediate 
ADT arm) could also partly account for the 
observed shorted time to CRPC in this arm.61 At 
the molecular level, an explanation could be that 
advanced disease has a much higher level of phos-
phoinositide 3-kinase (PI3K) pathway altera-
tions/PTEN loss, compared to early disease, and 
this is related to androgen insensitivity, decreased 
transcription of AR target genes, and CRPC 
development.63,64

The study also highlighted the difficulties encoun-
tered in this space, with slow accrual, high screen-
ing failure rate, and early trial termination. The 
more optimistic outlook on the results of this trial 
is probably the fact that the immediate arm 
appears to gain increasing benefit for absolute 
mortality difference after the 5 first years; approx-
imately 15% by the end of 7 years, and 25% after 
8 years, yet these are estimated results, as the 
median study FU was only 5 years, and very few 
events occurred in later years.61

A similar phase trial, ELAAT (Clinicaltrial.gov 
identifier: NCT00439751), was designed by the 
Canadian Urological Oncology Group to assess 
the optimal timing of ADT in men with PSA rise 

post-RT, but failed to reach its accrual goal. In an 
attempt to improve significance by increasing the 
cohort size, a pooled analysis of the TOAD and 
ELAAT data was performed (n = 261 + 78 = 339). 
The reasons to start ADT in the two trials were 
development of symptoms, metastases on con-
ventional imaging, or PSA-DT of ⩽6 months. 
The combined analysis showed no difference in 
all-cause mortality (HR 0.75, p = 0.37) or 
PC-specific mortality, whereas time to local pro-
gression, distant progression, and prostate cancer 
complications differed significantly in favor of 
immediate ADT. Several explanations may 
account for the loss of significance for OS in the 
combined analysis: ELAAT accrued older 
patients with a higher all-cause mortality risk and 
a lower relative risk of PC-specific mortality (rela-
tive to the overall mortality risk) and had a smaller 
difference in PSA between the immediate and 
deferred arms (3.98 and 18.1 ng/ml respectively 
for the ELAAT group, versus 3.52 and 30.2 ng/dl 
for the TOAD group); on the other hand, more 
patients in TOAD had a relapse-free interval of 
less than 2 years from RT (30% versus 10% for 
ELAAT), indicating that TOAD had more high-
risk patients for which immediate treatment 
would be potentially more beneficial.65

Intermittent versus continuous ADT
A large Canadian Cancer Trial Group phase III 
trial assessed intermittent versus continuous ADT 
in 1,386 patients with rising PSA (>3 ng/ml) at 
more than 1 year after RT.66 Interestingly, RT 
could be either primary or salvage, hence intro-
ducing heterogeneity in terms of prognosis and 
therefore survival. The trial had a non-inferiority 
design and met its primary outcome; at a median 
FU of 6.9 years, the median OS was 8.8 years in 
the intermittent group versus 9.1 years in the con-
tinuous ADT group (HR for death: 1.02, 95% CI 
0.86–1.21, p = 0.009), with an estimated 7-year 
cumulative rates of PC-specific death at 18% ver-
sus 15% respectively (HR: 1.18, 95% CI 0.90–
1.55, p = 0.24). Other than meeting the 
non-inferiority threshold, intermittent treatment 
had a more favorable toxicity profile and resultant 
quality of life in respect to urinary problems 
(p = 0.006), hot flashes, (p < 0.001) and libido 
(p < 0.001), with a trend towards improvement of 
fatigue (p = 0.07). The authors highlight that the 
role of predictive factors such as age, GS, and 
PSA kinetics in the selection of patients for inter-
mittent therapy remains to be defined. They rec-
ognize that the known long-term morbidity of 
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ADT, such as in the development of metabolic 
syndrome and cardiovascular disease. 
Interestingly, the reported rate of deaths unre-
lated to PC attributed to a cause other than com-
plication of treatment initiated after castration 
resistance or other primary cancer was higher in 
the continuous ADT group (35.9% versus 28%). 
Overall, any potential benefit on PC–specific 
mortality of continuous ADT might be balanced 
by the benefit of avoiding death from other causes, 
such as cardiovascular disease, using intermittent 
ADT.

Given the heterogeneity in the long-term response 
to intermittent therapy, early identification of 
aggressive diseases would be useful. Higano’s 
team have shown that the duration of the first off-
treatment interval is prognostic for time to CRPC 
and death in these patients.67 The same group 
demonstrated that patients with longer time of 
PSA rise (⩾60 days) after the first non-castrate 
level testosterone (>50 ng/dl) during the first off-
treatment have good outcomes in terms of risk of 
developing CRPC, and it could be used for strati-
fication and patient selection in terms of treat-
ment strategies and optimal time for re-starting 
ADT.68

Addition of ADT to salvage local treatment and 
oligometastatic disease
The French phase III GETUG 16 trial69 assessed 
the addition of short-term, 6-month ADT to sal-
vage RT (66 Gy in 33 fractions) in patients with 
rising PSA (between 0.2 and 2 ng/dl), previously 
undetectable post-RP. At a median FU of 
63 months, the addition of ADT resulted in 
improved 5-year biochemical and clinical PFS 
(80% versus 62%, HR: 0.50, p < 0.0001) across 
all patient subgroups, to the price of moderately 
increased hot flushes and sweats (8% versus 1% of 
⩾G2 events), without any serious cardiovascular 
or other toxicity. The highest benefit was observed 
for the patients with a baseline PSA of >0.5 µg/l 
and a PSA-DT of ⩽6 months. The MFS was not 
estimated in this trial, as only the first progression 
event was recorded, and this would usually be 
local progression with or without PSA progres-
sion. Given the low baseline PSA levels and the 
low-risk features of the study cohort (e.g., 90% of 
the cohort had a Gleason score of up to 7), a 
longer FU would be necessary to reliably demon-
strate any effect on MFS. In this sense, it is 
impossible to assess the real benefit of the ADT 
addition to RT on ultimate OS outcomes.

Radiotherapy in the GETUG-16 trial consisted 
of the prostate bed (including the seminal vesicle 
area), with a recommendation for pelvic irradia-
tion only in patients who did not have node dis-
section during radical prostatectomy, and only if 
the risk of nodal involvement was greater than 
15% according to the Partin tables. The phase III 
NRG Oncology/RTOG 0534 SPPORT trial70 
randomised more precisely, according to the field 
of salvage RT and the addition of ADT, in a 
3-arm fashion: prostate bed RT (64.8–70.2 Gy) 
versus prostate bed RT (64.8–70.2 Gy) with short-
term ADT (4–6 months) versus prostate bed RT 
(64.8–70.2 Gy) and pelvic RT (45 Gy) with short-
term ADT (4–6 months). In the 1792 randomised 
patients, freedom from progression was 71%, 
83%, and 89%, respectively, at a median FU of 
6.4 years, with statistical significance demon-
strated between each treatment arm, i.e., with 
each treatment addition. Freedom from distance 
metastasis also showed a trend for benefit at 
5 years (91.7% versus 94.4% versus 95.2%), with a 
significant reduction for the triple modality arm 
(p = 0.0140) compared to baseline, but without 
any significant differences in OS.

Designed prior to the establishment of GnRH 
analogues as first choice hormonal therapy with 
RT, the RTOG 9601 trial randomised patients 
with PSA between 0.2 and 4.0 ng/ml post-RP 
[(both persistently elevated PSA and rises after an 
initial complete biochemical response) to salvage 
RT and 2 years bicalutamide treatment (150 mg 
daily) versus salvage RT and placebo]. The study 
has the longest reported median FU (13 years) 
and showed a significant benefit for 12-years OS 
(76.3% versus 71.3%, p = 0.04), metastatic PC 
(14.5% versus 23%, p = 0.005), and PC-specific 
mortality (5.5% versus 13.4%, p < 0.0001) at 
12 yrs. Patients with a lower Gleason score (⩽7), 
a PSA level of less than 0.7 ng/ml, or negative sur-
gical margins may have less benefit from the addi-
tion of antiandrogen therapy.71 The RTOG 9601 
team performed a subsequent subgroup analysis 
showing a lack of benefit for PSA levels <0.6 ng/
ml (HR: 1.16; 95% CI, 0.79–1.70) and increased 
late grades 3 to 5 cardiac and neurologic toxic 
effects (odds ratio, 3.57; 95% CI, 1.09–15.97; 
p = 0.05). In contrast, in patients with 
PSA > 1.5 ng/ml, there was a 25% 12-year abso-
lute benefit (HR: 0.45, 95%CI: 0.25–0.81).72

The ongoing British RADICALS-HT trial 
addresses not only the question of addition of 
GnRH analogues or bicalutamide to 
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post-operative RT (immediate or salvage), but 
also of the optimal duration of treatment, using a 
3-arm randomization (RT alone versus RT plus 
6 months of hormonal treatment versus RT plus 
24 months of hormonal treatment) (Clinicaltrials.
gov identifier: NCT00541047).

With the implementation of next generation 
imaging techniques in the clinical workflow,73 a 
considerable proportion of relapsing prostate can-
cer patients are diagnosed with an oligometastatic 
disease, an intermediate state between a localized 
relapse, and a widespread metastatic status. In 
the last years, MDT modalities like stereotactic 
body radiotherapy (SBRT) or salvage lymph node 
dissection have emerged as valid treatment 
options to treat these patients, to postpone sys-
temic therapies, and in some cases to improve 
outcome.74,75 Although two major prospective 
studies published so far proposed MDT as alter-
native to systemic ADT,34,31 emerging evidence 
suggest a potential synergistic effect of this com-
bined strategy to improve outcome of these 
patients.76,77 Ongoing trials are prospectively test-
ing the use of SBRT with or without 6 months of 
concomitant ADT (Clinicaltrials.gov identifier: 
NCT04302454), the impact of intermittent ADT 
with or without elective nodal pelvic irradiation 
(Clinicaltrials.gov identifier: NCT03630666), or 
elective nodal irradiation versus SBRT, both com-
bined with 6 months of ADT,78 in patients with 
an exclusive oligometastatic nodal relapse. 
Androgen receptor targeted agents are also tested 
with SBRT in other ongoing clinical trials.79

Chemotherapy
Unsurprisingly, docetaxel trials have focused on 
high-risk BCR patients, given their higher risk 
for distant metastasis. Following a number of 
encouraging phase II trials,80–82 two phase III tri-
als have been reported on the use of docetaxel 
for BCR.

In the phase III TAX 3503 trial,83 which was ter-
minated early, 413 patients high-risk BCR 
patients (PSA-DT ⩽ 9 months and PSA ⩾ 1 ng/
ml) were randomised to receive 18 months of 
ADT (leuprolide and bicalutamide), with or 
without, docetaxel (75 mg/m2 IV 3-weekly, 10 
cycles). The final analysis included data from the 
trial and a subsequent registry created after com-
pletion of study accrual to secure the primary 
endpoint. At a median FU of 33.6 months, the 
study showed a trend towards improving median 

PFS (26.2 months versus 24.7 months, HR: 0.80, 
95% CI 0.61–1.04, p = 0.09) and in OS for the 
intention-to-treat population (medians not 
reached, HR 0.51, 95% CI 0.23–1.10. p = 0.08), 
with good testosterone recovery in both arms.

Another phase III trial assessed the addition of 
docetaxel (70 mg/m2 IV 3-weekly, 6 cycles) to 
ADT in 254 patients with rising PSA and high-
risk criteria after primary local therapy.84 For 
inclusion in the trial, patients had to present with 
one or more of the following: node-positive ade-
nocarcinoma, positive surgical margins, GS ⩾ 8, 
PSA velocity >0.75 ng/ml per year, 
PSA-DT ⩽ 6 months, and time to PSA recurrence 
⩽12 months. At a median FU of 10.5 years, there 
was no significant difference in PSA-PFS 
(20.3 months versus 19.3 months, HR: 0.85, 95% 
CI: 0.62–1.16, p = 0.31), or radiologic PFS 
(8.9 years versus 9 years, HR: 1.03; 95% CI 0.74–
1.43, p = 0.88), while the OS data was not mature 
(12-year survival rate 60% versus 55%, HR: 0.86, 
95% CI 0.56–1.31, p = 0.49). The use of doc-
etaxel had no significant effect on quality of life 
during the first 12 months of treatment.

A third phase III trial is currently ongoing 
(Clinicaltrials.gov identifier: NGR-GU002) 
assessing docetaxel in patients with persistently 
elevated PSA ⩾ 0.2 ng/ml (Clinicaltrials.gov iden-
tifier: NCT03070886). A number of phase II 
docetaxel-based combination trials have been 
reported, some of which demonstrated significant 
toxicity (Table 2).85–87

It ought to be highlighted that the STAMPEDE 
trial allowed for previously treated relapsing non-
metastatic patients with PSA progression only, 
although the reported numbers for previously 
treated M0 (which would include the pure BCR 
patients) were small both for the control (3%), 
docetaxel (2%), docetaxel/zoledronic acid (4%), 
and abiraterone acetate (3%) arms.88,89 The 
results for these PSA-relapse only patients have 
not been separately reported, so no relevant con-
clusions can be made.

Next-generation hormonal agents
Given the impressive impact next-generation hor-
monal agents (NHA) have had in the mCSPC 
and mCRPC settings, it is not surprising that 
there would be attempts to see whether the ben-
efit could extend to their use in the much earlier 
stage of BCR.
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No phase III trial evidence is reported yet. The 
ongoing 3-arm randomised EMBARK trial (enza-
lutamide plus leuprolide versus placebo plus leu-
prolide versus enzalutamide monotherapy) in 
BCR patients with high-risk features 
(PSA-DT ⩽ 9 months, PSA ⩾ 2.0 ng/ml post-RP, 
and ⩾5.0 ng/ml and ⩾nadir + 2.0 ng/ml post-RT) 
has completed accrual, with results pending.90

The ongoing EORTC 1532 is a randomised 
phase II trial evaluating the efficacy of daroluta-
mide versus ADT in men with asymptomatic hor-
mone-naïve PC (non-metastatic or up to 4 
non-visceral lesions) and a PSA ⩾ 2 ng/dl 
(Clinicaltrial.gov identifier: NCT02972060). 
The hypothesis of this study is that AR antago-
nists may have a similar efficacy in reducing PSA 
compared to ADT, with a better tolerability due 
to the maintenance of normal systemic testoster-
one levels. The primary endpoint is PSA response 
at 24 weeks.

The phase II STREAM trial assessed the combi-
nation of prostate bed RT (66 Gy), 6 months of 
ADT and enzalutamide in patients with a GP ⩾ 7, 
and a PSA recurrence within 4 years of RP, with 
PSA levels of 0.2–4.0 ng/ml. In a cohort of 38 
men, the combination had a good safety profile, 
without any grade 4/5 or unexpected toxicities. 
The primary endpoint of 2-year PFS was 65% 
(95% CI: 47, 78) versus 51% (95% CI: 33, 67) for 
historic controls. PSA remained at undetectable 
levels in 69% at 2 years, and the 3-year PFS was 
53% (95% CI 37, 68).91

The ongoing randomised phase II SALV-ENZA 
trial is designed to assess the combination of sal-
vage prostate bed RT (66.6–70.2 Gy) with 
6 months of enzalutamide versus placebo in high-
risk BCR patients (GS ⩾ 8 and either pT3 or pos-
itive margins).92 Although it is important that this 
is a randomised trial, the standard arm omits 
ADT, which is a de-escalation compared to cur-
rent standards, evoking the assumption that enza-
lutamide would sufficiently replace ADT. In 
addition, the trial includes only patients with PSA 
up to 0.7 ng/ml, which, based on previous evi-
dence, likely excludes patients with higher PSA 
levels that are more likely to benefit from a com-
binatorial approach to RT, notably with ADT.

The ongoing randomised RTOG3506 (STEEL) 
trial also assesses the addition of 2 years of enzalu-
tamide to salvage RT and 2 years of ADT and 

stratifies for high-risk factors (GS 8-10, locore-
gional node involvement at RP, seminal vesicle 
invasion, persistently elevated PSA after RP, and 
PSA > 0.7 ng/ml).93

The phase I CARLHA-GEP1294 trial assessed 
the combination of RT with 6 months of abirater-
one acetate with ADT in patients in BCR post-
RP. Abiraterone was started 1 month prior to RT, 
while ADT was started either together with RT or 
1 month prior. The addition of AA did not 
increase pelvic toxicity, however showed increased 
G3 liver toxicity at the standard dose of 1000 mg 
daily. The phase II trial is ongoing at the recom-
mended dose of 750 mg daily.

The South American phase II LACOG-0415 is a 
trial that assessed two NHA agents, abiraterone 
acetate and apalutamide, in a 3-arm randomised 
fashion (apalutamide alone versus apalutamide 
and abiraterone versus abiraterone and ADT) in 
patients in BCR (PSA ⩾ 4 ng/dl and 
PSA-DT < 10 months) post-RP or RT (n = 22 
patients), as well as in a node-positive patient 
cohort (not candidate to local therapy) and an 
mCSPC cohort. The hypothesis driving the study 
was that ADT-free alternatives with the use of 
NHA could provide high efficacy with a favorable 
safety profile in patients with advanced CSPC. In 
the total cohort of 128 patients, the double NHA 
combination as well as the abiraterone/ADT 
combination achieved high efficacy in terms of 
the primary endpoint of PSA decline of ⩽0.2 ng/
ml at week 25 [70.5% (95% CI: 54.8–83.2%) 
and 73.8% % (95% CI: 58.0–86.1%) respec-
tively], while apalutamide monotherapy did not 
[57.1% (95% CI: 41.0–72.3%)]. Radiologic dis-
ease control and PSA decline of ⩾80% and ⩾50% 
at week 25 were similar amongst treatment arms. 
Interestingly, there were no differences in quality 
of life between the 3 arms. No results per sub-
cohort were presented; it is therefore not possible 
to know how the results translate for the BCR 
sub-cohort, which accounted for only 17.2% of 
the total cohort.95

The ongoing randomised phase II FORMULA-509 
trial assesses the addition of the same combination 
(abiraterone and apalutamide) to salvage RT and 
ADT for high-risk BCR patients such as 
PSA ⩾ 0.7 ng/ml, pathologic N+ disease, or 
numerous adverse risk factors (e.g., pT3b-T4,  
primary pattern 5 disease) (Clinicaltrials.gov iden-
tifier: NCT03141671).
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The phase II BALANCE (Clinicaltrials.gov iden-
tifier: NRG GU-006) trial assesses in a placebo-
controlled fashion the addition of 6 months 
apalutamide to salvage RT in high-risk BCR 
patients, including patients that never negativized 
their PSA post-RP. As the trial does not allow for 
ADT, patients with PSA > 1 ng/ml are excluded, 
aiming to use PSA as a biomarker for the use of 
NHA (Clinicaltrial.gov identifier: NCT03371719).

The ongoing phase II SPARTAR trial, designed 
by the team that performed the STREAM trial, 
assesses the addition of both an NHA and chem-
otherapy to a hormone-radiation in the high-risk 
BCR setting (relapse within 4 years of RP, GS ⩾ 8 
or GS 7 with high-risk features such as pT3, N+ 
or positive margins). Trial treatment consists of 
ADT and apalutamide 120 mg daily, concur-
rently with RT followed by 6 cycles of 3-weekly 
docetaxel 75 mg/m2. The ADT/apalutamide 
treatment is scheduled to continue for 36 weeks 
or until unacceptable toxicity or disease progres-
sion, and the study. The trial primary endpoint is 
3-year PFS, with a hypothesis of improving it to 
75% from a historic 50%.96

Immunotherapy

Vaccines
Following on evidence from a smaller phase II 
trial,97 the randomised PROTECT phase III trial 
assessed the use of sipuleucel T in 176 patients 
with rising PSA post-RP. Although sipuleucel 
achieved a 48% increase in PSA-DT (p = 0.038), 
the median time to biochemical failure, the study 
primary endpoint, did not differ between the two 
arms (18 months versus 15.4 months, HR: 0.936, 
95% CI 0.637–1.376, p = 0.737).98 Although the 
study indicated biological activity for sipuleucel T 
in this setting, including documenting robust and 
sustained induced immune responses, a much 
larger cohort number and more robust endpoint 
with longer FU would be needed to accurately 
assess the potential of this cellular immunother-
apy modality for BCR.

Several early phase trials involving TAA-based 
vaccines, including the poxviral Prostvac vaccines 
and PSMA vaccines, have reported moderate 
anti-tumour specific responses and prolongation 
in PSA-DT (Table 2).99–105 Furthermore, the 
adenovirus/PSA vaccine APP21 is currently 
assessed as a monotherapy versus combination 

with ADT in a randomised phase II trial 
(Clinicaltrials.gov identifier: NCT00583752).

Checkpoint inhibition
Some steps have also been made in the direction 
of using checkpoint inhibition in BCR. The anti-
CTLA4 tremelimumab was assessed in combina-
tion with short-term (6 months) bicalutamide 
treatment in a phase I trial, reporting G3 diar-
rhoea and rash as dose-limiting toxicities. In 3 out 
of 11 patients (27%) delayed prolongation of 
PSA-DT was observed several months after com-
pleting treatment.106 Nivolumab monotherapy for 
up to 2 years is currently assessed in high-risk 
BCR patients with PSA-DT < 10 months 
(Clinicaltrials.gov identifier: NCT03637543).

An ongoing trial assesses the use of nivolumab 
monotherapy in patients with MMR-deficient/
MSI-high and PC with rising PSA (Clinicaltrials.
gov identifier: NCT04019964). The trial also 
includes patients with high tumour mutational 
burden (>20 mut/Mb) and CDK12-alterations.

Immunotherapy combination trials
A currently ongoing phase II trial (Clinicaltrials.
gov identifier: NCT03315871) involves the use 
of the Prostvac recombinant vaccine in biochemi-
cally recurrent PC, in combination with bin-
trafusp alpha, a bifunctional anti-PD-L1/
anti-TGFbetaRII fusion protein in biochemically 
recurrent PC patients, as well as CV301, a poxvi-
ral based TAA vaccine targeting MUC1 and 
CEA. A combination of the pTVG-HP vaccine 
with pembrolizumab is also currently ongoing 
(Clinicaltrials.gov identifier: NCT03600350).

Recently, a phase I/II trial of a combination syn-
thetic DNA therapy of plasmids encoding for 
PSA and PSMA (INO-5150) and interleukin-12 
(INO-9012) in 62 patients with rising PSA 
reported a good safety profile, with immuno-
genicity observed in 76% and 85% of patients 
remaining progression-free at 72 weeks.107

Targeted therapy and other agents

PARP inhibitors
The PARP inhibitor olaparib is currently evalu-
ated in a phase II trial designed to test the hypoth-
esis that PARPi monotherapy may be active in 
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men with high-risk BCR. The enrichment stage 
of the trial includes confirmation of presence of a 
mutation in a gene of the DNA repair pathway. In 
the reported interim results of the trial, olaparib 
without ADT showed a satisfactory tolerance 
profile and interesting activity. It should be noted 
that 35% of men had a BRCA/ATM alteration, 
15% of patients showed a PSA50 response, 
including two complete PSA responses (all of 
whom had a BRCA2 mutation), another 20% 
had minor PSA responses, and median PSA pro-
gression-free survival was greater in men with ver-
sus without BRCA2/ATM muts (9 versus 4 mo; 
p = 0.02).108

The phase II ROAR trial (Clinicaltrials.gov iden-
tifier: NCT03533946) evaluates rucaparib in the 
same setting, requiring a BRCAness signature 
tested on liquid or soft tissue biopsy, with a pri-
mary endpoint of PSA50 response.

A combination of olaparib with the anti-PDL1 
agent durvalumab is also evaluated in a phase II 
trial on BCR patients with alterations in the DNA 
repair pathway genes (Clinicaltrials.gov identifier: 
NCT03810105).

Antiangiogenics
A number of anti-angiogenic drugs, including 
bevacizumab, sunitinib, and lenalidomide have 
been investigated in phase II trials with moder-
ate results, alone or in the context of multimo-
dality treatment (Table 2).86,87,109–111 The only 
phase III trial involved thalidomide, an anti-
angiogenic drug with immunomodulatory prop-
erties, has been tested in a placebo-controlled 
phase III trial in association with ADT with a 
crossover phase, showing an effect on time to 
further PSA progression (17.1 months versus 
6.6 months, p = 0.0002).112

PI3K/Akt and metabolic pathways
Two phase II trials involving AKT inhibitors have 
failed to show any meaningful activity as mono-
therapy or in combination with anti-androgen 
therapy (Table 2).113,114

Cox inhibitors, notably celecoxib which also inhib-
its activation of Akt by phosphorylation in PC 
cells, have also been evaluated in phase II studies 
showing significant effect on PSA-DT but conflict-
ing results in terms of toxicity (Table 2).115,116

The combination of atorvastatin and celecoxib 
was also investigated (Table 2).117 A meta-analy-
sis on the use of statins in prostate cancer found it 
was associated with a 21% reduction in the risk of 
BCR among those treated with RT (HR: 0.79, 
p = 0.01, 10 studies), whereas it was not associ-
ated with BCR among those treated with RP 
(HR: 0.94, 95% CI 0.81–1.09, p = 0.43, 15 stud-
ies). In the overall cohort, statin use was associ-
ated with a 22% reduction in the risk of metastasis, 
and a 24% reduction in risk of both all-cause and 
prostate cancer-specific mortality.118

Vitamin supplementation has also been investi-
gated in several early trials (monotherapy or com-
binations) with moderate results (Table 2).119–123 
Finally, in a meta-analysis of 5 retrospective stud-
ies, metformin use was marginally associated with 
reduction in the risk of BCR (HR: 0.82, 05% CI: 
0.67–1.01, p = 0.06).124

Other targeted therapies
A number of phase II trials evaluated difference 
targeted therapies on pathways involved in pros-
tate cancer development, with results ranging 
from complete lack of efficacy in term of PSA 
response to modest improvements to PSA-DT 
(Table 2).125,126

Discussion
Given the disease evolution of PC, especially with 
the introduction of new treatments in the 
mCSPC, nmCRPC and mCRPC settings, a suf-
ficiently long-life expectancy is necessary for BCR 
to influence mortality. As a result, trials with fol-
low-up longer than 10 years are needed to accu-
rately assess the impact of systemic treatment in 
BCR. Furthermore, any survival gain should be 
balanced against the side-effects of treatment and 
the effects on overall quality of life in these men 
that feature a long disease-specific expectancy at 
the time of BCR diagnosis. It is therefore impor-
tant, when considering initial systemic therapy for 
BCR, to optimize the timing of therapy and 
patient selection.

The so far available phase III evidence indicates 
that early salvage RT provides benefit which is 
greater at lower PSA levels. In contrast, the abso-
lute benefit from the addition of hormone therapy 
in such low PSA levels would be less. Higher PSA 
levels are likely to be associated with increased 
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probability of detecting metastatic disease, notably 
distant, with molecular imaging. It transpires those 
patients with higher PSA levels may preferentially 
derive treatment benefit from hormone therapy for 
occult distant metastatic disease. It has become 
progressively clear, therefore, that not all biochem-
ically relapsed men need systemic treatment.

In this direction, the current ESMO guidelines 
advise that early ADT alone is not recommended 
for men with BCR unless they have a rapid 
PSA-DT, symptomatic local disease, or proven 
metastases and that, in the absence of metastatic 
disease, such men should be offered intermittent 
rather than continuous treatment.127 The cut-off 
for rapid PSA-DT is not precisely determined nor 
universally applied. EAU guidelines use a 
12-month cut-off to indicate high-risk BCR 
patients,19 trials have used a range of 5–15 months, 
and it has been clearly demonstrated that a 
PSA-DT of <3 months indicates a poor progno-
sis and increased risk for metastatic disease.

The absolute PSA value at the time of BCR has 
gained more evidence for its value as prognostic 
and predictive factor. The post-hoc analysis of the 
RTOG 9601 trial probably provides the strongest 
available evidence in this direction, indicating a 
lack of benefit from hormonal therapy for PSA 
levels <0.6 ng/ml, with increased associated tox-
icity and, conversely, a 12-year absolute benefit of 
25% in patients with PSA > 1.5 ng/ml, compared 
to the 5% absolute benefit in the overall study 
cohort.71,72 It seems, therefore, that we are start-
ing to sieve through this large space of BCR, mak-
ing a distinction between those patients for which 
salvage RT alone would be sufficient as standard 
treatment, and those who require hormonal ther-
apy, short- or long-term.

When considering docetaxel, the two reported 
phase III trials reported on PFS, with one failing 
to show benefit, and the other showing borderline 
benefit, whilst OS data were not mature in the 
former and not reported in the latter.83,84 Both 
studies aimed to include high-risk BCR patients, 
but their criteria for this were not identical, and 
they also differed in the docetaxel regimen and 
number of cycles. This is reminiscent of the land-
scape of docetaxel trials for locally advanced, 
non-metastatic disease, with contradicting results 
amongst trials that differed in the definition of 
high-risk disease, docetaxel regimen, accrual 
power and timing of treatment, and failure to 

show OS survival benefit despite improvements 
in failure-free survival.128

Table 1 summarizes the current evidence from 
phase III and leading phase II trials, as well as the 
current consensus recommendations based on 
ESMO and EAU guidelines. Table 2 summarizes 
the historical trial data for agents that are no 
longer under active investigation. Currently, 
international consensus recommends the addi-
tion of ADT if high-risk features, such as PSA 
over a given cut-off (varying between 0.5 and 
0.7 ng/ml),129,130 short PSA-DT, symptoms, or 
macroscopic disease. Regarding duration of this 
‘adjuvant’ ADT, while awaiting the results of the 
RADICALS-HT trial, the best available evidence 
comes from GETUG-16, in the form of a short-
term (6 months) LHRH analogue treatment. The 
future phase III studies investigating NHAs will 
undoubtedly shape the field and are eagerly 
awaited. An interesting angle on the design of 
available phase II NHA trials is that they looked 
into the monotherapy option, aiming to assess 
where ADT use can be spared with (although ini-
tial phase II data are rather disappointing), as well 
as into combination options.

Conclusion
Because of the heterogeneous and dynamically 
evolving BCR stage, and in order for future stud-
ies to be more informative and more efficient in 
directing clinical practice, patients ought to be 
ideally stratified per high-risk features such as 
PSA levels and PSA-DT, as well as according to 
primary treatment modality (RP versus RT). As 
more sophisticated molecular techniques enter 
the arena, it is possible to envisage a future for 
biochemically relapsed PC where liquid biopsies 
would provide a dynamic molecular mapping that 
would guide patient selection, optimal treatment 
modality, and optimal treatment timing.
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