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A B S T R A C T

Background: Neuropsychiatric disorders such as Schizophrenia (SCZ) and Bipolar disorder (BPD) pose a broad
range of problems with different symptoms mainly characterized by some combination of abnormal thoughts,
emotions, behaviour, etc. However, in depth molecular and pathophysiological mechanisms among different
neuropsychiatric disorders have not been clearly understood yet. We have used RNA-seq data to investigate
unique and overlapping molecular signatures between SCZ and BPD using an integrative network biology
approach.
Methods: RNA-seq count data were collected from NCBI-GEO database generated on post-mortem brain tissues of
controls (n ¼ 24) and patients of BPD (n ¼ 24) and SCZ (n ¼ 24). Differentially expressed genes (DEGs) were
identified using the consensus of DESeq2 and edgeR tools and used for downstream analysis. Weighted gene
correlation networks were constructed to find non-preserved (NP) modules for SCZ, BPD and control conditions.
Topological analysis and functional enrichment analysis were performed on NP modules to identify unique and
overlapping expression signatures during SCZ and BPD conditions.
Results: We have identified four NP modules from the DEGs of BPD and SCZ. Eleven overlapping genes have been
identified between SCZ and BPD networks, and they were found to be highly enriched in inflammatory responses.
Among these eleven genes, TNIP2, TNFRSF1A and AC005840.1 had higher sum of connectivity exclusively in BPD
network. In addition, we observed that top five genes of NP module from SCZ network were downregulated which
may be a key factor for SCZ disorder.
Conclusions: Differential activation of the immune system components and pathways may drive the common and
unique pathogenesis of the BPD and SCZ.
1. Introduction

Mental disorder are mainly characterized by some combinations of
abnormal thoughts, emotions, behaviour, and relationships with others
(Watson et al., 2005). Apart from social and cognitive impacts, it also
affects the global economic growth at a higher rate than other health
issues such as cardiovascular diseases, cancer, and diabetes (Bloom et al.,
2011). Mental disorders are known to be multifactorial in nature. Brain
structure and its function, environmental factors, malnutrition before
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birth, problems during birth, psychosocial factors, familial history, ge-
netic components (certain genes) and immunological responses are some
of the factors which contribute to mental disorders (Craddock et al.,
2006; Felger et al., 2016; Meyer et al., 2011). SCZ and BPD are the most
prevalent mental disorders (Charlson et al., 2019). BPD is commonly
known as manic depressive disorder which causes unusual shifts in
mood, energy, activity level and ability to carry out day-to-day activity
(Gitlin et al., 1995). SCZ is a chronic and severe mental disorder which
affects a person’s thoughts, feelings, and behaviours. The major
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treatments for this disorder are antipsychotic drugs, psychosocial thera-
pies and coordinated special care (De Hert et al., n. d.; Geddes and
Miklowitz, 2013; Lieberman et al., 2005).

Anterior Cingulate Cortex (AnCg) is the front part of cingulate cortex,
located towards the front of Corpus callosum in the medial frontal lobe of
the human brain (Gabriel et al., 2002). AnCg is responsible for detection
of errors, detection of conflicts, reward-based learning, emotional regu-
lation, experience of sadness, anxiety, ironic rebound and source of
hemisity etc.(Bush et al., 2000). Abnormalities in AnCg region have been
implicated in several neuropsychiatric disorders such as SCZ, depression,
BPD, obsessive-compulsive disorder, autism and post-traumatic stress
disorder etc. (Anticevic et al., 2015; Benes, 1993; Rauch et al., 1994).
Reduced functional connectivity at resting stage of ventral anterior
cingulate cortex was found in BPD patients and also showed similar
pattern of connectivity with SCZ (Anticevic et al., 2015), which sug-
gested a common mechanism behind the psychotic symptoms of these
disorders. In a recent study, it was noted that pro-inflammatory cytokines
viz. TNF-α, IL-6, IL-8, IL-2, IL-4 and IL-6 were elevated in BPD. Similarly,
TNF-α, IFN-γ, IL-12 and sIL-2R were also found to be elevated in SCZ
(Najjar et al., 2013). In the AnCg region, it was observed that increase in
interleukin-1β (IL-1β) and IL-6 gave rise to suicidal thinking (Holmes
et al., 2018).

Computational psychiatry is a novel field which uses integrative ap-
proaches to draw inferences on brain functions by studying gene
expression deviations, interaction among genes and roles of genes in
biological functions (Maia et al., 2017; Moutoussis et al., 2017; Pergola
et al., 2019). Ramaker et al. compared molecular signatures across
different disorders and brain regions (Ramaker et al., 2017). They have
observed majority of disease associated gene expression changes were in
the AnCg region. However, their work was limited to only differential
expression analysis of the genes. Several studies have reported that AnCg
region was associated with multiple biological functions such as cogni-
tion, error detection, conflict resolution, motivation, and modulation of
emotion (Carter et al., 1998; Paus, 2001; Weissman et al., 2005). Sig-
nificant overlap in gene expression changes in BPD and SCZ of AnCg
region and their findings were reported in literature (Thompson et al.,
2009; Woo et al., 2008). Such findings motivated us to explore further
about the overlapping and unique molecular signatures by performing
co-expression analysis, preservation analysis, topological analysis and
gene set enrichment analysis on significant DEGs identified from BPD and
SCZ samples of the AnCg region in post-mortem brain samples.

To this end, we have analysed a homogeneous RNA-seq dataset
generated from post-mortem brain tissues of AnCg region in BPD (n ¼
24), SCZ (n ¼ 24) patients and controls (n ¼ 24) using multiple bench-
marked algorithms. We have carried out differential expression analysis,
co-expression analysis, preservation analysis, topological analysis and
enrichment analysis of the dataset. Using an integrative approach, we
have identified the overlapping and unique set of genes, components of
core and specific pathway for BPD and SCZ. By comparing co-expression
networks of control and disease using preservation analysis, we identi-
fied two non-preserved (NP) gene co-expression modules from the con-
trol samples, one NP gene co-expression module from each BPD and SCZ
samples. Network topological analysis supported by literature and
database mining could identify overlapping and unique genes with
known or potential functional association with BPD and SCZ. Identifi-
cation of overlapping and disease-specific set of genes and pathways will
be advantageous for developing effective therapeutic intervention and
possible prevention measures.

2. Methods and materials

2.1. Dataset collection and preprocessing

We have collected the publicly available RNA-seq data GSE80655
from NCBI Gene Expression Omnibus (GEO) database (Ramaker et al.,
2017). It was collected from three different brain regions AnCg, nucleus
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accumbens and dorsolateral prefrontal cortex from 281 persons diag-
nosed with SCZ, BPD, major depressive disorder (MDD) and normal
controls. We have extracted 96 samples from AnCg region and used count
data of AnCg region of two different disorders, i.e., BPD (n ¼ 24), SCZ (n
¼ 24) patients and normal controls (n ¼ 24).

Before performing differential expression (DE) analysis on RNA-seq
count data, it is necessary to perform pre-processing steps such as low
read counts removal, normalization and transformation (Chowdhury
et al., 2019). Initially, we removed genes that had very low read counts
under each sample as these genes do not contain much information. A
gene was removed from downstream analysis if the gene did not contain
on an average 10 read counts across the whole samples of control and
corresponding disorder (Love et al., 2014). Widely used differential
expression analysis tools such as DESeq2 (Love et al., 2014) and edgeR
(MD et al., 2009) have built in strategy to remove low read counts genes.
RNA-seq count data contains various types of biases due to the different
sequencing depth and transcript sizes (Chowdhury et al., 2018). To
handle such biases, normalization is important. We used two normali-
zation methods, i.e., DESeq and TMM available with DESeq2 and edgeR
packages, respectively. RNA-seq count data follow discrete data distri-
bution (Chowdhury et al., 2018). Therefore, it is necessary to perform
transformation to use statistical or computing methods to analyse
RNA-seq count data. We used log2 transformation to transform the
datasets into normal like distribution before performing co-expression
analysis on the selected differentially expressed genes (DEGs).

2.2. Differential expression analysis

Differential expression analysis was performed to compare the
expression patterns of a gene between two different group of samples. It
is used to find genes which are differentially expressed across groups of
samples or in diseased conditions. Most differential expression analysis
tools work in two steps (Love et al., 2014; MD et al., 2009): (1) estimation
of fold change by considering sequencing depths and variability in
sequencing depths and (2) estimation of significance using test statistics.

After removal of low read counts and normalization of count data,
two widely used DE analysis tools viz., DESeq2 and edgeR were
employed to perform DE analysis. Consensus of the results of these tools
were built for selection of more accurate list of DEGs for further analysis.
These two tools also support different test statistics such as Wald-test, t-
test, LRT to compute the significant of differential expression. A gene
having low read counts may become more significant falsely. To control
this, we used Benjamini-Hochberg (BH) method to compute the Padjusted
value for each gene and then we used Padjusted value < 0.05 as a cut-off
criterion to select DEGs. Our consensus selects those genes as differen-
tially expressed which are selected by both the tools.

2.3. Co-expression network analysis

Co-expression network analysis identifies groups of tightly correlated
genes responsible for biological process or pathways or phenotypic var-
iations (Chowdhury et al., 2019; Kakati et al., 2019, 2016). Most widely
used workflow of co-expression analysis comprises of four steps (Lang-
felder and Horvath, 2008),(Chowdhury et al., 2019): (1) Computation of
pairwise similarity of genes, (2) construction of co-expression network,
where the network may be signed or unsigned or weighted or un-
weighted, (3) clustering to identify modules and (4) functional and to-
pological analysis of modules to associate modules with external
biological knowledge. WGCNA is the most widely used co-expression
analysis tool to find functionally interesting modules of genes (Lang-
felder and Horvath, 2008).

Before performing co-expression analysis using WGCNA tool, we
performed log2 transformation of the RNA-seq count data. WGCNA rec-
ommends excluding outlier samples before estimation of β value which is
later used to construct biologically relevant scale free network topology.
If the dataset contains outlier samples then estimation of β value may be
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inappropriate.We performed sample hierarchical clustering to detect and
remove outlier samples, using to compute the appropriate β value for the
construction of scale free topology for co-expression analysis. WGCNA is
the most widely used co-expression analysis method for construction of
co-expression networks by applying some power to the correlation value
computed in step (1) using the equation Adjij¼(abs(cor(gi, gj)))β , where β
is called the soft threshold(Langfelder and Horvath, 2008).

Where each Adjij indicates connection strengths between gene gi and
gj. The power β is chosen based on criteria of approximating scale-free
topology of the network (Ravasz et al., 2002). For disorder and control
appropriate β were chosen. This β value is the lowest integer which
satisfies approximate scale-free topology (linear regression model fitting
index R2 that should be larger than 0.8). Topological overlap matrix
(TOM) was created from Adjij, and later TOM was converted into a
dissimilarity TOM,disimilarity ¼ (1 – TOM similarity) and that is considered as
co-expression network (Langfelder et al., 2011). We used hierarchical
clustering and dynamic tree cut method to identify different modules
present in the constructed network. Each module contained densely
interconnected genes. The detailed workflow is presented in Fig. 1.

2.4. Preservation analysis

Preservation analysis helps in evaluating whether a module defined in
the reference network can also be found in test network or not (Lang-
felder and Horvath, 2008). It also helps in finding hidden information
presents in the two compared networks by quantifying the structural
changes in the modules. A module may be preserved in test network due
to natural selections or disrupt due to some changes in pathways or
biological processes (Chowdhury et al., 2019). We hypothesized that,
those modules, which were weakly preserved in diseases, might influ-
ence the pathogenesis process compared to the control network. Two
widely used preservation statistics named Z-summary and medianRank
provide overall significance of the preservation of a module based on
density and connectivity (Langfelder and Horvath, 2008). When a
module contains a smaller number of genes than the module may show
large value of Z-summary falsely because of the permutation test used
while calculating Z-summary (Langfelder and Horvath, 2008). To handle
this problem, medianRank statistics is used as it provides relative pres-
ervation ranking of modules. The calculated Z-summary<2 indicates no
preservation, 2�Z-summary�10 indicates weak to moderate preserva-
tion, and Z-summary>10 means strong preservation (Langfelder and
Horvath, 2008),(Chowdhury et al., 2019). Most NP modules usually get
the worst medianRank values.
3

2.5. Topological and differential connectivity based analysis

We performed topological analysis of weakly preserved module using
R package igraph (Cs�ardi and Nepusz, n. d.). Topological analysis allows
to study different network features such as degree and connectivity to
find interesting genes along with characterization of the network
(Langfelder and Horvath, 2008) (Chowdhury et al., 2019). It also helps to
find interesting genes, responsible for the non-preservation of a module.
The highly connected genes in the network can be considered as hub
gene. We considered degree centrality, change of degree centrality, sum
of connectivity and change in sum of connectivity as topological analysis
parameters on NP modules for further analysis. The degree of a node is
the number of connections it has with other nodes in the module. While
finding degree we considered those edges which have connection
strength greater than the mean connection strength of the module in the
reference network. We used degree and sum of connectivity to identify
the hub genes present in the module. Differential connectivity analysis
help in finding genes which changes significant number of degree or sum
of connectivity in test network (Chowdhury et al., 2019). We have used
degree difference and sum of connectivity difference as differential
connectivity parameter to quantify how much a gene can be considered
as border or central while going from reference to test sub-network.

2.6. Gene set enrichment analysis (GSEA)

GSEA is a method to identify a set of genes that are overrepresented in
a large set of genes which may have an association with diseases
(Chowdhury et al., 2019, 2018; Kakati et al., 2016). We used Database
for Annotation, Visualization Integrated Discovery (DAVID) for eluci-
dating the biological insights of the NP modules, by Gene ontology and
pathway analysis (Hosack et al., 2003). The significance of the enrich-
ment terms was considered by applying p-value < 0.05. To further un-
derstand the relationship of biological processes in which NP module
genes are involved, we used BiNGO (Maere et al., 2005), a Cytoscape
plugin (Langfelder and Horvath, 2008), which overrepresented gene
ontology in a set of genes or a subgraph of biological network. It also
maps the predominant function of a given gene set.

3. Results

3.1. Common and unique differentially expressed genes among BPD and SCZ

After removal of low read counts 14,717 genes in BPD and 14,753
Fig. 1. Workflow. After extracting the con-
trol and diseases dataset separately, required
pre-processing steps was performed. Then,
differential expression analysis on both the
datasets was carried out and results were
combined through a consensus. After finding
common and unique DEGs, co-expression
network construction and analysis was per-
formed on control, BPD and SCZ dataset
considering common DEGs. Next, preserva-
tion analysis was carried out to identify all
the NP modules present in all the constructed
networks by considering control and disease
network as reference or test network. Finally,
topological, differential connectivity and
enrichment analysis was performed to iden-
tify interesting signatures.



Fig. 2. Clustering dendrogram Heatmap with dissimilarity based on topological
overlap, together with assigned module colours. (A) for genes in control sam-
ples, (B) for genes in BPD samples and (C) for genes in SCZ samples. Distinct co-
expression signatures are visible among control, BPD and SCZ.
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genes in SCZ were remained. To identify common and unique DEGs
among SCZ and BPD through comparison of gene expression levels be-
tween normal and diseases, we used DESeq2 and edgeR tools. The number
of DEGs detected by DESeq2 were 1,617 and 1,307 from BPD and SCZ,
respectively. On the other hand, significant number of DEGs from edgeR
were 415 and 1,524 from BPD and SCZ, respectively (Supplementary
Table 1). We observed a drastic change in number of DEGs for BPD cohort.
It may be due to the false negative DEGs detected by EdgeR. We have used
consensus of both EdgeR and DESeq2 tools for selecting the list of DEGs
for further downstream analysis. The cut-off threshold value i.e., P-
adjusted < 0.05 was used to select significant DEGs. In Supplementary
Fig. 1A, we show the comparison of DEGs detected by EdgeR and DESeq2
tools in BPD and SCZ conditions. We found that there were 787 and 325
DEGs identified by DESeq2 and edgeR, respectively which were common
in BPD and SCZ as shown in Supplementary Figs. 1(B and C). In total, 830
DEGs were unique to BPD and 520 DEGs were unique to SCZ obtained
from DESeq2 tool. On the other hand, 90 DEGs were unique to BPD and
Fig. 3. Module preservation Chart of control, BPD and SCZ samples. (A) Using
the five modules of control network we compared with the Bipolar disorder
network. Black and Red are non-preserved module that consists of 37 and 54
genes, respectively. (B) Using the five modules of control network we compared
with the Schizophrenia disorder network. Black is non-preserved module that
consists of 37 genes. (C) Using the three modules of Bipolar Disorder network
we compared with the control network. Here, Black module is found to be NP.
Black module consists of 87 genes. (D) Using the four modules of Schizophrenia
network we compared with the control network. Here, Green module is found to
be NP. Green, Black module consists of 179 genes.
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1199 were unique to SCZ as obtained from edgeR tool. DEGs that are
common between BPD and SCZ given by DESeq2 and edgeR tool (398 and
1,283 respectively) are presented in Supplementary Figs. 1(D and E).

3.2. Co-expression network construction and module finding

To perform co-expression network analysis, we considered 1283
Fig. 4. Network Topology Analysis. The chart shows the sum of connectivity differen
control vs BPD, (C) Black NP module between control vs SCZ, (D) Green NP module

5

common significant DEGs for BPD and SCZ from DESeq2 and edgeR tool.
We applied log2 transformation to transform the data distribution into
normal like distribution. Sample clustering was performed to detect the
outliers. The samples X1834_AnCg_C_SL31501, X4063_AnCg_C_SL6003,
X3281_AnCg_C_SL5883 and X3523_AnCg_C_SL7800 were found to be
outliers in the group of control samples in (Supplementary Fig. 2A),
X3452_AnCg_B_SL6414 was identified as an outlier in the group of BPD
ces of: (A) Red NP module between control vs BPD, (B) Black NP module between
between SCZ vs control, and (E) Black NP module between BPD vs control.
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samples in (Supplementary Fig. 2B) and X4385_AnCg_S_SL6346 was as
an outlier in the group of SCZ samples in (Supplementary Fig. 2C). These
samples were removed in order to make the dataset more homogeneous.
Finally, we have 20 control, 23 BPD and 23 SCZ samples.

The construction of weighted gene network needs the choice of soft
thresholds power β. Adjacency (Adjij) was calculated by raising power to
the co-expression similarity which fulfils the criteria of approximate
scale-free topology. While constructing weighted gene co-expression
network for each disorder along with control the suitable β values were
16, 26 and 14, for control, BPD and SCZ dataset, respectively . The figures
for β estimation for control, BPD and SCZ can be observed have been
presented in Supplementary Figs. 3(A, B, C), respectively. We performed
hierarchical clustering to identify modules from each of the constructed
networks. If the correlation between a pair of eigen genes are� 0.75 then
we merged them to form single modules. For control network, we had 8
modules before performing merging operation. After merging, we ob-
tained 5 modules excluding the grey module of 177 genes for further
analysis. Similarly, for BPD and SCZ, we had 14 modules each before
merging, and after merging, we obtained 3 and 4 modules excluding grey
modules, respectively. In case of BPD and SCZ, the grey module con-
tained 55 genes and 13 genes, respectively. The dissTOM heatmap for
control, BPD and SCZ network before and after merging modules are
presented in Fig. 2(A, B, C). The detailed clustering dendogram of the
genes and modules for control, BPD, and SCZ are presented in Supple-
mentary Figs. 4(A, B, C).

3.3. Identification of NP modules

The module preservation analysis was carried out for both BPD and
SCZ by the following two methods: (i) the control modules vs. the dis-
order modules; and (ii) disorders modules vs. control modules. Those
modules which were weakly preserved might influence the unique
pathological signatures of the two disorders compared to the control
network. Two modules in control network were found to be NP in BPD
(shown as Black and Red colour in Fig. 3(A), and of them the Black
module is also NP in SCZ network in Fig. 3(B). Similarly, 1 module each
from BPD (Black in colour) and SCZ (Green in colour) were found to be NP
in control network as shown as in Fig. 3(C and D) respectively. Black and
Red NP modules from control network contained 37 and 54 genes,
respectively. The Black NP module, which was found in the BPD network
contained 87 genes. Green non-preserved module from SCZ network
contained 179 genes.

3.4. Topological analysis of non-preserved modules

We performed network topological analysis of all the identified NP
modules to identify interesting genes and to study different network
parameters for each gene. In Fig. 4(A, B, C, D, E), we reported the
Table 1
Top five genes from each NP module based on sum of connectivity in control and dis

Control vs BPD and SCZ Black Module

Gene Symbols Control BPD SCZ

TNFRSF1A 2.9708 6.196312 6.417682
C1R 2.7036 3.994709 5.448868
FZD4 2.6486 4.71635 4.429367
DEPP1 2.5764 4.28416 4.046879
ZNF395 2.5586 2.211981 3.036811

BPD vs control Black Module

Gene Symbols Control BPD

TNFRSF1A 11.764 15.74675
TNIP2 9.0549 11.85779
IFITM2 9.0014 13.34243
TRAF3IP2 8.6595 11.99204
AC005840.1 7.9882 12.02869
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comparison of sum of connectivity for each gene of NPmodules in control
and diseased condition (Supplementary Table 2). In all the figures we see
that many genes have changed their sum of connectivity strength
significantly and top 5 of such genes along with their sum of connectivity
were reported in the Table 1. In Table 1, we observed that the NP
modules found from control and BPD network have significantly lower
sum of connectivity than the disease network. It may happen due to the
activation or represssion of some genes in the diseased condition. On the
other hand, the NP module found from SCZ network had significantly
higher sum of connectivity in control condition. It may be due to the
abnormal changes of expression values of some genes in diseased con-
dition. These analyses give a clear idea that some genes of NP modules
acting abnormally due to some external factors.
3.5. GSEA of the NP modules

The Black and Red NP module from control samples consisting of 37
and 54 genes and Black and Green NP module from BPD and SCZ samples
consisting of 87 and 179 genes, respectively were analysed using DAVID
tool and BiNGO, a Cytoscape plugin. The significance of the enriched GO
terms and KEGG pathways were considered by applying threshold of p-
value<0.05. GSEA results consisted of the top 5 significantly enriched
Biological processes and KEGG pathways obtained from the DAVID tool
have been reported in Tables 2 and 3 for each of the NP modules. Genes
in the NP modules were also analysed using the BiNGO tool to under-
stand the enriched biological processes and their interactions. As shown
in Fig. 5(A and B), the immune related biological processes were highly
enriched in the NP modules of both BPD and SCZ.

4. Discussion

Co-expression analysis on DEGs followed by non-preservation anal-
ysis of the modules can provide novel predictions of molecular signa-
tures. This analysis can help to understand the molecular insights of
neuropsychiatric disorders. Although the pathogenesis between SCZ and
BPD has been reported in earlier studies but the earlier inferences were
mostly based on differential expression analysis (Craddock et al., 2006;
Hu et al., 2016). Our approach considers interactions among the DEGs to
identify biologically relevant genes. Topological and enrichment analysis
on NP module exerting different molecular functions and signatures in
BPD and SCZ patients in AnCg brain region. Previous studies suggested
that the nervous system has an important role associated with the im-
mune system in BPD and SCZ (Kerr et al., 2005; Sainz et al., 2013).
Neuroinflammation within the central nervous system which has been
proven to have a role in the etiology of these disorders (DiSabato et al.,
2016; Hong et al., 2016; Thibaut, 2017; Tr�epanier et al., 2016). On
pathway and biological processes analysis of NP module genes, we
observed that most of the genes were related to neuroinflammation
ease.

Control vs BPD Red Module

Gene Symbols Control BPD

C8orf58 0.8782 10.19323
TMEM150A 3.204 9.541098
IL17RC 2.267 8.582103
HDAC7 3.295 8.42896
SORBS3 3.173 8.377483

SCZ vs control Green Module

Gene Symbols Control SCZ

ALDH2 37.232 22.67699
EMX2 36.690 29.46347
PLCD1 35.541 32.73036
ADHFE1 34.073 16.72638
STOX1 33.383 18.50491
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pathway and processes. There were pathways and processes which were
related to Staphylococcus aureus infection, pertussis and skeletal system
development. These pathways contain genes related to immune response.
These components of the infection-induced immune response system
overlaps with neuroinflamatory responses.

Among the highly enriched genes, 11 genes were found to be
enriched in both BPD and SCZ network (Table 2). TNFRSF10D and
GSDMD were uniquely enriching inflammatory responses for BPD and
Table 2
GSEA results obtained from DAVID shows the top five enriched Biological Pro-
cesses in the NP modules, together with P-value, Fold Enrichment and Gene
Symbols contributing in the corresponding Biological processes. [*Area of our
interest].

Term P-value Fold
Enrichment

Gene symbols

Red Module (control)
cell surface receptor
signalling pathway

0.022 6.451 PTH1R, ADGRF3,
AGER, TSPAN4

osteoblast development 0.0368 51.987 PTH1R, LRP5
Black Module (control)
cell-cell adhesion 0.0091 8.851 PDLIM1, TES, F11R,

SFN
cytokine-mediated
signalling pathway

0.0186 13.733 TNFRSF1A, CISH,
IL15RA

negative regulation of
calcium ion transport

0.020 92.263 STC1, NOS3

inflammatory response* 0.0223 6.329 TNFRSF1A, F11R,
TNFRSF10D, CASP4

immune response 0.029 5.697 TNFRSF1A, C1R,
TNFRSF10D, IFITM2

Black Module (BPD)
inflammatory response* 0.00000059 7.283 TNFRSF1A, NFKB2,

TNFRSF10A,
AC005840.1, CHI3L1,
EPHA2, F11R,
TNFRSF11B, TNIP2,
TNFRSF10D, CASP4,
C4A

response to
lipopolysaccharide

0.000072 9.818 TNFRSF1A, NFKB2,
EDN1, TNFRSF10A,
AC005840.1,
TNFRSF11B,
TNFRSF10D

regulation of cell
proliferation

0.00014 8.703 FGR, TNFRSF1A,
TNFRSF10A,
AC005840.1, TES,
TNFRSF11B,
TNFRSF10D

skeletal system
development

0.00030 10.074 GLI2, FGFRL1, EPHA2,
TNFRSF11B, TEAD4,
PAPSS2

extrinsic apoptotic
signalling pathway via
death domain
receptors

0.00057 24.213 TNFRSF1A,
TNFRSF10A, BAG3,
TNFRSF10D

Green module (SCZ)
smoothened signalling
pathway

0.00025 10.504 PAX6, EVC, GLI2,
HES1, SMO, EVC2

inflammatory response* 0.00029 3.824 TNFRSF1A, NFKB2,
GSDMD, TNFRSF10A,
AC005840.1, CHI3L1,
EPHA2, F11R,
TNFRSF11B, TNIP2,
CASP4, C4A

cerebellar cortex
morphogenesis

0.00065 72.483 GLI2, RFX4, SMO

regulation of cell
proliferation

0.00084 5.224 FGR, TNFRSF1A,
TNFRSF10A,
AC005840.1, TES,
AGT, TNFRSF11B,
PLCD1

skeletal system
development

0.00094 6.172 EVC, GLI2, FGFRL1,
EPHA2, TNFRSF11B,
TEAD4, PAPSS2

7

SCZ, respectively. TNFRSF10D belongs to the TNFR superfamily and it
acts as negative regulator of NF-kappa-B pathway (Marsters et al., 1997).
GSDMD is a part of the innate immune system and found to be involved in
autophagy. Out of eleven genes, three genes viz., TNIP2, TNFRSF1A and
AC005840.1 were found to have high sum of connectivity in BPD
network (Table 1). TNIP2 mainly found to inhibit NfkB signalling
pathway (Banks et al., 2016). TNFRSF1A, an important receptor of the
cytokine TNF-a which activates the caspase pathway leading to apoptosis
in BPD (Pandey et al., 2015). AC005840.1 gene is a ribosomal protein
and its exclusive function is not so clear in neuropsychiatric disorders.
Whereas, TRAF3IP2 and IL17RC genes were exclusively found in two
different NP modules related to BPD (Table 1). TRAF3IP2 which encodes
Act1, a positive signalling adaptor in IL-17-mediated immune responses
(Perricone et al., 2013) and IL-17 proteins are found in breaking the
integrity of the blood brain barrier (Setiadi et al., 2019). Thus, this
interaction indicates that neuroinflamatory responses can have a prom-
inent role in the BPD pathogenesis.

We have observed list of genes related to autoimmunity and auto-
phagy in control vs BPD and SCZ network. DEPP1 which acts as a critical
modulator of FOXO3 induced autophagy via increased cellular ROS.
These genes participate in neurodegenerative disorders associated with
autophagic clearance (Stepp et al., 2014). C1R gene encodes a protein
which acts as a proteolytic subunit in the complement system C1 com-
plex. This complement system gets activated during autoimmune attack.
We found another gene, ZNF395, to be upregulated in the SCZ network
and downregulated in the BPD network. ZNF395, under hypoxic condi-
tion was found to be involved in inflammation and cancer progression by
mediating the genes participating in innate immune responses (Jorda-
novski et al., 2013) (Table 1).

We observed top five genes from SCZ module (Table 1). Of these 5
genes (i) ALDH2 acts as a protector against Oxidative stress, in addition it
acts as neuroprotector by clearing 4-HNE (Guo et al., 2013); (ii) EMX2,
whose deficiency results in abnormal forebrain structure formation, (iii)
PLCD1 gene is known as a tumour suppressor gene in different types of
cancer; (iv) ADHFE1 gene is used to metabolize the biological alcohol
and ethanol beverage (Deng et al., 2002); and (v) STOX1 gene
Table 3
GSEA results obtained from DAVID shows the top five enriched KEGG pathways
in the NP modules, together with P-value, Fold Enrichment and Gene Symbols
contributing in the corresponding KEGG pathway. [*Area of our interest].

Term P-value Fold
Enrichment

Gene Symbols

Red Module (control): Enrichment results not found
Black module (control): No Significant results available
Black module (BPD)
Complement and
coagulation
cascades

5.85E-
04

12.461 VWF, C1R, C1S, CFI, C4A

Staphylococcus aureus
infection

0.003 12.738 C1R, C1S, CFI, C4A

Apoptosis 0.005 11.095 TNFRSF1A, TNFRSF10A,
CASP7, TNFRSF10D

Pertussis 0.008 9.172 C1R, CASP7, C1S, C4A
Hippo signalling
pathway

0.010 5.694 TEAD3, GLI2, LIMD1, FZD4,
TEAD4

Green module (SCZ)
Complement and
coagulation
cascades

0.0004 8.927 VWF, SERPING1, C1R, C1S, CFI,
C4A

Fatty acid
degradation

0.0006 12.222 CPT1A, ALDH2, ACADS,
ADH1B, ACSL5

Pertussis 0.005 6.844 SERPING1, C1R, CASP7, C1S,
C4A

Cytokine-cytokine
receptor
interaction*

0.008 3.380 IL17RB, TNFRSF1A,
TNFRSF10A, AC005840.1,
CNTFR, IL15RA, INHBB,
TNFRSF11B

Hippo signaling
pathway

0.014 4.079 TEAD3, GLI2, TP53BP2,
TCF7L1, FZD4, TEAD4



Fig. 5. GSEA using the BiNGO Cytoscape plugin. (A) BPD vs control NP Black module and (B) SCZ vs control NP Green module. Yellow colour indicates the highly
enriched processes.
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predominantly found in brain, its role is to transactivate the LRRTM3
gene which plays a role in the maintenance of nervous system (Fig. 4(D)).
Interestingly, all of these top five genes which are beneficial in the CNS
were found to be downregulated in the SCZ disorder. This gene may be a
vital factor for the progression of SCZ disorder.

We observed clear overrepresentation of the pro-inflammatory cyto-
kine receptors which supports that cytokine-mediated immunological
responses play a vital role in the BPD and SCZ. In addition, other genes
associated with activation of autoimmunity and autophagy indicates that
there is an urge of balancing energy sources and genomic instability at
critical times such as neurodegeneration (Glick et al., 2010). Thus,
investigating the BPD and SCZ by focusing on the above processes can
serve as a potential therapeutic strategy based on immune-neural system.
Our study presented in this manuscript has mainly been focused on
neuroinflammation. However, there is scope to explore the other
response signatures during BPD and SCZ of other domains.
Anti-inflammatory medication as an adjunctive therapy can be imple-
mented for the clinical treatments of BPD and SCZ (Radtke et al., 2017).
Our results will contribute to the ongoing efforts in the domain of
immune-based therapies.
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