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A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch
skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby
is on investigating how the model’s original parameter sets can be interpolated such that realistic behaviour with respect to
contraction time and fatigue progression can be obtained for a continuous distribution of the model’s parameters across the muscle
units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic
reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates
of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes.
The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter
group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the
scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor
calcium current to enhance the understanding of peripheral muscle fatigue.

1. Introduction

The motor units of a skeletal muscle range from the smallest
motor unit (the motor neuron with the lowest excitation
threshold innervating the muscle unit with the fewest and
most slowly contracting muscle fibres) to the largest motor
unit (the largest motor neuron innervating the muscle unit
with the most and fastest contracting muscle fibres) [1].
Sustained muscle contractions at moderate to high force
levels lead to fatigue and subsequently to a drop in exerted
muscle force. Muscle fatigue can hereby be divided into
central and peripheral fatigue [2]. Central fatigue refers to
changes in the motor neuron activation pattern leading to a
decrease in active force. Peripheral fatigue can be assigned
to changes in the pathway from electrical excitation to
contraction within the muscle fibres, which varies consider-
ably among the different muscle units of a muscle [3]. For

example, changes in the shape and amplitude of the action
potential during sustained contractions have an influence on
peripheral fatigue [4, 5].The action potential is influenced by
intracellular and extracellular sodium (Na+) and potassium
(K+) concentrations as well as by membrane resistance and
capacitance. Furthermore, accumulation of K+ and depletion
of Na+ ions in the t-tubule system contribute to fatigue.
Due to the small volume of the t-tubules, however, the exact
concentration changes are difficult to determine experimen-
tally. Other aspects, like the role of Ca2+, are undisputed.
Failing to release Ca2+ from the sarcoplasmic reticulum (SR)
causes fatigue. The Ca2+ concentration in the myoplasm is
influenced by the ryanodine receptor (RyR) Ca2+ currents,
the SR Ca2+-pump, and several Ca2+ buffers in the cell,
such as parvalbumin, calmodulin, and ATP [6]. For repeated
muscle contractions, the SR Ca2+-pumping and cross-bridge
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cycling increase the concentration of inorganic phosphate.
Experiments suggest that high phosphate levels also play a key
role in muscle fatigue.

The differences in the underlying biophysical processes of
the different muscle units lead to variations in physiological
behaviour such as in an alteration of the contraction speed,
intracellular calcium (Ca2+) handling, or fatigue resistance
[7].While the differences in physiological behaviour are used
to classify different muscle units, the expression of a part
of the myosin molecules, the myosin heavy chain (MHC),
is the most established classification for muscle units. The
isoform of the MHC influences the rate of cross-bridge
cycling and thus the maximal shortening velocity [8]. Based
on the MHC classification, the major fibre types are types I,
IIa, IIx, and IIb. This classification corresponds to the one
developed in [3], distinguishing slow-contracting fibres (type
S), fast-contracting fatigue-resistant fibres (type FR), and fast-
contracting fatigable fibres (type FF) by a certain stimulation
protocol (cf. [9]). This classification into discrete classes,
however, does not apply to human motor units [10, 11].
There, a rather continuous variation from one extreme to
another is observed for many functional properties [10, 12].
In fact, functional muscle properties such as contraction
time, maximum shortening velocity, or the activity of the
mitochondrial enzymes such as succinate dehydrogenase
(SDH) show large and continuous ranges of variability across
the motor units of human skeletal muscles [13].

The continuous variation of physiological properties
within muscle units and the large number of different phys-
iological quantities involved within the fatigue process chal-
lenge experimentalists to identify the key mechanisms con-
tributing to fatigue. A detailed biochemical in silicomodel of
force generation and fatigue in skeletal muscle can provide
an analytical tool to analyse the sensitivity of muscle fatigue
due to changes in individual processes or ion concentra-
tions. Therefore, such a computational model could provide
insights on the quantities playing a key role in muscle fatigue
and hence support experimentalists in interpreting their
findings.

As far as in silicomodels are concerned, there exists a large
number of skeletal muscle models. However, many of these
models either focus only on small parts of the excitation-
contraction coupling (ECC) or phenomenologically describe
the respective relationships and are therefore of less use
in further investigating muscle fatigue. An exception is the
biophysical model of the ECC published in [14]. This model
unifies descriptions of membrane voltage [15], release of Ca2+
from the SR [16], activation of the cross-bridge cycling [17,
18], and the resorption of Ca2+ into the SR. Thus, it models
all relevant processes of the ECC in a biophysical manner.
The model includes aspects of muscle fatigue by assuming
that inorganic phosphate, which is generated during cross-
bridge cycling, is passively transported into the SR, where it
can precipitate with Ca2+. As a consequence, less Ca2+ can be
released from the SR and fewer cross-bridges can take part in
the contraction yielding less force. Moreover, the Hodgkin-
Huxley-type model of the membrane electrophysiology is
capable of describing membrane fatigue by the accumulation

of K+ and depletion of Na+ ions in the t-tubule system and
the extracellular space.

In [14], two sets of parameters are provided: one for fast-
twitch and one for slow-twitch muscles. Both parameter sets
are based on literature values. The fast-twitch parameter set
has been validated using experimental data obtained through
investigating the effects of different electrical stimulation
patterns on force production in mouse extensor digitorum
longus (EDL) and the slow-twitch parameter set by doing
similar experiments on the mouse soleus muscle. While
these parameter sets represent extreme values, data for other
muscle units are lacking.

To provide muscle unit specific parameters for investi-
gating the key underlying physiological processes leading to
fatigue, this work focuses on investigating different interpo-
lation assumptions leading to individual parameter sets for
distinct muscle unit types. Further, a sensitivity analysis is
performed to investigate how the interpolated parameters,
specifically the parameters associated with parvalbumin, the
SR calcium pump rate, the cross-bridge cycling rates, and
the RyR calcium current influence peripheral muscle fatigue.
Note that it is not the aim of this study to identify an optimal
set of parameters to model a specific muscle but rather to
identify the parameters that significantly affect the considered
functional measures, to investigate the sensitivity of the
model to changes in the parameters, and to demonstrate that
the approach of parameter interpolation is flexible enough to
account for many different muscles.

2. Methods

2.1. Model Extension. This work is based on the biophysical
model of the excitation-contraction coupling of Shorten et
al. [14], which can be freely downloaded from the CellML
website (https://www.cellml.org/). For the model, two dis-
tinct sets of parameters exist. Due to the fact that mouse EDL
muscle consists almost exclusively of type-II fibres [19], the
fast-twitch parameter set in [14] can be associated with a fast-
twitch muscle unit. Similarly, soleus muscle consists mainly
of type-I fibres [20], and hence the slow-twitch parameter set
in [14] is associated with a slow-twitchmuscle unit.These two
sets of parameters are the basis for this work.

In the present work, the behaviour of a small human
muscle consisting of 100 muscle units (e.g., a hand muscle,
such as the first dorsal interosseous [10]), is investigated. To
take into account that contraction times are longer in human
than in mouse muscles [11, 14, 21], all parameters associated
with cross-bridge cycling have been scaled by 1/10. Note
that the rates obtained from this scaling for the slow-twitch
version correspond to the parameters originally proposed by
Razumova et al. for their cross-bridge dynamics model [18],
which is used within [14]. The resulting contraction times
of 93.7ms and 30.5ms for the slow-twitch muscle unit and
the fast-twitch muscle unit, respectively, compare well to the
values proposed in [11].

One drawback of the Shorten et al. model in the context
of the current work, however, is the fact that the binding of
calcium and magnesium ions to parvalbumin is modelled
in a simplified way. In the model, the binding relies on the

https://www.cellml.org/
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Figure 1: Chemical equilibrium model for parvalbumin.

total amount of parvalbumin in the cell. This modelling
assumption is sufficient if one intends to consider only type-
I and type-II muscle units. In detail, following [22], Shorten
et al. consider parvalbumin only in the fast-twitch version of
theirmodel, while the parvalbumin binding rates in the slow-
twitch version are set to zero. Since the total parvalbumin
concentration is not known for intermediatemuscle units, the
approach needs to be modified.

The parameter representing the total parvalbumin con-
centration can be omitted if the process is modelled as
described in the following. Parvalbumin can bind either to
calcium or to magnesium. The respective binding rates are
𝑘onCa and 𝑘onMg; the respective dissociation rates are 𝑘offCa and
𝑘offMg. The reaction kinetics involving the concentration of free
parvalbumin, Pfr, are depicted in Figure 1 and are described
by

dPfr
dt
= −𝑘onCaPfrCa − 𝑘

on
MgPfrMg + 𝑘offCaCa

P + 𝑘offMgMgP, (1)

where Ca represents the concentration of calcium ions, Mg
is the concentration of magnesium ions, and CaP and MgP
denote the parvalbumin bound calcium and the parvalbumin
bound magnesium, respectively. Equation (1) is added to the
general myoplasm and to the terminal SR myoplasm com-
partments. The parameter representing the concentration of
free parvalbumin is then inserted into the equations of the
model, where free parvalbumin is originally modelled by the
difference of total parvalbumin concentration (constant) and
the sum of the parvalbumin bound ion concentrations. This
model extension nowallows investigating different parameter
sets for intermediate muscle units.

Interpolation ofMaterial Parameter Sets for IntermediateMus-
cle Units. Currently, there exists no experimental study that
could provide for thismodel a reasonable set of parameters to
simulate intermediate muscle units. However, using in silico
experiments, parameter sets for intermediate muscle units
can be derived from the two extreme parameter sets, that

is, from the parameter sets for slow-twitch and fast-twitch
muscle units, through interpolation.

In the following, the slowest muscle unit is denoted by
𝛼 = 0 and the fastest muscle unit by 𝛼 = 1. Further, their
corresponding parameter values are denoted by 𝜇0 and 𝜇1,
respectively. Following [10, 11], this work assumes that the
biophysical properties of muscle units are distributed con-
tinuously. Hence, the set of parameters for an intermediate
muscle unit can be interpolated using amonotone continuous
function. Here, the following interpolation functions are
considered:

𝜇 (𝛼, 𝑆) = (1 − 𝛼𝑝𝑖) ⋅ 𝜇 (0, 𝑆) + 𝛼𝑝𝑖 ⋅ 𝜇 (1, 𝑆) , (2)

where 𝛼 ∈ [0, 1], 𝑝𝑖 ∈ R+, 𝜇(𝛼, 𝑆) is the interpolation of
parameter 𝑆 for intermediate muscle unit 𝛼, and 𝑝𝑖 denotes
the exponent that characterises the curvature of the function
interpolating the two fix points, that is, the polynomial
interpolation of the respective slow-twitch (𝛼 = 0) and fast-
twitch (𝛼 = 1) values, 𝜇(0, 𝑆) and 𝜇(1, 𝑆), respectively, of
parameter 𝑆. Note, for 𝑝𝑖 = 1, the respective parameters
are interpolated linearly. For 𝑝𝑖 > 1 the interpolated values
remain for a wider range of 𝛼 closer to the first value, 𝜇(0, 𝑆),
before accelerating to the second value, 𝜇(1, 𝑆). For 𝑝𝑖 < 1,
the behaviour is just the opposite.

Within the extended model, there are a total of 31
parameters that vary from muscle unit to muscle unit (while
74 of themodel’s 105 parameters are similar in the slow-twitch
and fast-twitch parametrisations). In order to manage this
multitude of parameters, all of the 31 parameters are assigned
to one of the following 5 groups.

Group 1 contains as only parameter the Ca2+ uptake rate
into the SR. This parameter is expected to influence the
contraction times.The rate of force generation decreases with
increasing rate of the Ca2+-pump.

Group 2 groups the reaction rate constants of the cross-
bridge cycle. They are expected to change the contraction
times [24].

Group 3 contains as only parameter the RyRCa2+ current.
Like the Ca2+ uptake rate, the RyRCa2+ current is expected to
influence the contraction times as the rate of force generation
increases with the rate of Ca2+ release (RyR current).

Group 4 groups parameters that describe the binding
to and the dissociation from parvalbumin of Ca2+ and
magnesium (Mg2+) ions. Parvalbumin is the most important
antagonist of troponin and thus influences the activation of
the cross-bridge cycling. A change in fatigue characteristics
is expected.

Group R contains the rest of the parameters. These
parameters are interpolated linearly by default.

Figure 2 depicts a schematic overview of the model with
variable parameters. Each number indicates a parameter that
has a different value for fast-twitch and slow-twitch muscle
units and thus will be interpolated for intermediate muscle
units.
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Figure 2: Schematic drawing of the cell model with variable parameters. The names of the parameters associated with the numbers within
this drawing are given in Table 1.

The grouping of these parameters can be found in Table 1.
By choosing for each group an individual interpolation
parameter 𝑝𝑖, the parameters associated with these groups
can be interpolated individually.

2.2. Model Verification Approach. After choosing a particular
interpolation, that is, choosing for each group in (2) a
specific 𝑝𝑖, the behaviour of the muscle units is compared
to experimental data. Based on the data available from the
literature, two characteristic force responses are considered
for this purpose: (i) the contraction time (also referred to as
time to peak) of the single twitch and (ii) fatigue progression.

The contraction time is defined as the duration of time
between initiating a contractile response through a stimulus
and themaximum twitch force response. Although eachmus-
cle has a specific frequency distribution of the muscle unit
contraction times, histograms showing experimental data can
be described as nearly Gaussian-shaped; see, for example,
[13, 25–28].

For a quantitative evaluation of the simulation results,
we use as “gold standard” a Gaussian (normal) distribution
of the contraction times with 65 ± 10ms (mean ± standard
deviation). This leads to contraction times approximately
between 40ms and 90ms (cf. [11]).
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Table 1: Parameter groups.

Group Parameter Definition
1 61 SR Ca2+-pump uptake rate

2

89 Rate of cross-bridge attachment

90 Rate of pre-power stroke cross-bridge
detachment

91 Forward rate of the power stroke
92 Reverse rate of the power stroke

93 Rate of post-power stroke cross-bridge
detachment

94 Rate of myoplasmic phosphate
degradation

3 99 RyR Ca2+ current

4
71, 72 Binding and dissociation rate of

Ca2+-parvalbumin

74, 75 Binding and dissociation rate of
Mg2+-parvalbumin

𝑅

1 Membrane capacitance

2 Ratio of t-tubule membrane area to
sarcolemma membrane area

8, 9 t-tubule diffusion time constant
10 Fraction of fibre occupied by t-tubules

11, 12 Interstitial space diffusion time constant
13, 14 Resting K+ and Na+ current
25, 28 Factors for slow inactivation Na+-gating

38, 39, 40 Cl−, K+, and Na+ conductance in two
compartment model

41 Maximum IR conductance
48 Maximum Na+-K+ pump activity
63 SR Ca2+ leak constant
68 Binding rate of Ca2+-troponin

Group 1 contains the SR Ca2+-pump uptake rate parameter that is associated
with force reduction; Group 2 contains the parameters associated with the
cross-bridge cycle; Group 3 contains the parameter associated with rate of
Ca2+ release from the SR; Group 4 describes parameters associated with the
binding to and the dissociation from parvalbumin; Group 𝑅 contains the
remaining parameters that influence the muscle unit type behaviour within
the model.

Fatigue progression is the development of the force under
sustained tetanic stimulation. In [23], a 30 s force record for
a fast-twitch muscle fibre stimulated at 70Hz is presented.
Taking [23] as a reference, the force of a type FF muscle
unit (𝛼 = 1) after 5000ms of sustained high-frequency
stimulation should be about 70% to 75% of its maximum
value. The force responses of fast fatigable, fast fatigue-
resistant, and slow muscle units stimulated at 25Hz for 1 s,
which can be used as additional experimental data for fatigue
progression, is presented in [3].

Furthermore, [3] defined a “fatigue index” by the ratio
of the “maximum tension produced during the 120th tetanus
(i.e., after 2min of stimulation) to the tension output during
the first tetanus in a standard sequence” (tetanic stimulation
for 330ms at 40Hz repeated every second). This definition
leads to the fact that slow muscle units without fatigue have

a fatigue index of 1, while fatigable fast muscle units have a
fatigue index of 0. According to [29], over 60% of the muscle
units have a fatigue index greater than 0.75, that is, showing
only little fatigue.

Due to high computational costs, the stimulation se-
quence in [3] is not simulated for all intermediate muscle
units to determine the fatigue index. Instead, the fatigue index
is determined from shorter stimulations. Nevertheless, the
frequency distribution based on the fatigue index is adapted
from the experimental results in [29]; that is, about 65% of the
muscle units shall not show fatigue. Within this work, one
assumes that a muscle unit shows no fatigue if the decline
in force is less than 10% after continuously stimulating the
muscle unit for 5000ms with 100Hz.

For a quantitative evaluation of the simulation results,
we assumed as “gold standard” that the muscle units with
𝛼 = {0, 0.5, 0.6, 0.7} do not show fatigue after a continuous
stimulation with 100Hz for 5000ms [29], and the force of the
muscle unit with 𝛼 = 1 is at 70% of its maximum value [23].

In summary, the verification of the suitability of a partic-
ular interpolation scheme describing the biophysical behav-
iour of the muscle units within the extended model is based
on a quantitative comparison between the simulation output
and the respective experimental data. In detail, for each
combination of interpolation coefficients, the relative errors
(2 norms of the relative differences between the simulation
results and the above defined “gold standards”) are com-
puted for the contraction times and the fatigue progression.
Furthermore, the sensitivity of fatigue to changes in the
exponent 𝑝𝑖 within the interpolation scheme (2) provides the
experimentalist with a simulation-based indication on poten-
tially important mechanisms leading to peripheral muscle fa-
tigue.

3. Results

First, the parameters of a specific muscle unit are determined
through (2) by choosing a particular 𝛼 (specifies the muscle
unit) and by selecting for each parameter group a specific 𝑝𝑖.
The entire set of parameters is obtained for all 100 muscle
units by uniformly sampling 𝛼 ∈ [0, 1]. To determine the
contraction times for each parameter set and for each muscle
unit, a single twitch is simulated. To compare the simulated
contraction times with experimental studies, the contraction
times are depicted within a histogram containing 15 bins. For
the fatigue analysis, the force responses of 5 different muscle
units are simulated, that is, for 𝛼 = {0, 0.5, 0.6, 0.7, 1}, using
a stimulation protocol that continuously excites the cellular
model at a frequency of 100Hz. The stimulation starts after
100ms and lasts up to 5000ms.

The starting point for investigating the fatigue behaviour
of intermediate muscle units are simulations, in which the
parameter sets are determined through a uniform interpo-
lation; that is, all 𝑝𝑖 are equal. Subsequently, the parameters
in Groups 1–4 are varied by choosing within (2) individ-
ual exponents for each parameter group; that is, p =
[𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝𝑅], where the subindices refer to the group
numbering. Unless otherwise stated, the parameters of Group
𝑅 are linearly interpolated. For each chosen parameter set, the
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Table 2: Relative errors in the fatigue progression (𝐸𝑓) and the
contraction time (𝐸CT).

𝑝1 𝑝2 𝑝3 𝑝4 𝑝𝑅 𝐸𝑓 𝐸CT Remark
1 1 1 1 1 0.9548 2.0474 ∗

2 2 2 2 2 1.0898 1.5683 ∗

5 5 5 5 5 0.7774 2.2112 ∗

0.5 0.5 0.5 0.5 0.5 0.8572 2.9541 ∗

1 1 1 1 1 0.1201 0.9114
0.5 1 1 1 1 0.1309 1.1356
0.3 1 1 1 1 0.1364 1.3900
1.2 1 1 1 1 0.1166 0.9038
0.5 5 1 1 1 0.3881 1.4458
0.5 9 1 1 1 0.1273 1.9306
0.5 0.5 1 1 1 0.1312 1.8316
0.5 3 1 1 1 0.3911 0.9774
0.5 5 2 1 1 0.1811 0.3267
0.5 5 3 1 1 0.2757 0.4990
0.5 5 4 1 1 0.3990 0.8035
0.5 5 3 1.5 1 0.1606 0.4371
0.5 5 3 2 1 0.1012 0.3076
0.5 5 3 4 1 0.0288 0.2484
𝑝1–𝑝4 are the interpolation coefficients for Groups 1–4, and 𝑝𝑅 is the
interpolation coefficient for the remaining parameters.
∗Results before scaling the parameters in the parvalbumin group (Group 4)
by 1/20. See text for details.

contraction times histogram and selected motor unit force
responses at 100Hz stimulation frequency are shown.

The relative errors between selected simulation results
and the “gold standards” with respect to the contraction
times and the fatigue progression are summarized in Table 2.
Note that more simulations have been performed, but the
chosen selection is sufficient to indicate the sensitivity of the
model to changes in the interpolation coefficients. In detail,
if relative small changes in an interpolation parameter led to
significant changes in the functional measures, we restrained
from displaying further data resulting from simulations
where larger variations in the interpolation coefficients have
been applied. Due to the fact that similar errors can arise
from very different distributions, detailed information on the
distribution of the contraction times and the fatigue pro-
gression are provided in the following (cf. Figures 3–12 and
Supplementary Figures 17−38; see Supplementary Material
available online at http://dx.doi.org/10.1155/2016/3180205).

Supplementary Figures 17 and 18 show the above-
mentioned relations for a linear interpolation of all param-
eters; that is, p = [1, 1, 1, 1, 1]. In addition, other uniform
interpolations for all parameters are investigated. Figure
19/Figure 20, Figure 21/Figure 22, and Figure 23/Figure 24
within the Supplementary Material show the results for p =
[2, 2, 2, 2, 2], p = [5, 5, 5, 5, 5], and p = [0.5, 0.5, 0.5, 0.5, 0.5],
respectively. In all these simulations, intermediate muscle
units are more affected by fatigue than the fastest muscle unit
(𝛼 = 1). This behaviour does not agree with experimental
data. Since the slowest muscle unit (𝛼 = 0) shows no
fatigue and the parameters associated with the binding to and
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Figure 3: Frequency distribution of contraction times based on a
linear interpolation of all parameters; that is, p = [1, 1, 1, 1, 1].
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Figure 4: Force response at 100Hz stimulation for different muscle
units obtained through linear interpolation of all parameters; that is,
p = [1, 1, 1, 1, 1].

dissociation from parvalbumin are uniformly equal to zero
for this muscle unit, it is concluded that the parameters of the
parvalbumin group have to be modified first.

3.1. Sensitivity with respect to Parvalbumin Parameters. First,
the fast-twitch parameter set is fitted such that the fastest
muscle unit (𝛼 = 1) exhibits 70% of its maximal force after
stimulating the muscle unit for 5000ms with a 100Hz fre-
quency.This result can only be obtained when the parameters
in the parvalbumin group (Group 4) are scaled by 1/20. (The
parameters of the parvalbumin group for the slow-twitch
parameter set are all equal to zero.)

Incorporating this scaling, the contraction times and
force responses using a linear interpolation for all parameters,

http://dx.doi.org/10.1155/2016/3180205
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Figure 5: Frequency distribution of contraction times based on
choosing for interpolation p = [0.5, 1, 1, 1, 1] (modifying the
interpolation exponent of the parameter describing the Ca2+-pump
uptake rate).
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Figure 6: Force response at 100Hz stimulation for different muscle
units obtained by interpolating the parameter sets with p =
[0.5, 1, 1, 1, 1] (modifying the interpolation exponent describing the
Ca2+-pump uptake rate).

that is, p = [1, 1, 1, 1, 1], are depicted for intermediate muscle
units in Figures 3 and 4, respectively.

The contraction times are partially higher compared to
the original parvalbumin parameter set (cf. Figures 17 and
18 within the Supplementary Material). They range from
45ms to 91ms. Particularly, the fast-twitch muscle units
exhibit reduced contraction times if compared to the original
parvalbumin parameter set. As a consequence, the histogram
is less steep.

The force of the fastestmuscle unit after 5000ms is 70% of
its maximum value. All other muscle units show less fatigue
than the muscle unit with 𝛼 = 1. The muscle units with 𝛼 =
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Figure 7: Frequency distribution of contraction times based on
choosing p = [0.5, 5, 1, 1, 1] for the parameter interpolation.
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Figure 8: Force response at 100Hz stimulation for different muscle
units obtained by interpolating the parameter sets with p =
[0.5, 5, 1, 1, 1].

0.5, 0.6, and 0.7 are at 96%, 94%, and 90% of their maximum
forces, respectively, after 5000ms.

3.2. Sensitivity with respect to Calcium Pump Uptake Rate. A
change in the Ca2+-pump uptake rate into the SR (Group
1) results in a change of the contraction times, especially
for slow-twitch muscle units. To demonstrate this, different
interpolation exponents 𝑝1 have been investigated, while a
linear interpolation has been chosen for the remaining values
of 𝑝𝑖. Figure 5 shows the results for p = [0.5, 1, 1, 1, 1] (𝑝1 =
0.5 for the Ca2+-pump uptake rate into the SR and 𝑝2 = 𝑝3 =
𝑝4 = 𝑝𝑅 = 1). Additionally, the results for 𝑝1 = 0.3 and
𝑝1 = 1.2 are provided in the SupplementaryMaterial (Figures
25 and 27, resp.).
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Figure 9: Frequency distribution of contraction times based on
choosing p = [0.5, 5, 3, 1, 1] for the parameter interpolation.

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 fo
rc

e

Time (s)
0 1 2 3 4 5

𝛼 = 0

𝛼 = 0.5

𝛼 = 0.6

𝛼 = 0.7
𝛼 = 1

Figure 10: Force response at 100Hz stimulation for different muscle
units obtained by interpolating the parameter sets with p =
[0.5, 5, 3, 1, 1].

For 𝑝1 = 0.5, the curve showing contraction times versus
muscle unit type exhibits a hyperbolic shape and many mus-
cle units have short contraction times. The hyperbolic shape
becomes even steeper for 𝑝1 = 0.3. For 𝑝1 = 1.2, the con-
traction time decreases almost linearly with increasing values
of 𝛼 and the distribution slightly shifts the contraction times
toward shorter values.

Comparing the results on fatigue progression in Figure 6
and Supplementary Figures 26 and 28, one can observe that
the Ca2+-pump uptake rate does not influence the fatigue
progression by much. For 𝑝1 = 0.5 the forces of muscle units
with 𝛼 = 0.5, 0.6, and 0.7 after 5000ms of stimulation with
frequency 100Hz are 96%, 93%, and 90% of their maximal
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Figure 11: Frequency distribution of contraction times based on
choosing p = [0.5, 5, 3, 4, 1] for the parameter interpolation.

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 fo
rc

e

Time (s)
0 1 2 3 4 5

𝛼 = 0

𝛼 = 0.5

𝛼 = 0.6

𝛼 = 0.7
𝛼 = 1

Figure 12: Force response at 100Hz stimulation for different muscle
units obtained by interpolating the parameter sets with p =
[0.5, 5, 3, 4, 1].

values, respectively. For 𝑝1 = 0.3, the respective forces are
95%, 93%, and 90% of their maximal forces. Moreover, an
interpolation with an exponent 𝑝1 = 1.2 yields slightly higher
remaining forces; that is, the forces of muscle units 𝛼 =
0.5, 0.6, and 0.7 after 5000ms of stimulation with frequency
100Hz are 96%, 94%, and 91% of their maximal values,
respectively.

3.3. Sensitivity with respect to Cross-Bridge Parameters. As-
suming independence of the parameters, the most suitable
interpolation of the investigated Ca2+-pump uptake rate
parameters provides the basis for further investigations. Next,
the sensitivity due to changes in the cross-bridge parameters
(Group 2) is analysed. To do so, the model was run using
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the interpolation exponents 𝑝2 = 0.5, 𝑝2 = 5, and 𝑝2 =
9. The interpolation of the parameters of Group 2 affects
particularly the contraction times.The contraction times and
force responses for different muscle units and interpolation
exponent 𝑝2 = 5 are shown in Figures 7 and 8, respectively.
For 𝑝2 = 5, the histogram peaks at contraction times between
80ms and 85ms (Figure 7). About 41% of all muscle units
fall within this bin. Further results on contraction times and
force responses are given for 𝑝2 = 0.5 and 𝑝2 = 9 in
Figure 29/Figure 30 and Figure 31/Figure 32 within the
Supplementary Material, respectively. For an interpolation
exponent smaller than 1, one observes again a hyperbolic
shape of the contraction times. (The reader is referred to
Supplementary Figures 31 and 32, which are associated with
p = [0.5, 0.5, 1, 1, 1], for a representative example of a small
interpolation exponent 𝑝2.) For 𝑝2 = 9 the peak in the
histogram increases, and 61% of themuscle units exhibit con-
traction times between 80ms and 85ms (cf. Supplementary
Figures 29 and 30).

Note that fatigue is not affected by adjusting the inter-
polation parameter 𝑝2, that is, by changing the interpolation
scheme for the parameters associated with Group 2. For all
three displayed interpolation exponents (𝑝2 = 0.5, 5, and 9),
the forces of the muscle units with 𝛼 = 0.5, 0.6, and 0.7 are
96%, 94%, and 90% of their maximum values, respectively,
after 5000ms stimulation with frequency 100Hz.

3.4. Sensitivity with respect to the RyR-Channel Rate. For
the following simulations, the exponents of the interpolation
for 𝑝1, 𝑝2, and 𝑝4 are adopted from Section 3.3; that is,
p = [0.5, 5, 𝑝3, 1, 1]. Now, the interpolation of the RyR-
channel rate (Group 3) is considered, which impacts the
contraction times and fatigue. Figure 9/Figure 10, as well
as Figure 33/Figure 34 and Figure 35/Figure 36 within
the Supplementary Material, depict the histograms of the
contraction times and the force responses for 𝑝3 = 2 (Figure
33/Figure 34 within the Supplementary Material), 𝑝3 = 3
(Figure 9/Figure 10), and 𝑝3 = 4 (Figure 35/Figure 36 within
the Supplementary Material). For 𝑝3 = 1, the histogram
shows an extreme accumulation of muscle units at contrac-
tion times of approximately 80ms. By increasing 𝑝3, the
peak of the histogram shifts toward slower muscle units
and the extreme accumulation is less pronounced leading
to a broader distribution. Specifically, for 𝑝3 = 2, the his-
togram of contraction times peaks at 70ms. About 55% of
the muscle units show contraction times between 66ms and
73ms (Figure 9). For 𝑝3 = 3, the peak occurs at 63ms, for
𝑝3 = 4 the peak is broader and occurs at about 58ms. In
conclusion, one can claim that the higher the interpolation
exponent 𝑝3 the shorter the most frequent contraction time.

The fatigue progression also changes with different inter-
polation exponents 𝑝3. For 𝑝3 = 2, the forces of the muscle
units with 𝛼 = 0.5, 0.6, and 0.7 are after 5000ms of stim-
ulation with 100Hz 93%, 90%, and 86% of their maximum
force, respectively. Further, for the same muscle units, 𝑝3 =
3 results in remaining forces of 88%, 84%, and 81%, while
𝑝3 = 4 results in remaining forces of 80%, 76%, and 74%,
respectively.
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Figure 13: Force response at 100Hz for different muscle units over
a period of 15 s. The parameters for the different muscle units are
obtained by interpolating with p = [0.5, 5, 3, 4, 1].

3.5. Determining the Interpolation Exponent For Parvalbumin.
As seen in the section that investigated the sensitivity with
respect to parvalbumin parameters, the contraction times are
not much affected by changes to the parvalbumin parameters
(Group 4). This can be seen if, for example, Figure 11 is
compared to Supplementary Figure 37. Following this, the
interpolation of the parvalbumin parameters is used to fit
experimentally determined fatigue characteristics (fatigue
occurs formuscle unitswith𝛼 > 0.6).The linear interpolation
of the parvalbumin parameters (𝑝4 = 1) overestimates the
fatigue progression. Hence, interpolation exponents greater
than 1 are tested in order to obtain a parameter set for fast
fatigable muscle units that is comparable to experimental
data. For 𝑝4 = 1.5, one obtains for the muscle units with
𝛼 = 0.5, 0.6, and 0.7 after 5000ms of stimulation with
100Hz forces of 94%, 91%, and 88% of their maximum
values, respectively. Choosing an interpolation exponent of
𝑝4 = 2, one obtains for the same muscle units and the same
stimulation protocol remaining forces of 97%, 95%, and 92%
(Supplementary Figure 38). For 𝑝4 = 4 the remaining forces
are 99%, 99%, and 98%, respectively (cf. Figure 12).

Up to now, all simulations were run for 5 s. If the simu-
lations are run for 15 s, one observes that fatigue progresses
over time for the muscle units with 𝛼 > 0.5. Since this is
not observed experimentally, the interpolation exponent for
parvalbumin is changed to 𝑝4 = 4. Figure 13 presents the
results for 11 uniformly distributed muscle units. It can be
observed that the fatigue-induced force decline for muscle
units with 𝛼 ≤ 0.5 is less than 10%. For the remaining muscle
units, that is, 𝛼 = 0.6 to 𝛼 = 0.9, the reduction in force after
15 s covers the spread between the resulting forces of 𝛼 = 0.5
and 𝛼 = 1.

3.6. Stimulation Patterns of Burke et al. and Lannergren
and Westerblad. To verify that the frequency distribution
of the fatigue index can be adapted to the distribution of
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Figure 14: Burke et al.’s stimulation [3]: the force responses of three
muscle unit types (𝛼 = 0.1, 0.5, and 0.9) repetitively stimulated over
a period of 120 s.

the short-time fatigue (remaining muscle unit forces after
5000ms) Burke’s stimulation pattern [3] is applied to the final
parameter set; that is, p = [0.5, 5, 3, 4, 1]. Three muscle units
(𝛼 = 0.1, 0.5, and 0.9) are stimulated for 120 s at 40Hz
over a time period of 330ms. This is repeated every second.
(No stimulation is applied in the remaining 670ms of each
second.) The results are presented in Figures 14 and 15.

In Figure 15, the force response in the first 7.5 s can be seen
for two different parvalbumin interpolation exponents; that
is, 𝑝4 = 2 and 𝑝4 = 4. The solid line shows the force response
for 𝑝4 = 4; the dashed line is simulated with 𝑝2 = 2. For
muscle unit types 0.5 and 0.9, the force declines for 𝑝2 = 2
more rapidly than for 𝑝4 = 4. Muscle unit type 0.1 shows no
fatigue in either case.

The muscle unit with 𝛼 = 0.1 shows no fatigue within the
interval. Hence, Burke’s fatigue index for this muscle unit is 1.
The force response of the muscle unit with 𝛼 = 0.5 declines
approximately linearly until 118 s. The second last force peak
is considerably lower than the previous ones. The last force
peak is missing entirely. The muscle unit with 𝛼 = 0.9
shows an exponential decline in the force response in the first
40 s, before settling at a force of about 20% of its maximum
value. After 68 s stimulation time, the force decreases rapidly
such that no further force peaks can be observed any more
after 72 s. Following the nomenclature of [3], this results in a
fatigue index of 0 for the muscle units with 𝛼 = 0.5 and 0.9.
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Figure 15: Force responses at 40Hz stimulation for 220ms repeated
every second for different muscle units (𝛼 = 0.1, 0.5, and 0.9).
Parvalbumin parameters 𝑝4 = 2 and 𝑝4 = 4 are considered; that
is, p = [0.5, 5, 3, 2, 1] and p = [0.5, 5, 3, 4, 1].
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Figure 16: Lannergren and Westerblad’s stimulation pattern [23].
Force response for a fast-twitch muscle unit (𝛼 = 1) for a tetanic
stimulation followed by a stimulation at 100Hz for 500ms repeated
every two seconds.

Figure 16 shows the force response to a stimulation pat-
tern similar to that presented by Lannergren and Westerblad
[23]. The fastest muscle unit (𝛼 = 1) is first continuously
stimulated with a frequency of 100Hz for 30 s, followed by a
Burke-like stimulation, that is, stimulating every two seconds
for 500ms with 100Hz.

The force declines in the first 30 s to 5% of the maximum
force.The subsequent stimulation with resting time results in
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a regeneration of the force.The peak of the 5th train of stimuli
shows already 20% of the maximum force. This recovery
is qualitatively consistent with experimental data; however,
quantitatively, the recovery is not as fast as in experiments.

4. Discussion

Before discussing the modelling assumptions and the results
in a broader context, the findings of the interpolation study
are summarized in the following. Note that for 𝑝𝑖 > 1 the
interpolated values remain for a wider range of motor units
closer to the slow-twitch value, before accelerating to the fast-
twitch value. For 𝑝𝑖 < 1, the behaviour is just the opposite.

(i) If the binding and dissociation rates to and from par-
valbumin are not significantly reduced, intermediate
muscle units show more fatigue than the fastest
muscle unit (cf. Figure 3 and Supplementary Figures
17, 19, 21, and 23). Such behaviour has not been
observed experimentally.

(ii) Increasing (decreasing) the interpolation coefficient
for the calcium pump uptake rate, 𝑝1, leads to a shift
toward fast (slow) contraction times (cf. Figure 5 and
Supplementary Figures 25 and 27).

(iii) Values of the interpolation coefficient for the reaction
rates of the cross-bridge dynamics model, 𝑝2, greater
than one lead to a peak in the contraction times
histogram at long contraction times, and the height
of the peak increases with 𝑝2. Values of 𝑝2 smaller
than one yield a shift of the distribution toward slow
contraction times (cf. Figure 7 and Supplementary
Figures 29 and 31).

(iv) The interpolations of both the calcium pump uptake
rate and the cross-bridge dynamics reaction rates
hardly affect fatigue.

(v) By increasing the interpolation coefficient of the RyR-
channel rate, 𝑝3, the peak of the contraction times
histogram shifts toward slower muscle units and it is
less pronounced leading to a broader distribution (cf.
Figure 9 and Supplementary Figures 33 and 35). In
conclusion, one can claim that the higher the inter-
polation exponent 𝑝3, the shorter the most frequent
contraction time.

(vi) Increasing the interpolation coefficients of the RyR-
channel rate, 𝑝3, results in faster fatiguing intermedi-
ate muscle units.

(vii) Increasing (decreasing) the interpolation coefficient
of the parvalbumin parameters, 𝑝4, leads to weaker
(stronger) fatigue progression of intermediate muscle
units (cf. Figures 12 and 13 and Supplementary Figure
38).

(viii) Changes in the interpolation coefficient of the parval-
bumin parameters, 𝑝4, do not affect the contraction
times (cf. Figure 11 and Supplementary Figure 37).

Although muscle fatigue has been well studied in experi-
ments on whole muscles and single intact and stripped fibres,

the cellular processes leading to muscle unit-dependent
(peripheral) muscle fatigue are still not entirely understood.
Due to the fact that the Shorten et al. model [14] closely
reflects the physiological processes leading from electrical
excitation to contraction in skeletal muscle fibres and also
contains a description of different biochemical processes
leading to muscle fatigue, it can be used to generate data
that are currently not available from the literature. In the
present study, this model has been extended to a description
of the different muscle units in a muscle, which are subject
to different levels of fatigue. To this end, the parameters
of the slow-twitch and fast-twitch versions of the Shorten
et al. model [14] have been modified and interpolated using
smooth and continuous interpolation functions. While the
model is capable of closely matching experimental data, one
should mention that, in physiology, some properties might
also arise only after a threshold or are grouped into discrete
classes. One could certainly consider within this work also
step functions and, hence, probably even further improve the
results.This, however, leads to further degrees of freedom that
make it even harder to investigate and analyse the results.

Continuous distributions of the functional properties
(e.g., contraction time, maximum shortening velocity, or the
activity of the mitochondrial enzymes such as SDH) across
the muscle units of skeletal muscles are well established (cf.,
e.g., [10, 13] and references therein). In contrast, continuous
distributions of biophysical parameters, as assumed in this
work, have not been described in the experimental literature.
Bottinelli and Reggiani [13] distinguish two main mecha-
nisms leading to the heterogeneity among the functional
properties of muscle units. First, the heterogeneity can result
from different isoforms that exist for many muscle proteins.
This does not contradict the assumption of continuous dis-
tributions of biophysical parameters, since muscle fibres can
coexpress different isoforms. For example, different isoforms
of the MHC have been found to coexist in one muscle fibre
type [10]. Second, the same gene can be expressed differently,
depending on factors such as neural activation, mechanical
load, or hormones. For example, the density of SR Ca2+
pumps is much higher in fast-twitch than in slow-twitch
muscle fibres [7]. It can be easily imagined that the up- and
downregulation of genes yield a continuous distribution of
the biophysical properties.

Although closely resembling the physiological processes
of the ECC, the model of Shorten et al. [14] does not
contain a description of the cell metabolism. In detail, while
Shorten et al. model the accumulation of ADP and inorganic
phosphate in the myoplasm, there are unlimited amounts of
ATP available within the cells. The depletion of ATP and
the accumulation of ADP and inorganic phosphate in the
myoplasm are known to affect the force generating capabil-
ity of muscle fibres [6]. Especially for analysing sustained
contractions, the model should be extended by a more
detailed description of the cell metabolism that accounts, for
example, for the ATP generation in the mitochondria and
the supply of oxygen and nutrients to the cell. This however
is beyond the scope of this work. Including a description of
the cell metabolism within the model would affect the fatigue
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progression during sustained contractions as considered in
Figures 13, 14, 15, and 16. For now, the predicted fatigue is
mainly influenced by the RyR-channel rate and the parvalbu-
min dynamics (binding and dissociation rates of calcium and
magnesium ions to and from parvalbumin). Including the
cell metabolism as a third mechanism contributing to fatigue
might require a reparametrisation of the RyR-channel rate
and the parvalbumin dynamics. In experimental conditions,
it is difficult to separate the influence of different factors
contributing to fatigue. A biophysical muscle model that
includes a description of the cell metabolism could support
the experimentalist in this task.

As a model can only be as good as the data to which it
is fitted, it is important to identify and focus in experimental
studies on those parameters that exhibit the most sensitivity
with respect to muscle fatigue. The resulting model produces
fast fatigable and slow fatigue-resistant muscle units. What
is not well realised yet is the fast fatigue-resistant muscle
unit type. This muscle unit type is characterised by a fast
contraction (comparable with the fast fatigable muscle unit)
and little fatigue. Within the presented model, the fastest
muscle unit that shows only little fatigue (𝛼 = 0.5) contracts
in about 60ms, which is 150% of the contraction time of the
fastestmuscle unit. In general, however, the contraction times
could be improved bymodifying the cross-bridge parameters
for fast-twitch muscle units such that the proposed model
would exhibit contraction times also below 40ms. In [11],
for example, a contraction time of 30ms was assumed for
the fastest muscle unit. In the present work, the cross-bridge
parameters of Shorten et al. [14] have been scaled by a factor
of 1/10 (cf. [18]), to account for slower kinetics and longer
muscle fibres in humans compared to mice [21]. This scaling
yielded contraction times approximately between 40ms and
90ms. A larger scaling factor, for example, 1/5, probably leads
to better results. The aim of this study, however, is not to
identify an optimal set of parameters but to investigate the
sensitivity of the model to variations in the parameters, in
order to reach a conclusion on their importance with respect
to muscle fatigue.

Besides the contraction times, the reaction rates of the
cross-bridge cycle determine the shape of the single twitch
of a muscle fibre. The parameter set suggested by Razumova
et al. for their cross-bridge dynamics model [18] (which is
used within the model of Shorten et al. [14]) predicts twitch
shapes that agree well with experimentally measured ones.
A consistent scaling of the entire parameter set of the cross-
bridge dynamics model of Razumova et al. [18] leads to
twitches with different time course but similar shape. For
example, Shorten et al. [14] successfully modelled twitches
and tetanic contractions of soleus and EDL muscles of mice
by multiplying the entire parameter set of Razumova et al.
by factors of 10 and 30, respectively. In accordance with
this, we grouped together the cross-bridge parameters within
one group, such that the resulting model predicts twitch
shapes that are scaled versions of the ones predicted by the
Razumova et al. model.

Two isoforms, namely, SERCA2 in slow-twitch fibres and
SERCA1 in fast-twitch fibres, exist for the SR Ca2+ pump in
skeletal muscle, and the density of pumps is much higher

in fast-twitch than in slow-twitch fibres (cf. [7]). Following
this, the SR Ca2+ pumping rate was treated as an individual
parameter group in our model. Moreover, since there exist
differences in the kinetics of the RyR between slow-twitch
and fast-twitchmuscle fibres [13], the RyRCa2+ current is also
treated as an individual parameter set.

Finally, we investigated the model behaviour for different
interpolations of the binding and dissociation rates to and
from parvalbumin. Since parvalbumin is only present in
fast-twitch fibres [22], the corresponding rates equal zero in
the slow-twitch version of the model. We obtained realistic
results for an interpolation coefficient of𝑝4 = 4, whichmeans
that, for the majority of muscle units, the parvalbumin
parameters are similar to the slow-twitch model (i.e., close to
zero), and parvalbumin only affects few (fast-twitch) muscle
units. This finding corresponds well with the fact that there
are typically many slow-twitch and few fast-twitch muscle
units in a muscle [11]. Further, for the parameter interpola-
tion, we grouped together the binding and dissociation rates
of calcium and magnesium ions to and from parvalbumin
into one group. Another possibility would have been to treat
each of the binding and dissociation rates independently.
This, however, would further increase the model complexity.
Moreover, there is no experimental data available to justify a
certain choice over another.

The outcome of stimulating the fastest muscle unit with
a long-term tetanic stimulation protocol with respect to
fatigue fits well the experimental data presented in [23]. The
progression of the other muscle units cannot be reviewed as
there is no experimental data available. The fatigue of inter-
mediate muscle units was designed such that only 30% of
the muscle units show fatigue. This is in agreement with
the experimental data presented in [29]. The parameters,
however, could be further improved given further data. In
this work, the fatigue of different muscle units was adapted to
the frequency distribution of fatigue indices following [3]. To
confirm this approach, it was expedient to use a stimulation
protocol based on the pattern proposed in [3]. The results
for three different muscle unit types (𝛼 = 0.1, 0.5, and 0.9)
over a period of 120 s can be seen in Figure 14. The presented
simulation shows that the parameters could still be improved
by fitting them to new experimental data as they become
available. However, it was not the objective of this work to
provide a perfect set of parameters to model a specific muscle
but rather to reveal the sensitivity of the model response to
changes in the parameters.

Applying Lannergren and Westerblad’s stimulation pat-
tern [23] to a fast-twitch muscle fibre, the model predicted
a slow recovery. In the experimental data presented in [23],
the muscle fibre recovers faster; that is, it produces more
force in the stimulation pulses after the tetanic stimulation.
To mimic this behaviour, other states than the force output
should be investigated to analyse which processes influence
this recovery. This, however, was not the focus of this study.
The key advantage of employing a biophysical model such as
the one presented within this work, however, is that one can
easily investigate other quantities than the force, for example,
the intracellular Ca2+ concentration.
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Additionally to the investigated characteristics, that is,
fatigue and contraction times, the model could be examined
regarding the Ca2+ concentration progression as there exist
more experimental data; see, for example, [22]. While the
authors in [14] also determined the action potential conduc-
tion velocities on the fatigued and nonfatigued muscle fibres,
muscle unit-specific experimental data are rare [30, 31]. In
[32], for example, only conduction velocities for slow-twitch
and fast-twitch muscle are shown.

5. Summary and Outlook

This work presents an extension of the Shorten et al. model
[14], which has been experimentally validated for slow-twitch
and fast-twitch muscles, to investigate physiological proper-
ties of the different muscle units, which do exist in human
skeletal muscles. To this end, the parameters of the computa-
tional model are determined by interpolating the parameter
sets of the slow-twitch and fast-twitch muscles in different
ways. The model revealed that different interpolations are
required for different parameter groups to match experi-
mental results. Using the resulting model, we identified one
parameter group that predominantly affects fatigue, namely,
the parvalbumin parameters, and two parameter groups
that affect predominantly the contraction times, namely, the
Ca2+ channel uptake rate and the cross-bridge parameters.
Moreover, we found that the RyR current affected both
contraction time and fatigue. Due to the fact that the model
closely resembles the underlying physiological processes, it
could potentially support the experimentalist investigating
the mechanisms leading to peripheral muscle fatigue in
the different muscle units. In turn, additional muscle unit-
specific experimental data can improvemathematical models
and hence contribute to an improved and validated math-
ematical model of the muscle units to investigate central
fatigue using detailed chemoelectromechanical models of the
entire neuromuscular system [21, 33–36].
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