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Abstract

Kmeans clustering algorithm is an iterative unsupervised learning algorithm that tries to par-

tition the given dataset into k pre-defined distinct non-overlapping clusters where each data

point belongs to only one group. However, its performance is affected by its sensitivity to the

initial cluster centroids with the possibility of convergence into local optimum and specifica-

tion of cluster number as the input parameter. Recently, the hybridization of metaheuristics

algorithms with the K-Means algorithm has been explored to address these problems and

effectively improve the algorithm’s performance. Nonetheless, most metaheuristics algo-

rithms require rigorous parameter tunning to achieve an optimum result. This paper pro-

poses a hybrid clustering method that combines the well-known symbiotic organisms

search algorithm with K-Means using the SOS as a global search metaheuristic for generat-

ing the optimum initial cluster centroids for the K-Means. The SOS algorithm is more of a

parameter-free metaheuristic with excellent search quality that only requires initialising a

single control parameter. The performance of the proposed algorithm is investigated by

comparing it with the classical SOS, classical K-means and other existing hybrids clustering

algorithms on eleven (11) UCI Machine Learning Repository datasets and one artificial data-

set. The results from the extensive computational experimentation show improved perfor-

mance of the hybrid SOSK-Means for solving automatic clustering compared to the

standard K-Means, symbiotic organisms search clustering methods and other hybrid clus-

tering approaches.

1. Introduction

Cluster analysis is an aspect of data analysis where data objects are distinctly grouped into clus-

ters. The data objects within the same cluster share more intrinsic characteristics and differ

from data objects in other clusters [1]. The primary objective of data clustering is to minimize

the intra-cluster distances while maximizing the inter-cluster distances. Smaller intra-cluster

distances imply more robust and compact clusters [2]. Clustering algorithms have been widely
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applied in solving many problems in various fields, including pattern recognition [3], mathe-

matical programming [4], data mining [5], social network analysis [6], image analysis [7], mar-

ket research [8], customer segmentation [9], machine learning [10], data analysis [11] and data

summarization [12].

Clustering algorithms are usually categorized as either hierarchical clustering or partitional

clustering. The hierarchical clustering algorithms iteratively generate clusters in a top-down or

bottom-up hierarchical format to produce a dendrogram structure. The dendrogram reflects

the hierarchical relationship of the formulated clusters, which results from exploring the data

objects on different levels of granularity during the clustering process [13]. Data objects are

merged (bottom-up approach) or splitted (top-down approach) based on the similarity or dis-

similarity among the data objects through linkage metrics. The hierarchical clustering algo-

rithms can handle datasets with any objects of any attribute datatype because of their ability to

handle any similarity measure and their exploration capability at a flexible level of granularity.

However, once an object has been assigned, it can not be reassigned during hierarchical clus-

tering, implying that wrongly assigned data objects can not be corrected. Hierarchical cluster-

ing also suffers from high computational complexity [14], making it unsuitable for large-scale

clustering datasets. Berkin, Beche, and Randall [15] noted the problem with identifying specific

termination criteria for hierarchical clustering methods and its sensitivity to noise and outliers,

making it less robust in handling cluster analysis. Moreover, the generation of the hierarchical

structure adds the burden of higher memory requirements which, according to Fraley and Raf-

tery [16] is proportional square of the number of initial clusters generated during the cluster-

ing process.

The partitional clustering algorithms use an optimization criterion to partition a given data-

set into a set of disjoint clusters [13]. Data objects are clustered to recover the naturally existing

groups within a given dataset. The partitioning clustering methods offer a better alternative for

clustering large datasets to avoid the construction of a dendrogram, which in the case of large

datasets is generally considered computationally prohibitive [17]. The partitional clustering

algorithms commonly use the squared error criterion as their optimization function to find

the partition for which a fixed number of clusters minimizes the square error [13]. Data objects

are iteratively assigned to an initial dataset partition such that the assignment reduces the

square error. According to Nagpal [18], having a good initial partition highly enhances the

clustering solution. Selection of well-distanced data objects among the existing data objects

usually turned out to be good seed points for partitional clustering algorithms. Moreover, the

number of clusters is indirectly proportional to the square errors. That is, the larger the num-

ber of clusters, the lesser the square errors. However, minimization is only guaranteed for a

fixed number of clusters.

The square error criterion is also observed to produce compact and well-separated clusters

and is less computationally demanding compared with other criterion functions [19]. How-

ever, using square error criterial can result in local minimal convergerce resulting in inconsis-

tent cluster output. This implies that different cluster outputs are obtained from different

initial partitions, especially if initial data seeds are close [18,20]. According to Sanse and

Sharma [21], obtaining a global optimal clustering solution using partitional clustering can not

be guaranteed. The partitional clustering algorithm is considered an NP-hard optimization

algorithm whenever k>3 [22,23]. As such, a typical partitional clustering algorithm requires

several runs with different starting partitions from among which the best cluster output is

selected as the optimal [17]. According to Suganya et al. [24] and Jain and Dubes [19], the

requirement of initial specification of the number of clusters is a major disadvantage of the

partitional clustering algorithm. It leads to the arbitrary choice of cluster number for datasets

whose number of inherent clusters is not known apriori, resulting in wrong clustering output.
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Moreover, partitional clustering algorithms assign data objects to the closest centroid to gener-

ate clusters whose sizes are approximately similar in sizes justifying their biasness towards

spherically shaped clusters and their inability to effectively handle high-dimensional datasets

and those whose clusters are highly connected [25].

In recent times, nature-inspired metaheuristics have been adopted to find solutions to com-

plex challenges in cluster analysis that cannot be resolved using the traditional clustering algo-

rithms [2,22,26]. They automatically identify and classifies unlabelled data points in real-world

data and have been found to be more flexible in handling clustering problems across different

fields. These automatic clustering algorithms spontaneously determine the optimum number

of clusters in a dataset with their corresponding cluster structures, thus removing the need to

specify the number of clusters apriori [13]. Automatic clustering automatically finds the most

suitable number of clusters in a dataset and, at the same time, divides the data objects into

appropriate clusters [27]. They are mostly adopted in large-scale and high-dimensional real-

life datasets where the number of clusters is not known. They treat clustering problems as opti-

mization problems to minimize the dissimilarity between clsuters, minimizing intra-cluster

distance while maximizing the inter-cluster distance. According to Ezugwu et al. [26], they are

designed to effectively and efficiently handle complex and high-dimensional real-world prob-

lems. They are characterised by higher heuristic search and can search for the most promising

optimal solution. They balance intensification search with diversification search during the

search process. They exhibit a higher possibility of finding global optimal solutions to cluster-

ing problems. Their performance in automatic clustering is superior to the traditional cluster-

ing algorithms when considering the convergence speed and clustering solution quality.

Some of the existing nature-inspired algorithms that have been employed in literature to

solve automatic clustering problems include Artificial Bee Colony [28], Differential Evolution

Algorithm [29], Bacterial Evolutionary Algorithm [30], Firefly Algorithm [31], Genetic Algo-

rithm [32], Particle Swarm Optimization Algorithm [33], Invasive weed Optimization Algo-

rithm [34], Ant Colony Optimization, [35] and Symbiotic Organism Search Algorithm [36].

In recent times, newer meta-heuristic algorithms have been proposed, such as Monarch But-

terfly optimization [37], Moth search algorithm [38], Slime Mould algorithm [39], Dwarf

Mongoose algorithm [40], Hunger Games Search [41], Harris Hawks Optimization [42] and

Colony Predation Algorithm [43]. In spite of the effectiveness of the nature-inspired meta-

heuristic algorithms in finding the solution for automatic clustering problems, individual algo-

rithm exhibit the limitations peculiar to their algorithmic structure affecting their overall

performance. In order to improve their performances for automatic clustering, two or more of

these algorithms are combined to build an hybridized algorithm that harnesses their mutual

benefits for effective and efficient cluster output. Based on this context, a hybridisation of the

mostly used partitional clustering algorithm- K-means -with Symbiotic metaheuristic algo-

rithm-a nature inspired metaheuristic algorithm is proposed in this paper.

The K-means algorithm [44] is among the top ten most used partitional clustering algo-

rithms in data analysis [16]. It uses an optimization criterion that minimizes the distance

between the data objects within a cluster and their cluster centres while maximizing the dis-

tance between the centre of each cluster [45]. K-means clustering algorithm has been widely

accepted due to its implementation simplicity, the high computational speed with a linear time

complexity (O(n) time where n is the number of records in the dataset) as well as its ability to

identify high-density regions based on the set of cluster centres and radii which provides

insights into the data [16].

Despite these qualities, K-means exhibits some drawbacks common to the partitional algo-

rithm mentioned earlier based on its algorithmic structure [46] and its inductive least sum of

squares principles [47]. The need to specify k apriori as an input parameter is one of the
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problems of the algorithm. For big data and high-dimensional datasets, guessing the right

number of clusters in advance can be an extremely challenging task for a user [48]. Two, the

K-means algorithm is susceptible to the initial cluster centres. The initial cluster centroids are

selected randomly in the classical K-means algorithm, and poor cluster seeds will produce

poor clustering results. Third, the K-means algorithm adopts simple hill-climbing techniques

to optimize its objective function, which is susceptible to getting trapped into the local opti-

mum. Moreover, the presence of noise and outliers affects the performance of K-means

because it assumes all clusters have a similar spread and equal density. This assumption mis-

guides the algorithm when updating the cluster centres. The aim of this paper is to boost the

performance of K-means and extend it to make it suitable for handling automatic clustering

algorithm.

The Symbiotic Organism Search [49] is a metaheuristic algorithm that simulates the tech-

nique of symbiotic interactions among organisms in an ecosystem for their survival. It was

proposed by Cheng and Prayogo [49] as a simple but powerful metaheuristic algorithm that

adopts the search strategy of a population-based algorithm in searching for the optimum solu-

tion in the solution space. It iteratively searches for a global optimum solution using a popula-

tion of candidate solutions through optimization of a given objective function. SOS has been

reported to have a better searching quality and searching efficiency when compared with other

metaheuristic algorithms such as GWO, which was noted as being superior to other existing

metaheuristic algorithms in several reported comparisons [50,51]. The SOS algorithm is cred-

ited with performance stability because it does not use tunning parameters. It has the main

advantage over most other metaheuristic algorithms in that it requires no specific algorithm

parameters [49] and is easier to implement. This paper proposes a new hybrid clustering algo-

rithm called SOSK-means, which combines the SOS algorithm with the classical K-means

algorithm for automatic clustering. The traditional K-means clustering algorithm has been

hybridized with some of the existing nature-inspired metaheuristic algorithms [51]. However,

the focus in many of these hybridized algorithms is on enhancing the capability of the respec-

tive nature-inspired algorithm in handling automatic clustering problems. This study aims to

boost K-means performance by hybridizing it with SOS to resolve the problems of specifying

cluster numbers as input parameters and the selection of cluster centroids randomly, thereby

avoiding the possibility of local minimal convergence.

The SOS algorithm has been chosen based on its numerous capabilities, as highlighted in

[52] and [53]. The SOS algorithm requires only the basic parameter that is needed for optimi-

zation operation, such as the population size, the problem dimension and the maximum num-

ber of iterations. Other population-based metaheuristics such as GA, PSO, DE, and FA require

additional parameters that need adjustment or fine-tuning for optimal performance [52].

According to Abdullahi and Ngadi [54], traditional metaheuristic algorithms like GA, PSO,

and ACo suffer from entrapment in local minima, slow convergence and high computational

complexity. The mutualism and commensalism phases of the SOS algorithm offer an excellent

exploitation capability to the algorithm. The best solution is used as the reference point while

exploiting the search space for a better solution in the neighbourhood of the current best solu-

tion. In the SOS algorithm, inferior solutions are eliminated through the cloning and mutation

operation of the parasitism phase. According to [52], only a few algorithms exhibits all these

characteristic.

The searching quality of the SOS algorithm has been confirmed to be superior to other

high-performing metaheuristic algorithms [50,53]. SOS was compared with several metaheur-

istic methods by Pierezan and Coelho [50], and in almost all the problems used for testing the

algorithms, SOS was found to perform better in its searching quality. This performance was

further justified by the work of Chauhan and Kotecha [55], where the SOS algorithm was
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compared with GWO in the petrochemical industry’s production planning problem. The SOS

algorithm had a better performance in all the eight testing cases. Moreover, from the literature,

hybridizing K-means with SOS is still relatively new. The K-means algorithm’s performance

can be substantially enhanced in solving clustering problems if SOS with all the identified qual-

ities can be adopted for the hybridization. This is the motivation of this research work.

The Davies-Bouldin (DB) [56] and Compact-Separated (CS) [57] validity indices are

employed in the hybridized algorithm for the determination of the optimal number of clusters.

The two CVIs are selected because they share the same rationale with the primary purpose of

clustering in their cluster validity measurement approach. They seek well-separated clusters

with the maximum score for the between-cluster separation and more compact clusters with

within-cluster scatter at the minimum [57]. Moreover, the CS Index works well in identifying

clusters with different sizes and densities. The DB Index is among the top-performing CVIs in

some reported CVI comparison literature [58,59]. It is useful in guiding cluster seeking algo-

rithms independently of the number of clusters and the partitioning approach used for the

clustering [56]. Eleven benchmark UCI datasets with one artificial dataset were used to validate

the algorithm’s performance.

The remaining section of the paper is organized as follows: a review of literature on hybrid

K-means for automatic clustering is presented in section 2, while the problem statement and

the methodology of the proposed hybrid Swarm organism Search Algorithm with K-means

together with its implementation are described in section 3. The experimental setting of the

study, the datasets characteristic, the parameter configurations, and the simulation experimen-

tation results obtained from the proposed SOSK-means are discussed in Section 4. The conclu-

sions and the future research directions are presented in section 5.

2. Literature review

In the bid to enhance the performance of the K-means algorithm, several proposals on K-

means variants have been made and implemented in literature to address the various problems

associated with the classical algorithm [46]. Hybridizing K-means with nature-inspired meta-

heuristic algorithms is one of the research methods adopted to resolve the initialization prob-

lems and the local minimal convergence issues common with K-means. Only a few of these

hybridized algorithms involving K-means focused on solving problems in automatic data clus-

tering. Some of the metaheuristic-based hybrid algorithms that have been proposed for han-

dling automatic data clustering analysis and their performances can be found in the work of

Agbaje, Ezugwu and Els [2]. However, the emphasis here is on those involving the basic K-

means algorithm. Mustafi and Sahoo [60] proposed a hybrid approach that combined genetic

algorithms with differential evolution algorithms to enhance the K-means algorithm’s initiali-

sation process. The primary aim of their proposed algorithm was to improve the initial choice

of the K-means algorithm’s cluster centres and generate the required number of clusters. The

genetic algorithm framework was explored for obtaining the original seed points for the K-

means, while the differential evolution heuristic was used to generate the required number of

clusters. Their result was compared with the basic implementation of the K-means algorithm

using standard parameters. It showed a significant reduction in the possibility of convergence

to the local optimal by the K-means algorithm.

In Sinha and Jana [61], the genetic algorithm and k-means clustering algorithm were com-

bined in a two-phased hybridization approach using Mahalanobis distance as a fitness function

for K-means initial cluster center generation. The first phase used a genetic algorithm with

Mahalanobis distance to better represent the initial data. The intermediate output from phase

one serves as input for the K-means algorithm, which uses the K-means++ initialization
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technique to produce the final output in phase two. Islam et al. [62] reported an advancement

in genetic algorithm-based clustering where the searching approach of the genetics was com-

bined with the fast K-means hill-climbing cycles for fast generation of the high-quality cluster-

ing result. Their algorithm addressed the problems of prior specification of k and selection of

initial cluster centers randomly. K-means with different clusters are applied several times to

explore the data and rank the chromosomes based on their fitness. The k value with good clus-

ters with the highest rank fitting chromosomes is selected as the initial population.

Zhang and Zhou [63] presented another genetic algorithm-based clustering coupled with

K-means++. They used a canopy and K-mean++ for initial population generation and initial

seedlings, respectively, without specifying the number of clusters apriori. They adopted a shar-

ing-based niche that maintains population diversity to capture global optimal. They used adap-

tive crossover and mutation probabilities to avoid local optimum convergence. Their main

aim is to improve the performance of genetic algorithm-based clustering techniques. Kapil,

Chawla and Ansari [64] used a genetic algorithm to optimized K-means to override the K-

means initialization problem. Each data object acts as a candidate for cluster centroid with the

range of the data set represented as the chromosome. The genetic algorithm is applied to gen-

erate the fittest instance, which is then selected as the cluster centroids for the k-means cluster-

ing. Their result showed correctly clustered instances with a reduced sum of squared errors

compared with the traditional k-means clustering. In Rahman and Islam [65], a genetic algo-

rithm-based clustering is proposed which finds accurate cluster numbers automatically with

cluster centres that are of high quality. The high-quality cluster centres from the genetic algo-

rithm-based clustering then serve as initial centroids for the K-means to produce high-quality

clustering results.

Xiao et al. [66] hybridized a quantum-inspired genetic algorithm with K-means automatic

clustering. The typical genetic algorithm operations of Q-bits were used in conjunction with

Q-bit representation for exploration and exploitation in discrete 0–1 hyperspace using rotation

operation of the quantum gate. Their algorithm found the optimal number of clusters and pro-

vided optimal cluster centroids. As with other genetic algorithm-based hybridized clustering

algorithms, parameter tunning plays a significant role in the performance of their algorithm.

For instance, to find the optimal solution, the maximal iteration number must be as substantial

as possible, which invariably impairs the performance in terms of execution time. In all of

these hybridization approaches involving genetic algorithms and K-means for clustering, there

is a common problem of parameters tunning for an optimum clustering solution. Also, the

increased complexity reduced the performance of the hybrid clustering algorithm when deal-

ing with large-scale and high-dimensional data. Moreover, high-quality clustering resulted in

higher computational time. Kuo, Suryani and Yasid [67] proposed a hybrid algorithm for auto-

matic clustering that combines K-means with a differential evolution algorithm. Their pro-

posed algorithm, whose primary aim was to improve the performance of the DE algorithm,

requires no specification of the cluster number apriori. The DE algorithm generates the initial

cluster centers for the K-means algorithm, while the K-means algorithm was then employed to

fine-tune the cluster centres for better clustering results.

Silva et al. [68] applied a U-control chart on automatic clustering differential evolution

(ACDE) to determine the number of K-means clusters. Their work automated the determina-

tion of the k activation threshold in ACDE and the resulting number of clusters fed as input to

the K-means algorithm. Their result showed improved clustering performance. Cai et al. [69]

also presented a clustering-based DE hybridized with one-step K-means clustering for a more

effective and efficient DE. The one-step K-means efficiently utilize the population information

by acting as a large numbered multi-parent crossover operator. It enhances the hybrid DE in

balancing the evolutionary’s exploration and exploitation process. The number of clusters is
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generated as a random integer between the two and the square root of the population size.

Their approach showed an enhancement in the performance of DE in terms of the final result’s

quality and reduction in the number of evaluation fo fitness function. The main purpose of

hybridizing with K-means is to improve the exploitation capability of DE. However, the

hybridized algorithm’s performance is sensitive to the population size. The probability of find-

ing the correct search direction decreases as population size increases.

In Cobos et al. [70], the global-best harmony search is hybridized with the K-means for

automatically clustering web documents. The algorithm used the Bayesian information crite-

rion to determine the number of clusters automatically. The Global-best harmony search was

used as the global search strategy in the entire solution space, while the K-means algorithm

was used as a local strategy to improve the clustering solutions. Their result showed a better

precision than the singular algorithm, but the initialization parameters profoundly affect the

algorithm’s performance. There is a need for proper tunning of the input parameters to

achieve an optimum result. Kuo and Zulvia [27] also proposed an automatic clustering algo-

rithm based on an improved artificial bee colony optimization algorithm with the K-means

algorithm. The onlooker bee exploration scheme was improved when their movement was

directed to a better location in their algorithm. The improved ABC provides a better initial

cluster centroid for the K-means algorithm presenting the data centre location as a better loca-

tion for the onlooker bee to accelerate the exploitation step. To avoid local optimal conver-

gence of the onlooker bees as they move towards the data centre, the movement length of each

onlooker bee is considered, which is affected by the random number generated for the

onlooker bee. Their work included a parameter analysis to find the best parameter setting for

the optimal performance of their proposed algorithm. Their result showed improved perfor-

mance regarding the computation time required for conducting the scout bee phase and better

food generation by the onlooker bees. Other metaheuristics-based K-means hybridized algo-

rithms for automatic clustering reported in the literature can be found in [71–73]. As is the

case with basic metaheuristic algorithms, basic issues involving the need for parameter tuning,

increased computational complexity, and higher computational time for achieving better qual-

ity clustering results are prominent in most of the hybridized metaheuristic algorithms with

K-means.

The Symbiotic Organism Search [49] is a nature-inspired metaheuristic algorithm that sim-

ulates the technique of symbiotic interactions among organisms in an ecosystem for their sur-

vival. SOS was originally designed by [49] to solve optimization problems in continuous

solution space. It was initially used to solve four structural engineering design problems and

26 unconstrained mathematical problems to establish the performance of the algorithm. How-

ever, SOS has been adopted and transformed to apply in other problem spaces. A discrete ver-

sion of the SOS algorithm was introduced by [74], using it to solve multiple project scheduling

problems. In Discrete SOS (DSOS), the continuous solutions are transformed into discrete

solutions. It incorporates a function that converts the real-value variables into integer values

constrained within the feasible solution space. Further DSOS research can be found in Ezugwu

and Adewumi [75] and Sharma and Verma [76].

Three modified versions of the classical SOS were proposed by Tejani, Savsan and Patel

[77] to solve structural design optimization problems. They incorporated new adaptive benefit

factors which were combined with the standard SOS benefit factors to achieve a good balance

between exploitation and exploration for performance efficiency improvement. Their adaptive

SOS performed better than the classical SOS. Nama et al. [78] proposed an improved SOS

called I-SOS, where a random weighted reflective parameter was introduced to the classical

SOS along with an extra predative phase for performance enhancement. The random weighted

reflective parameter forms new sets of mutualism and commensalism update phases in the
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ecosystem. In the predative phase, the predator harms its relating partner and probably kills it.

The predation vector replaces the worst organisms in the population. The improved version of

the SOS algorithm reported better performance than other methods in finding a solution to

the Optimal capacity of Gas production facility and Gas transmission compressor design prob-

lem. Other variants to the standard SOS reported in literature includes Saha and Murkherjee

[79], Chakraborty, Nama and Saha [80], Al-Sharhan and Omran [81], Nama, Saha and Sharma

[82]. The SOS algorithm has also been modified to solve multiobjective optimization problems

where more than one objective function is required to be simultaneously optimized. Research

reports covering this aspect can be found in Cheng and Prayogo [74], Tran, Chen and Prayogo

[83], Panda and Pani [84], and Ayala et al. [85].

Hybridization of the SOS algorithm with other metaheuristic algorithms is another area

that has been explored in the literature to improve the performance of the classical SOS algo-

rithms. The literature has established that combining multiple algorithms as a hybrid produces

better and more robust solutions than the sole use of the individual algorithm [86,87]. Several

hybridized algorithms involving SOS have been reported in the literature. Abdulahi and Ngadi

[88] proposed a hybrid algorithm combining SOS and SA (Simulated Annealing) to optimize

the task scheduling process in a cloud computing environment. A hybrid of SOS called HSOS

was proposed by Nama et al. [89], combining the standard SOS with Simple Quadratic Inter-

polation(SQI) to leverage the exploitation capability of SOS with the exploration potential of

the SQI. HSOS recorded a high searching capability to achieve a global optimum. Ezugwu

et al. [87] applied the SOSSA in solving the travelling salesman problem (TSP). The perfor-

mance of the hybridized algorithm was evaluated using different TSP benchmark sets from the

TSPLIB, recording a low convergence rate with near-optimal solutions in most cases and near-

optimal solutions in some cases.

SOS algorithm has also been used for solving automatic clustering problems in literature.

However, only a few involve SOS’s hybridisation with other metaheuristic algorithms for auto-

matic clustering. Zhou et al. [36] proposed automatic data clustering using the nature-inspired

symbiotic organism search algorithm. The SOS algorithm was used to solve clustering problems

on ten standard datasets from the UCI machine learning repository. The clustering perfor-

mance of the algorithm was compared with six other metaheuristic-based clustering algo-

rithms–Particle Swarm Optimization, Differential Evolution, Flower pollination, Cuckoo

Search, Artificial Bee Colony, Multi-verse Optimizer and K-means. The means and standard

deviations were used as comparison measures for the optimal performance of SOS with these

other algorithms. The experimental result showed that SOS outperformed all the algorithms

compared to its convergence speed and solution quality. It also demonstrated a superior level of

stability. Zhou et al. [36] work is similar to this research work because SOS was used in solving

automatic clustering algorithms. The use of the SOS algorithm alone limits the final clustering

performance in terms of the solution quality compared with results obtained from hybridized

algorithms such as our work in solving automatic clustering. As a recommendation for future

research, they suggested the hybridization of the SOS algorithm with other algorithms to com-

bine the advantages of the participating algorithms for better clustering solutions.

Yang & Sutrisno [53] integrated the automatic k-means clustering method with SOS to cre-

ate subpopulations on the SOS initial solutions in their proposed clustering-based SOS algo-

rithm called CSOS for high dimensional optimization problems. They aimed to enhance the

SOS algorithm’s searching quality and searching efficiency by combining the concept of local

and global searching through clustering. CSOS adopted an automatic cluster generation and

merging method by dividing the ecosystem into several sub-ecosystems to create a faster algo-

rithm using the automatic k-means algorithm. The k value for the k-means is determined as

half of the ecosize to ensure that there are at least two solutions in every cluster. Clusters with
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only one solution are merged with the closest cluster at the initialization stage. Using twenty-

eight benchmark performance and efficiency parameters, the CSOS algorithm was compared

with GA, CRPSO, SaNSDE, rCMA-ES, GWO and SOS. It was also compared with other clus-

tering-based metaheuristics—HSGA, ACVPSO, CDE and 2-MPCs-CDE using eight problems

based on FE, SR, and best-found solutions. Their result showed improved performance com-

pared with SOS in terms of computational speed in high-dimensional problems. Their work is

different from ours in that K-means was introduced to improve the initialisation procedure of

the SOS algorithm and can not be taken as a hybridization of the two algorithms. Their aim, as

stated earlier, was to improve the quality and efficiency of the search process of SOS. Our focus

is on enhancing the widely used K-means algorithm’s clustering performance and extending it

to handle automatic clustering.

Rajah and Ezugwu [1] proposed and implemented four SOS-based hybrid algorithms–

SOSFA, SOSDE, SOSTLBO, and SOSPSO for automatic partitioning of datasets without prior

knowledge of the number of clusters in the datasets. Their main goal was to improve the over-

all performance of the basic SOS algorithm using a hybridization approach for automatic clus-

tering. The proposed algorithms were evaluated using the Davies-Boulding clustering validity

index based on the solution quality obtained. In their implementation, the SOS with its various

hybridized algorithms were used to solve automatic clustering analysis problems using twelve

UCI datasets. The performances of this hybridized algorithm were compared with SOS and

some other state-of-the-art hybridized algorithms. Their result established that hybrid algo-

rithms are powerful optimizations for solving real-life applications such as cluster analysis

problems. Their result also revealed that the three hybrid algorithms (SOSFA, SOSTLBO,

SOSPSO) outperformed the basic SOS algorithm while SOSDE performance was at par with

the basic SOS algorithm. This work is also similar to ours because it focuses on hybridizing

SOS with other metaheuristic algorithms and comparing their clustering performances using

only the DB cluster validity index. In addition, our work exploits a hybridization of SOS with

the traditional K-means clustering algorithm. A summary of the various hybrid algorithms

involving either the K-means algorithm or Symbiotic Organism Search with other metaheuris-

tic algorithms or both of them is given in Table 1.

Automatic clustering using hybridization of nature inspire algorithms is still a new research

area. Efforts are tailored toward reducing the computational complexity, parameter tunning

and computational time to achieve optimal clustering results. This paper focuses on hybridiz-

ing SOS with K-means to achieve a better clustering performance while extending K-means

advantage in solving automatic clustering problems. The strengths of the SOS algorithm of

parameter-free characteristics with its excellent global search capability will be harnessed to

automatically determine the number of clusters in the datasets and generate corresponding

initial cluster centers for the classical K-means algorithm. The Davies Boulding Cluster Valid-

ity Index and the Compact-Separated (CS) index will be used to validate the clustering perfor-

mance of the proposed algorithm.

3. Methodology

This section presents the computational model of the proposed SOSK-means algorithm.

SOSK-means combined SOS algorithm with standard K-means algorithm to solve the auto-

matic data clustering problem. An overview of the SOS algorithm is presented, describing the

three phases of generating new solutions. This study solves the automatic data clustering prob-

lem using a hybrid algorithm combining the Symbiotic Organism Search algorithm and K-

means algorithm. The proposed SOSK-means algorithm is implemented using the approach

described in [53], which handles similar hybridizations.
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Table 1. Summary of literature review on K-means hybridization with metaheuristic algorithms.

S/

N

Algorithm Reference Method Findings Limitations

1 GA- and DE-based

Heuristics hybrid

algorithm

Mustafi and

Sahoo [60]

Hybridised GA and DE with K-

means

Improved initial seeding for the K-

means algorithm with the requisite

number of clusters

Proper tunning of basic GA input

parameters is required with increased

computational time and complexity

2 MapReduce-based

hybrid algorithm

Sinha and

Jana [61],

Hybridised GA with K-means using

Mahalanobis distance as fitness

function and K-means +

+ initialization process

MapReduce-based K-means hybridized

with GA for clustering in a distributed

environment

Proper tunning of basic GA input

parameters are required

3 GENCLUST++ Islam et al.

[62]

Hybridised GA with K-means Advancement in genetic algorithm-

based clustering for quality clustering

solutions with O(n) complexity

Proper tunning of basic GA input

parameters is required with increased

computational complexity

4 NCLUST Zhang and

Zhou [63]

Hybridised GA with K-means++ Genetic Algorithm-based hybrid

clustering with maintained population

diversity

Proper tuning of basic GA input

parameters and increased

computational time is required for a

high-quality result.

5 Genetic K-means Kapil, Chawla

and Ansari

[64]

Hybridised GA with K-means Optimized K-means using GA for

better K-means initialisation process

using sample dataset as chromosomes

Proper tunning of basic GA input

parameters is required with increased

computational complexity

6 GENCLUST Rahman and

Islam [65]

Hybridised GA with K-means Genetic algorithm-based clustering

with automatic generated accurate

cluster numbers and high-quality

cluster centres

Proper tunning of basic GA input

parameters is required with increased

computational complexity

7 KMQGA Xiao et al. [66] Hybridised GA with K-means Generation of an optimal number of

clusters and optimal cluster centroids

using Q-bits operations and

representation

Proper tunning of basic GA input

parameters is required, and increased

computational complexity

8 ACDE-K-MEANS Kuo, Suryani

and Yasid [67]

Hybridised Improved DE with K-

means

Automatic generation of a number of

clusters

Proper tunning of basic DE input

parameters is required

9 ACDE Silva et al.

[68]

Hybridised DE with K-means Automatic generation of a number of

clusters using U-control chart-based

DE

Proper tunning of basic DE input

parameters is required

10 CDE Cai et al. [69] Use of one-step K-means with DE Improved performance for DE-based

clustering

Proper tunning of basic DE input

parameters is required. Higher

computational time for better quality

clustering

11 IGBHSK Cobos et al.

[70]

Hybridised Global best HS with K-

meanS

Automatic clustering using BIC for

determining cluster numbers for

document clustering

Proper tunning of basic HS input

parameters is required

12 iABC Kuo and

Zulvia [27]

Hybridised improved ABC with K-

means

Better initial cluster centroid for the K-

means algorithm with better and more

stable clustering result

Required parameter analysis to

achieve optimal performance. The

higher computational time for better

quality clustering

13 Classical SOS Zhou et al.

[36]

Using SOS Algorithm for solving

clustering problem

Automatic clustering using classical

SOS

Required parameter analysis to

achieve optimal performance.

Limited in performance as a single

algorithm

14 CSOS Yang &

Sutrisno [53]

Integrate K-means with SOS Uses K-means for the classical SOS

algorithm’s initialization improvement

to improve the searching quality and

searching efficiency

The focus is on improving the

classical SOS algorithm

15 SOSFA, SOSDE,

SOSPSO, SOSTLBO

Rajah and

Ezugwu [1]

Hybridized SOS with FA, DE, PSO

and TLBO

Improving the performance of the basic

SOS algorithms through hybridization

Proper tunning of basic participating

metaheuristics input parameters is

required

https://doi.org/10.1371/journal.pone.0272861.t001
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3.1. Symbiotic organism search algorithm

The SOS algorithm is a nature-inspired metaheuristic algorithm that simulates the symbiotic

interaction strategies of organisms for survival and propagation in the ecosystem [49]. As is

common with other metaheuristic algorithms, SOS uses random variables and does not

require substantial gradient information. However, unlike other metaheuristic algorithms, the

operation of the SOS algorithm requires no specific algorithm parameters except for the gen-

eral parameters common to population-based algorithms, such as the maximum number of

iterations, population size and problem dimension. This exonerates the SOS algorithm from

the problem of parameter tuning for an optimal solution. The SOS algorithm mimics the sym-

biotic interactions between a paired organism relationship to search for the optimal global

solution in a continuous search space. In seeking the optimal global solution, the SOS itera-

tively employed a population of candidate solutions to the promising areas in the search space.

It starts with an initial population which is referred to as the ecosystem.

The initial ecosystem comprises a group of organisms randomly generated for the search

space, with each organism representing a candidate solution to the automatic clustering prob-

lem. A fitness value reflecting the degree of adaptation of the organism to the desired objective

(automatic clustering) is associated with each organism. The SOS algorithm employed the

three phases of symbiotic relationship: mutualism, commensalism, and parasitism, as a succes-

sion of operations to solutions in each iteration to generate new solutions for the next iteration.

The main principle of each phase is based on the corresponding symbiotic relationship. In the

mutualism phase, the two organisms involved benefit from the interaction. In contrast, in the

commensalism phase, only one of the organisms receives benefit and the other neither benefit

nor lose from the interaction. However, in the parasitism phase, one organism benefits while

actively harming the other organism. The three phases are repeated at each iteration until the

termination criteria are met.

Mutualism phase. A mutual relationship is defined between an organism Xi and another

randomly selected Xj such that the association between the two organisms enhances their

mutual survival rate within the ecosystem. Xi and Xj correspond to the ith and jth members of

the ecosystem. Based on the mutualistic relationship between them, new solutions for Xi and

Xj are generated using Eqs (1) and (2), respectively:

Xinew ¼ Xi þ randð0; 1Þ � ðXbest � Xmutual � BF1Þ ð1Þ

Xjnew ¼ Xj þ randð0; 1Þ � ðXbest � Xmutual � BF2Þ ð2Þ

Xmutual ¼
Xi þ Xj

2
ð3Þ

Xinew and Xjnew represents the new solutions for the interacting organisms Xi and Xjj, respec-

tively. The Xbest represent the highest degree of adaptation, and it is modelled as the target

point for the fitness increment of both organisms. The Xmutual expresses the characteristic rela-

tionship between the interacting organisms while the (Xbest−Xmutual×BF1) reflects the mutualis-

tic effort required to achieve the goal of increasing their survival in the ecosystem. The BF1 and

BF2 are called the benefit factors, representing the level of benefit to each interacting organism.

The values are randomly determined as either 1 or 2 to reflect if an organism has a partial or

full benefit from the relationship. Interacting organisms’ values are updated if and only if their

new fitness is better than their pre-interaction fitness, as reflected in Eqs (4) and (5),
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respectively.

Xinew ¼ Xi þ randð0; 1Þ � ðXbest � Xmutual � BF1Þ

if f ðXinewÞ > f ðXiÞ ð4Þ

Xjnew ¼ Xj þ randð0; 1Þ � ðXbest � Xmutual � BF2Þ

if f ðXjnewÞ > f ðXjÞ ð5Þ

Commensalism Phase. In the commensalism phase, the organism Xj is randomly selected

to interact with the organism Xi as is the case in the previous phase, however, only Xi benefits

from the relationship while Xj neither benefit nor suffer from the interaction. In this case, only

organism Xi has a new solution which is generated using Eq (6) based on the commensal rela-

tionship between the interacting organisms.

Xinew ¼ Xi þ randð� 1; 1Þ � ðXbest � XjÞ if f ðXinewÞ > f ðXiÞ ð6Þ

The (Xbest−Xj) reflects the beneficial advantage Xi gets from interacting with Xj to increase

its survival advantage in the ecosystem with respect to the highest degree in the current organ-

ism. Just as it was in the previous case, Xi is updated if and only if the new fitness is better than

its pre-interaction fitness.

Parasitism phase. In the parasitism phase, the organism Xi is duplicated to create a para-

site vector and then used a random number to modify the randomly selected dimensions. A

host to the parasite vector is then selected randomly from the ecosystem as Xj to interact with

the parasite vector, which replaces Xi. Xj and Parasite_vector are then evaluated to find their fit-

ness if Xj has the worst fitness compared with the Parasite_vector, the latter kills the former and

replaces its position in the ecosystem otherwise, Xj will build immunity against the parasite_vec-

tor, which is then eliminated from the ecosystem. The Parasite_vector is obtained using Eq (7).

Xparasite ¼ randð0; 1Þ � ðUB � LBÞ þ LB ð7Þ

The clustering setup for the SOS algorithm used in this paper is like the one employed by

[53], but it uses the common traditional based iterative process of assigning a maximum num-

ber of iterations to access the performance of the proposed algorithm instead of using the num-

ber of function evaluation. The standard algorithm steps of the SOS can be found in [49], while

the modified version for automatic clustering is presented in Algorithm (1) below.
Algorithm 1 Pseudocode for Standard SOS
Input: ecosize: population size SSUB: search space upper bound

maxit: maximum number of iterations SSLB: search space
lower bound

DD: problem dimension
FF(X): fitness (objective) function

Output: Xbest: the final global best solution for the population
1: Generate initial population of organisms X = (X1, X2,5:
. . .. . .. . .. . ...Xecosize)
2: Evaluate the fitness of each organism
3: Identify the initial population’s best solution Xbest
4: while iteration�maxIt
5: for i = i = 1 to ecosize do
6: // Mutualism Phase //
7: Randomly select index j (1 � j � ecosize; j 6¼ i)
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8: BF1 = (1+round(rand(0,1)))
9: BF2 = (1+round(rand(0,1)))

10: Xmutual ¼
XiþXj

2

� �

11: for k = 1 to DD do
12: Xinew = Xi+rand(0,1)�(Xbest−BF1�Xmutual)
13: Xjnew = Xj+rand(0,1)�(Xbest−BF2�Xmutual)
14: end for
15: if (FF(Xinew)<FF(Xi)
16: Xinew = Xi
17: end if
18: // Commensalism Phase//
19: Randomly select index j (1 � j � ecosize; j 6¼ i)
20: for k = 1 to DD do
21: Xinew = Xi+rand(−1,1)�(Xbest−Xi)
22: end for
23: if FF(Xjnew)<FF(Xj)
24: Xjnew = Xj
25: end if
26: //Parasitism Phase//
27: Randomly select index j (1 � j � ecosize; j 6¼ i)
28: for k = 1 to DD do
29: if rand(0,1)<rand(0,1)
30: Xparasite = Xi
31: else
32: Xparasite = rand(0,1)�(SSUB[K]−SSLB)+SSLB
33: end if
34: end for
35: if FF(Xparasite)<FF(Xi)
36: Xi = Xparasite
37: end if
38: end for
39: Update the best solution for the current population Xbest
40: end for
41: end while

3.2. K-Means algorithm

The K-means algorithm is a partitional clustering algorithm proposed by MacQueen in 1967

[44]. It is a simple clustering algorithm that is widely used for solving data clustering problems.

K-means clustering algorithm has a linear time complexity (O(n) where n represents the num-

ber of data objects in the dataset. It has a high computational speed and can easily identify

high density regions within a dataset. The k-means algorithm is listed as one of the top ten

most used algorithms for data mining process [16], with wide acceptability for its simple

implementation, low computational complexity, flexibility, and efficiency. The algorithm is

made up of two separate phases. In the first phase, k number of data objects are randomly

selected as cluster centres called centroids. The remaining data objects are then assigned to the

closest cluster centre using the Euclidean distance metric to determine the distance between

the object and the cluster centres. Once all data objects have been assigned, the average of the

early formed clusters is then recalculated to determine the new centroid for the group. The

iterative procedure is then repeated until the criterion function is minimum. K-means cluster-

ing requires user-specified parameter k as its input and generates k numbers of clusters. as its

output

Given a dataset X containing n numeric objects such that Xi = (x1, x2,. . ...xn) and an integer

number k representing the number of clusters in X with k< = n, the K-means algorithm
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partitions X into k clusters minimizing the within-cluster square errors. The mathematical for-

mulation for the partitional clustering problem F for the K-means algorithm is as given in Eq

(8) subject to the expression in Eq (9):

Minimize FðA;CÞ ¼
Pk

l¼1

Pn
i¼1
ai;ldðXi;ClÞ ð8Þ

subject to
Pk

l¼1
ai;l ¼ 1; 1 � i � n

such that ai;l 2 f0; 1g; 1 � i � n; 1 � l � k ð9Þ

where A is a partitional matrix of size n×k and C = C1, C2,. . .. . ..,Ck represents a set of objects

in the same cluster with d representing the square distance between two objects. The basic K-

means algorithm pseudocode is presented in Algorithm 3 below.
Algorithm 2 Pseudocode for Standard K-means
Input: Array {x1,x2,x3,. . .. . ..xn} // Dataset to be clusters

k // Number of required clusters
CC{cc1,cc2,cc3,. . .. . .cck} // Cluster centroids

Output: A set of clusters
1. // Initialize Parameters
2: X = (x1,x2,x3,. . .. . ..xn})
3: CC = (cc1, cc2, cc3,. . .. . .cck})
4: Repeat
5: //Distance Calculations
6: for i = 1 to n do
7: for j = 1 to k do
8: Compute Euclidean distance from a data object to all
cluster
9: end j
10: //Data object assignment
11: Add data objects to the closest cluster
12: end i
13: //Update cluster centroid
14: Compute the new cluster centroid
15: Until the difference between the cluster centroids of the two
consecutive iterations remains the same
16: End

3.3. Hybrid symbiotic organism search K-means optimization algorithm

The hybridization technique discussed in this paper aims to boost the classical K-means per-

formance and extends its capability to solve automatic clustering problems by integrating it

with the Symbiotic organism search algorithm. The hybridization strategy employed is like the

one adopted in [63], where the strategy was used for dynamic clustering using binary Particle

Swarm Optimization to generate the initial cluster centroid, and K-means were used to fine-

tune the generated cluster centroids. However, in our study, the global exploration ability of

the parameter-less SOS algorithm was combined with the exploitation ability of the simple K-

means algorithm. The strategy balances the searching process for optimum cluster solution

while ensuring non-convergence of K-means to a local minimum and simultaneously avoiding

parameter tunning of other metaheuristic algorithms. In this study, there are two major sec-

tions in the SOSK-means algorithm. In the first part, the hybridized optimization algorithm

commences the clustering process using the SOS algorithm. The optimum cluster centroids

obtained during the three-phased SOS operations are then passed on to the K-means algo-

rithm as the initial cluster centres.
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During the initialization process of the SOS algorithm for clustering, X = (X1, X2,

. . .. . .. . .. . ...XN) is set for N organisms to represent the initial population. Each organism X1 is

a k×m dimensional vector with k representing the number of clusters andm representing the

dimensions of the dataset Dn×m. Each organism in the ecosystem is denoted as Xi = (x�1,

x�2. . .. . .. . ..x�k). The minimum of each column in the dataset Dn×m is set as the lower bound

x�j(j = 1,2,. . ..k) representing one of the clustering centres, that is, a�j =min (D1, D2,. . .. . .. . ...

Dn) while the upper bound b�j = max (D1, D2,. . .. . .. . ...Dm) is set as the maximum of each col-

umn in the dataset. The solution space for the clustering problem is bounded by the defined

lower and upper bounds a and b, respectively. The organisms are uniformly and randomly dis-

tributed throughout the ecosystem, while the search space is limited to the solution space

delineated by the defined lower and upper bounds. In solving the clustering problem, the x,

which represents the ith organism is obtained using the Eq (10) below:

Xi ¼ randð1;K �mÞ � ðb � aÞ þ a ð10Þ

Where rand(1, K×m) represents a vector of uniformly distributed random numbers between 0

and 1. For the mutualism phase of the SOS, Eqs (4) and (5) are used to generate the new candi-

date organisms, while for commensalism and parasitism phases, Eqs (6) and (7) are adopted.
Algorithm 3 Pseudocode for Hybrid SOSK-means
Input: ecosize: population size SSUB: search space upper bound
maxit: maximum number of iterations SSLB: search space lower bound
DD: problem dimension FF(X): fitness (objective) function
Output: Optimal Solution
1 Generate initial population of organisms X = (X1, X2 . . .. . .. . .. . ...
Xecosize)
2 Evaluate the fitness of each organism
3 Identify the initial population’s best solution Xbest
4 while iteration�maxIt
5 for i = 1 to ecosize do
6 // Mutualism Phase //
7 Randomly select index j (1�j�ecosize; j6¼i)
8 BF1 = (1+round(rand(0,1)))
9 BF2 = (1+round(rand(0,1)))

10 Xmutual ¼
XiþXj

2

� �

11 For k = 1 to DD do
12 Xinew = Xi+rand(0,1)�(Xbest−BF1�Xmutual)
13 Xjnew = Xj+rand(0,1)�(Xbest−BF2�Xmutual)
14 end for
15 if (FF(Xinew)<FF(Xi)
16 Xinew = Xi
17 end if
18 // Commensalim Phase//
19 Randomly select index j (1�j�ecosize; j6¼i)
20 for k = 1 to DD do
21 Xinew = Xi+rand(−1,1)�(Xbest−Xi)
22 end for
23 if FF(Xjnew)<FF(Xj)
24 Xjnew = Xj
25 end if
26 //Parasitism Phase//
27 Randomly select index j (1�j�ecosize; j6¼i)
28 for k = 1 to DD do
29 if rand(0,1)<rand(0,1)
30 Xparasite = Xi
31 else
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32 Xparasite = rand(0,1)�(SSUB[K]−SSLB)+SSLB
33 end if
34 end for
35 if FF(Xparasite)<FF(Xi)
36 Xi = Xparasite
37 end if
38 Update the best solution for the current population Xbest
39 //K-means Clustering Section//
40 Initialize the K-means with the position of the Xbest
41 Perform K-means clustering
42 end for
43 iteration = iteration + 1
44 end while

The algorithm starts with the ecosystem initialization process, where the number of organ-

isms, and maximum iteration required are stated. The initial population of organisms of size

npop are also generated. Next, the iterative procedure for the SOS algorithm is initiated. The

fitness functions DB index or CS index are evaluated by evaluating each organism’s fitness in

the initial population using the fitness function. The best fitness value is kept as the Xbest, rep-

resenting the optimum solution for the initial population. The control is then passed on to the

mutualism phase of the algorithm. During the mutualism phase of the algorithm, an organism

Xj is randomly selected to interact with Xi. The benefit factor for the two organisms is evalu-

ated and used to generate their mutual benefit values. Two organisms, Xinew and Xjnew, are

then generated using the mutual benefit values. The fitness function of the two new organisms,

Xinew and Xjnew, are evaluated and compared with the Xi and Xj organisms. If Xinew and Xjnew

organisms are more fitted, Xi and Xj organisms are replaced with Xinew and Xjnew and if other-

wise, the Xi and Xj organisms will be retained while the new ones are discarded.

The control is then passed on to the commensalism phase of the algorithm. At this level, an

organism Xj is randomly selected, which is used in modifying organism Xi to generate a new

organism Xinew. The fitness function for the new organisms Xinew is then evaluated and com-

pared with the Xi. If Xinew organisms are more fitted than Xi organisms, Xi will be replaced

with Xinew; otherwise, the Xi organisms will be retained while Xinew will be discarded. At this

point, the parasitism phase takes over the control from the commensalism phase. As is the case

with the initial two phases, an organism Xj is randomly selected and modified to be a new

organism Xparasite. The fitness function for the new organisms Xinew is then evaluated and com-

pared with the Xi. If Xinew organism is fitter than Xi organisms, Xi will be replaced with Xinew

with Xi discarded and if otherwise, Xi will be retained while Xparasite is discarded. The proce-

dure involving the three phases is performed on each organism in the dataset, and the Xbest for

the current population is updated. At the level, the output is fed into the classical K-means

algorithm as input, supplying the value for k and the corresponding data points of the Xbest

obtained. The K-means clustering is then performed, and the result is given as the output for

the iteration ith. The entire procedure is repeated until the maximum iteration is reached and

the program terminates. The program flowchart showing the above procedure is presented in

Fig 1 below:

3.4. Cluster validity indices

One of the fundamental parts of the clustering process is the validation of the results obtained

from the clustering algorithms [90]. The cluster validation technique finds a set of clusters that

best fits the natural partitions of datasets without prior knowledge of the class information

regarding the dataset. It involves estimating how well a partition fits the underlying structure

of the data. In this study, the Davies-Boulding index and the Compact Separated index are
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Fig 1. Proposed hybrid SOSK-means clustering algorithm.

https://doi.org/10.1371/journal.pone.0272861.g001
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used to estimate the quality of the clustering results of the proposed SOSK-means algorithm.

The two CVI are presented as an optimization problem where the objective function (the CVI)

is required to be minimized. In each case, the lower the CVI value, the better the clustering

result with better compactness and farther clusters separations. The CVIs are calculated as the

fitness function for the SOSK-means clustering algorithm.

Davies-boulding index. The Davies-Boulding index (DB) evaluates the intra-cluster, that

is, the average of all data points distance from the cluster centroid within a cluster and the

inter-cluster distance between the centroids of two clusters to determine the quality of the clus-

tering results produced by a clustering algorithm. The Davies-Boulding index is presented in

Eq (11) below:

DB ¼
1

k
Pk

i¼1

Max

i 6¼ j

dðxiÞ þ dðxjÞ
dðki; kjÞ

( )

ð11Þ

Where k is the number of clusters with i, j as the cluster labels. The d(xi) and d(xj) are the aver-

age of the distances of each data points to their respective cluster centroid within each cluster.

The d(ki, kj) is the inter-cluster distance between cluster centroids of cluster ki and cluster kj.
Compact-separated index. The Compact-Separated index (CS) uses the ratio of the sum

of the within-cluster scatter to the between-cluster separation to measure the quality of a clus-

tering result. Lower values of the CS reflect well-separated and more compacted clusters. It is

reported as a better CVI in terms of the efficient handling of clusters with different densities,

dimensions, and sizes. The Compact-Separated index is presented in Eq (12) below:

CS ¼

Pk
i¼1

1

Qi

P
Xi�Q
maxXj�Q VðXi;XjÞ

n oh i

Pk
i¼1
½minj�k;j6¼ifVðxi; xjÞg�

ð12Þ

where the number of data points in cluster C is represented as |D| while the distance between

the within-cluster scatter Xi and between-cluster separation Xj is represented as function V(Xi,
Xj). The number of clusters in Q is given as k, and the distance of the data points d from their

centroid is represented as V(xi, xj).

4. Experimentation

This section presents the description of the experimental configuration for evaluating the per-

formance of the proposed hybrid SOSK-means for automatic data clustering and perimeter

settings. The benchmark datasets used for validating SOSK-means’ performance alongside is

also described. In the latter part of the section, the simulation results are presented with discus-

sions on the result as well as their comparison with results from the literature.

4.1. Parameter setting and system configuration

The SOSK-means algorithm was programmed using MATLAB R2018b, while IBM SPSS Ver-

sion 25 was used for the statistical analysis test to validate the statistically significant difference

in the experimental results. The experiments were performed on a 3.60GHz Intel1Core™ i7-

7700 processor with a memory size of 16GB running Windows 10 as the operating system.

The simulation results of SOSK-means and results of existing algorithms published in the liter-

ature were compared to evaluate their performance. The algorithms include SOSTLBO [1],

SOSFA [1], SOSPSO [1], SOSDE [1], DE [91], DCPSO [92]and GCUK [93]. Tables one con-

tains the parameter settings for the SOSK-means, while Table 2 contains the setting for the

other algorithms from the literature. In reporting the computed numerical solutions of the
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SOSK-means, the descriptive statistics employed include the best cost, the worst cost, the aver-

age cost, and the standard deviation. The report gives the clustering performance of the SOSK-

means algorithm with reference to the defined objective functions using the DB index and CS

index. The report also includes the average computational time the proposed hybrid algorithm

spent to obtain the clustering solutions. The configuration of the parameter for SOS, K-means

and SOSK-means is presented in Table 3.

In total, eleven datasets, including both real-life and artificial datasets with two moons data-

sets, were used to evaluate the proposed algorithm’s performance and effectiveness compared

to the other algorithms. However, not all the datasets used were included in the ones reported

in the literature.

4.2. Clustering dataset

The eleven benchmark datasets used were obtained from the UCI Machine Learning Reposi-

tory of the University of California. The summary of the eleven datasets used is given in

Table 4, showing the data type, the dimension of the dataset, the number of data points and

the number of clusters.

Each of the three individual algorithms (SOS, K-means and SOSK-means) was executed

separately during the experimentation. The SOS and SOSK-means used an initially randomly

generated population of size twenty-five over two hundred iterations. The regular procedure

was adopted for the standard k-means algorithm with k given as the number of clusters for the

corresponding dataset and the initial cluster centers generated randomly. However, in SOSK-

means, the value for k and the corresponding optimum cluster centres generated by SOS was

passed as an input parameter to the K-means phase. The algorithms were repeated forty inde-

pendent times for all the datasets. Table 5 shows the numerical analysis of the validity measures

on SOSK-means using DB and CS indexes on the twelve datasets. The best solution, worst

solution, average solution and the standard deviation are denoted using the Best, Worst, Aver-

age and Std-Dev, respectively.

Fig 2 shows the average run time required by each of the data sets to obtain the optimal

solution for by SOSK-means. The comparison of the simulated results for the three algorithms

and those of the algorithms obtained from literature are presented respectively in Tables 6 and

7. For statistical validation of the significant difference between the different clustering results

Table 2. Initial parameter setting for classical SOS, classical K-means and proposed hybrid SOSK-means.

SOS K-means SOSK-means

Parameter Value Parameter Value Parameter Value

Max-It 200 k As per dataset Max-It 200

np 20 cc1. . ..cck First k elements in dataset np 20

https://doi.org/10.1371/journal.pone.0272861.t002

Table 3. Initial parameter setting for the compared algorithms.

DCPSO GCUK

Algorithm’s Parameter Assigned Value Algorithm’s Parameter Assigned Value

Popl_size 100 Popl_size 50

Inertial Weight 0.7200 Cross-over 0.800

c1, c2 1.4940 Mutation probability 0.0010

Kmax 20 Kmax 20

Kmin 2 Kmin 2

https://doi.org/10.1371/journal.pone.0272861.t003
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obtained from the various algorithms, Friedman test statistic and the Wilcoxon posthoc tests

were conducted, and the results are presented in Tables 8 and 9, respectively.

In the comparison of the performance of SOSK-means with those obtained from other

hybridized metaheuristics algorithms, the focus was on the clustering solution quality obtained

from the DB and CS validity indices which were used as the fitness function, as well as the

computation time is taken by the two validity indices to get the solution for the individual

dataset. The results are presented as four decimal place values with an emphasis on datasets

where SOSK-means performed better than the other algorithms. Such results are presented in

bold font.

4.2. Results and discussion

It can be seen from the summarised result of Tables 5 and 6 that the proposed SOSK-means

algorithm performed efficiently in solving automatic data clustering problems. Compared

with the non-hybridized clustering algorithm SOS and K-means, the SOSK-means exhibited

superior performance in some datasets. A comparison of the results obtained from forty inde-

pendent runs for the DB and CS validity measures is shown in Table 4. For a fair comparison,

Table 4. Dataset characteristics.

Datasets Dataset Features Number of Clusters Number of Objects Dataset Type

Breast [58,94] 9 2 699 UCI

Compound [58,95] 2 6 399 Shape

Flame [58,96] 2 2 240 Shape

Glass [58,94] 9 7 214 UCI

Iris [58,94] 4 3 150 UCI

Jain [58,97] 2 2 373 Shape

Path-based [58,98] 2 3 300 Shape

Spiral [58,98] 2 2 312 Shape

Thyroid [58,94] 5 2 215 UCI

Two-moons [99] 2 2 10,000 -

Wine [58,94] 13 3 178 UCI

Yeast [58,94] 8 10 1,484 UCI

https://doi.org/10.1371/journal.pone.0272861.t004

Table 5. SOSK-means results in over forty independent runs with DB and CS validity indices as the fitness function.

DBIndex CSIndex

Dataset Best Worst Average Std Dev Best Worst Average Std Dev

Breast 0.8121 0.8121 0.8121 0.0000 0.5996 0.9574 0.7606 0.1217

Compound 0.4974 0.5158 0.5046 0.0044 0.5032 0.5918 0.5072 0.0155

Flame 0.7755 0.7787 0.7770 0.0008 0.3846 0.3846 0.3846 0.0000

Glass 0.3633 0.8159 0.7113 0.1217 0.0608 0.0608 0.0608 0.0000

Iris 0.5937 0.6744 0.6346 0.0188 0.5367 0.6444 0.5743 0.0237

Jain 0.6490 0.6535 0.6518 0.0009 0.6546 0.6546 0.6546 0.0000

Pathbased 0.6579 0.6740 0.6708 0.0031 0.5961 0.6894 0.6511 0.0120

Spiral 0.7350 0.7541 0.7437 0.0045 0.6450 0.6862 0.6812 0.0115

Thyroid 0.5754 0.6934 0.6321 0.0316 0.6409 0.6409 0.6409 0.0000

Twomoons 0.6008 0.6048 0.6032 0.0010 0.7176 0.7664 0.7498 0.0162

Wine 1.0045 1.0896 1.0460 0.0207 0.6570 0.8829 0.8422 0.0527

Yeast 0.4460 1.0819 0.8496 0.1588 0.3897 0.6303 0.5242 0.0437

Average 0.6426 0.7623 0.7197 0.0305 0.5321 0.6325 0.5860 0.0248

https://doi.org/10.1371/journal.pone.0272861.t005
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a uniform initial population size of 25 was used for both SOS and SOSK-means. The perfor-

mance of the proposed algorithm SOSK-means on the two cluster validity indices for all the

datasets is shown in Table 4. The DB and CS as the objective functions for the proposed algo-

rithms are cases of minimization problems with the least values indicating the best results. In

eight of the datasets, better results were obtained by the CS-index compared with the DS-

index, which recorded better results in Compound, Jain, Thyroids and Two-moons datasets.

From the performance results obtained for the two CVIs, it can be deduced that CS-index

has a better solution with higher partitioning ability compared with the DB-index. The DB

measure returned a lower computational time than the CS measure for most of the datasets.

As stated earlier, the SOSK-means has its best optimal result for Compound, Jain, Thyroids

and Two-moons datasets on the DB measure, while the best optimal result of the CS measure

is recorded for the Breast, Flame, Iris, Path-based, Spiral, Wine, and Yeast datasets. DB mea-

sure has its worst result on the Wine dataset while the worst result for CS measure is recorded

for Breast dataset.

The computational time for the two objective functions is presented in Fig 2, showing the

average execution run time of the proposed algorithm for all the datasets for the forty indepen-

dent runs. The CS-index has poor computational times compared with the DB-index in almost

all the datasets. SOSK-means recorded a very high average runtime for the Yeast dataset CS

index. Except for Spiral, Thyroid and Wine datasets, the average runtime recorded by CS-

index is much higher than the DB-index for the remaining datasets.

The summarised results for the classical SOS, K-means and the SOSK-means algorithm are

shown in Table 5. The results for the three algorithms using the mean solution and the stan-

dard deviation from the experiments involving forty independent runs are compared. For all

the datasets, the SOSK-means algorithm performs better than the individual classical algo-

rithms on the two CVIs. The proposed SOSK-means algorithm outperforms the standard K-

means algorithms in all the datasets except the Breast dataset, where they have the same result

on the DB-index. SOSK-means records the best means solution for Breast, Flame, Glass, Iris,

Fig 2. The mean run time achieved by SOSK-means on DB and CS measures over forty independent runs for the

twelve datasets.

https://doi.org/10.1371/journal.pone.0272861.g002
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Pathbased, Spiral, Wine and Yeast under CS-index and the best means solution for Com-

pound, Jain, Thyroid and Twomoons under the DB-index. The overall results show that the

SOSK-means performs better than the individual classical SOS and K-means algorithms in

terms of solution quality.

A comparison of the performance of proposed SOSK-means with results of other clustering

algorithms from literature is presented in Table 6. The performance of the individual algo-

rithms, when executed on seven datasets, namely Breast, Glass, Iris, Spiral, Thyroid, Wine and

Yeast, was used to measure their competitiveness. The analysis of the BD and CS measure per-

formances is presented with the following observations from the analysis table.

Table 6. SOSK-means compared with SOS and K-means for forty replications.

Dataset Algorithm DBIndex CSIndex

Mean Sol. Std Dev Mean Sol. Std Dev

Breast SOS 1.3520 0.2858 0.9946 0.2667

Kmeans 0.8121 0.0000 1.1019 0.0000

SOSKmeans 0.8121 0.0000 0.7606 0.1217

Compound SOS 0.6924 0.1481 0.5670 0.1225

Kmeans 0.9716 0.0748 1.2887 0.1486

SOSKmeans 0.5046 0.0044 0.5072 0.0155

Flame SOS 0.8234 0.0180 1.2707 0.1006

Kmeans 1.2306 0.0059 1.5806 0.0263

SOSKmeans 0.7770 0.0008 0.3846 0.0000

Glass SOS 0.8164 0.1174 0.2200 0.2563

Kmeans 1.2208 0.1570 1.4894 0.1904

SOSKmeans 0.7113 0.1217 0.0608 0.0000

Iris SOS 0.8602 0.1809 0.8585 0.1922

Kmeans 0.9167 0.0033 1.2404 0.0092

SOSKmeans 0.6346 0.0188 0.5743 0.0237

Jain SOS 0.7007 0.0274 0.8196 0.0212

Kmeans 0.8587 0.0001 1.0668 0.0003

SOSKmeans 0.6518 0.0009 0.6546 0.0000

Pathbased SOS 0.7578 0.0686 1.0021 0.1708

Kmeans 0.7696 0.0066 0.9893 0.0086

SOSKmeans 0.6708 0.0031 0.6511 0.0120

Spiral SOS 0.8013 0.0447 1.0818 0.2107

Kmeans 0.9589 0.0109 1.1896 0.0053

SOSKmeans 0.7437 0.0045 0.6812 0.0115

Thyroid SOS 1.0232 0.1479 0.6446 0.0238

Kmeans 1.0298 0.2042 1.7863 0.3602

SOSKmeans 0.6321 0.0316 0.6409 0.0000

Twomoons SOS 0.6128 0.0179 0.7701 0.0281

Kmeans 0.7948 0.0000 0.9385 0.0000

SOSKmeans 0.6032 0.0010 0.7498 0.0162

Wine SOS 1.1488 0.1394 1.1938 0.3318

Kmeans 1.3053 0.0022 1.4425 0.0128

SOSKmeans 1.0460 0.0207 0.8422 0.0527

Yeast SOS 1.2144 0.2911 0.5594 0.2847

Kmeans 1.7176 0.1875 2.6417 0.5950

SOSKmeans 0.8496 0.1588 0.5242 0.0437

https://doi.org/10.1371/journal.pone.0272861.t006
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Breast Cancer Wisconsin (Original) dataset: Table 6 shows that the result for SOSK-means

and standard K-means are identical with the smallest Std-Dev values on the DB measure.

However, the classical DE recorded the optimum mean value outperforming the proposed

SOSK-means algorithm, with the GCUK having the minimum standard deviation under the

DB measure. The DCPSO recorded the optimum mean value and the best standard deviation

on the CS measures.

Glass dataset: The proposed SOSK-means algorithm obtained the smallest values for the

computed average and standard deviation on the CS measure, while SOSPSO has the best

mean value under the DB measure with the smallest standard deviation recorded under the

classical DE.

Iris dataset: On the CS measure, the proposed SOSK-means algorithm outperformed all the

other algorithms recorded with the lowest mean values, but DCPSO recorded the smallest vari-

ation on the two validity measures. On the other hand, SOSPSO outperformed the proposed

algorithm on the DB measures outperforming all the listed algorithms.

Spiral dataset: On the CS measure, the proposed algorithm outperformed two of the other

competing algorithms, while others were not available in the literature. However, for the DB

measure, SOSPSO recorded the minimum mean value for the Spiral dataset, while SOSDE and

the proposed algorithm have very close values for the mean and standard deviation. The pro-

posed SOSK-means had a better mean value while SOSDE had better variation.

Thyroid dataset: As is the case with the Spiral dataset, on the CS measure, the proposed

algorithm could only be compared with two competing algorithms, and the result showed its

superior performance. The SOSPSO recorded the best mean value on the CS measure, with

SOSFA recording the best variation. However, the proposed algorithm has a better variation

compared with SOSPSO

Wine dataset: The proposed algorithm outperformed all the competing algorithms on the

CS measure, with the classical K-means having the smallest variation on both measures. On

the other hand, SOSPSO has the smallest mean value but with a higher DB measure variation

than the proposed algorithm. The standard K-means algorithm recorded the lowest variation

of Std-Dev on both measures.

Yeast dataset: For this dataset, the results for seven of the competing algorithm under the

CS measures were not available. However, the proposed algorithm outperformed the available

ones. Under the DB measure, the SOSFA has the optimum mean value, while the SOSTLBO

has the least value for standard deviation.

In order to statistically validate the presented results, Friedman’s statistical test was con-

ducted for further justification of the performance of the SOSK-means algorithm. The Fried-

man mean-rank test is a non-parametric test like the ANOVA. Any significant difference in

the behavioural pattern of two or more algorithms can be established using Friedman’s test.

The test was carried out on the standard SOS, standard K-means, and the proposed SOSK-

means algorithms. The Friedman’s statistical test result is presented in Table 7. The proposed

SOSK-means algorithm ranked better in all the datasets on the DB measure, while it recorded

a better ranking in all but one, namely the Yeast dataset on the CS measure. On both measures,

the proposed SOSK-means algorithm ranked better than the two classical algorithms SOS and

K-means in almost all the datasets except in the Breast dataset, where it formed a tie with the

standard algorithm and in the Yeast dataset, where SOS has a better rank than the proposed

algorithm. From the Friedman’s ranking recorded, the SOSK-means can be concluded to be a

strong, efficient, and effective algorithm with better performance than the two classical algo-

rithms in handling automatic data clustering analysis. The proposed SOSK-means algorithm

ranked better on the two CVI measures in eleven (11) datasets out of the twelve (12) datasets

used.
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Table 7. SOSK-means results compared with results from existing algorithms in the literature.

Dataset Algorithms DBIndex CSIndex

Mean Std Dev Mean Std Dev

Breast SOSKmeans 0.8121 0 0.7606 0.1217

SOS 1.352 0.2858 0.9946 0.2667

Kmeans 0.8121 0 1.1019 0

SOSTLBO 0.8937 0.0384 - -

SOSFA 0.7644 0.0211 - -

SOSPSO 0.7128 0.1458 - -

SOSDE 1.1378 0.0947 - -

DE 0.5199 0.007 0.8984 0.381

DCPSO 0.5754 0.073 0.4854 0.009

GCUK 0.6328 0.002 0.6089 0.016

Glass SOSKmeans 0.7113 0.1217 0.0608 0

SOS 0.8164 0.1174 0.22 0.2563

Kmeans 1.2208 0.157 1.4894 0.1904

SOSTLBO 0.7832 0.0357 - -

SOSFA 0.6707 0.0459 - -

SOSPSO 0.6318 0.0418 - -

SOSDE 0.8444 0.0216 - -

DE 1.6673 0.004 0.7782 0.643

DCPSO 1.5152 0.073 0.7361 0.671

GCUK 1.8371 0.034 0.7282 2.003

Iris SOSKmeans 0.6346 0.0188 0.5743 0.0237

SOS 0.8602 0.1809 0.8585 0.1922

Kmeans 0.9167 0.0033 1.2404 0.0092

SOSTLBO 0.634 0.0182 - -

SOSFA 0.591 0.0075 - -

SOSPSO 0.5714 0.0038 - -

SOSDE 0.6916 0.0267 - -

DE 0.5822 0.067 0.7633 0.039

DCPSO 0.6899 0.008 0.6899 0.008

GCUK 0.7377 0.065 0.7377 0.65

Spiral SOSKmeans 0.7437 0.0045 0.6812 0.0115

SOS 0.8013 0.0447 1.0818 0.2107

Kmeans 0.9589 0.0109 1.1896 0.0053

SOSTLBO 0.7412 0.042 - -

SOSFA 0.7388 0.003 - -

SOSPSO 0.7332 0.0053 - -

SOSDE 0.7453 0.004 - -

DE - - - -

DCPSO - - - -

GCUK - - - -

Thyroid SOSKmeans 0.6321 0.0316 0.6409 0

SOS 1.0232 0.1479 0.6446 0.0238

Kmeans 1.0298 0.2042 1.7863 0.3602

SOSTLBO 0.6148 0.0234 - -

SOSFA 0.5313 0.0077 - -

SOSPSO 0.5021 0.0483 - -

(Continued)
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SOSK-means has the same mean rank as the standard K-means algorithm for the Breast

dataset on the DB measure with a better rank value than SOS. Table 7 shows the Friedman

mean ranking, with SOSK-means values written in bold, where it ranked better than the other

competing classical algorithms. The statistical result presented indicates that the SOSK-means

algorithm ranked better than the SOS and K-means.

The Wilcoxon rank-sum test was performed as a post hoc test to compare the control

method and other algorithms. Performing a post hoc test on the Friedman statistical test helps

us avoid using it as the only basis for our statistical judgement. The post hoc test was con-

ducted among SOS, K-means and SOSK-means. It established a statistical significance between

the pairwise groups consisting of SOS and K-means, SOSK-means and SOS, SOSK-means and

K-means. The computed p values showing the statistical significance between the set of the

algorithm using the Wilcoxon rank-sum test for the equal median are presented in Table 8.

The statistical significance between the set of the algorithms is averagely the same on both

measures for most of the datasets with values less than 0.05 significant value. The 0.05 repre-

sents a 5% significant level for accepting the null value. With more values less than 0.05, it

establishes that the values are samples from a continuous distribution with equal medians

against the null hypothesis that they are not. This gives convincing evidence that statistically

establishes the significance of the results of the hybrid SOSK-means algorithm.

Figs 3 and 4 show the individual clustering samples for the twelve datasets for the proposed

hybrid SOSK-means on DB and CS measures. In Fig 3 (A) (Breast dataset), the dataset has a

Table 7. (Continued)

Dataset Algorithms DBIndex CSIndex

Mean Std Dev Mean Std Dev

SOSDE 0.7172 0.0532 - -

DE - - - -

DCPSO - - - -

GCUK - - - -

Wine SOSKmeans 1.046 0.0207 0.8422 0.0527

SOS 1.1488 0.1394 1.1938 0.3318

Kmeans 1.3053 0.0022 1.4425 0.0128

SOSTLBO 1.0413 0.0242 - -

SOSFA 0.9229 0.0189 - -

SOSPSO 0.8489 0.0741 - -

SOSDE 1.1108 0.0399 - -

DE 3.3923 0.092 1.7964 0.802

DCPSO 4.3432 0.232 1.8721 0.232

GCUK 5.3424 0.343 1.5842 0.343

Yeast SOSKmeans 0.8496 0.1588 0.5242 0.0437

SOS 1.2144 0.2911 0.5594 0.2847

Kmeans 1.7176 0.1875 2.6417 0.595

SOSTLBO 0.8954 0.0236 - -

SOSFA 0.7518 0.0346 - -

SOSPSO 0.7599 0.0666 - -

SOSDE 0.9869 0.0312 - -

DE - - - -

DCPSO - - - -

GCUK - - - -

https://doi.org/10.1371/journal.pone.0272861.t007
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clear division into two classes, coloured red and blue, with the red class having a single outlier

while the blue class has six outliers near its edges. Six distinct classes can be observed for the

Compound dataset, with just a single outlier of the blue found in the red class. The flame data-

set has a clear division into two distinct classes, the same as the Jain dataset and the two-

moons dataset, with no outlier observed. The Glass dataset has five classes that can be distinctly

identified and two interweaved (the pink and deep blue coloured classes). The Iris, Path-based,

Thyroid and Spiral datasets are well demarcated into their various clusters. A few outliers can

be spotted in the Iris and Thyroid datasets between the blue and red classes. The three classes

in the Wine dataset can be seen though few data objects are spotted as outliers in the three clas-

ses. Seven classes were spotted in the Yeast dataset, with several overlapping data objects

among the classes.

5. Conclusion and future research direction

This paper proposed and implemented an improvement to the classical K-means algorithm, a

hybrid SOSK-means combining SOS with K-means for solving the automatic clustering

Table 8. The Friedman means rank test results for the SOS, K-means and hybrid SOSK-means algorithms.

Dataset DBIndex CSIndex

SOS Kmeans SOSKmeans SOS Kmeans SOSKmeans

Breast 3.00 1.50 1.50 2.25 2.45 1.30

Compound 1.95 2.95 1.10 1.65 3.00 1.35

Flame 2.00 3.00 1.00 2.00 3.00 1.00

Glass 1.73 3.00 1.27 1.84 3.00 1.16

Iris 2.35 2.48 1.18 1.86 3.00 1.14

Jain 2.00 3.00 1.00 2.00 3.00 1.00

Pathbased 2.30 2.45 1.25 2.66 2.23 1.11

Spiral 1.83 3.00 1.18 2.29 2.58 1.14

Thyroid 2.40 2.53 1.08 1.51 3.00 1.49

Twomoons 1.66 3.00 1.34 1.73 3.00 1.27

Wine 2.03 2.70 1.27 2.14 2.63 1.24

Yeast 2.00 2.88 1.13 1.23 3.00 1.78

https://doi.org/10.1371/journal.pone.0272861.t008

Table 9. Wilcoxon rank-sum test for equal medians showing corresponding p-values.

Dataset DBIndex CSIndex

SOS vs Kmeans SOSKmeans vs SOS SOSKmeans vs Kmeans SOS vs Kmeans SOSKmeans vs SOS SOSKmeans vs Kmeans

Breast 0.000 0.000 1.000 0.034 0.000 0.000

Compound 0.000 0.000 0.000 0.000 0.006 0.000

Flame 0.000 0.000 0.000 0.000 0.000 0.000

Glass 0.000 0.002 0.000 0.000 0.000 0.000

Iris 0.147 0.000 0.000 0.000 0.000 0.000

Jain 0.000 0.000 0.000 0.000 0.000 0.000

Pathbased 0.301 0.000 0.000 0.053 0.000 0.000

Spiral 0.000 0.000 0.000 0.044 0.000 0.000

Thyroid 0.554 0.000 0.000 0.000 0.317 0.000

Twomoons 0.000 0.009 0.000 0.000 0.000 0.000

Wine 0.000 0.000 0.000 0.002 0.000 0.000

Yeast 0.000 0.000 0.000 0.000 0.021 0.000

https://doi.org/10.1371/journal.pone.0272861.t009
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problem. It addressed the classical K-means algorithm problems of given cluster numbers as

input parameters and randomly selecting the initial cluster centers. The issue of local optimal

convergence was also taken care of. SOSK-means automatically determines the optimal num-

ber of clusters in real-time, even for datasets with high dimensions. It combined the advantages

of the SOS algorithm credited with its parameter-less attributes and the excellent local explora-

tion of the K-means algorithm with implementation simplicity. The simulation results clearly

demonstrate the superior performance of hybrid SOSK-means over the classical SOS and K-

means. It also outperformed some of the competing metaheuristic algorithms. SOSK-means

performance in finding the solution to the automatic clustering problem was statistically con-

firmed from its performances over most of the benchmark datasets used in the experimenta-

tion as reported from the Friedman rank test and the post hoc Wilcoxon rank-sum test for

equal medians. The demarcated clustering results show the capability of the hybrid SOSK-

means to achieve an optimal cluster number and improved convergence speed with better

clustering solutions. The Compact Separated clustering validity index was a better and more

effective clustering metric for the proposed hybrid SOSK-means algorithm, with a higher run

time than the Davies Bouldin index. In terms of cohesion and compactness, the CSI reported

better cluster solutions. Although the hybrid SOSK-means algorithm was able to resolve the

initialisation problem of the traditional K-means algorithm, it is observed that the computa-

tional time required in the K-means phase is still proportional to the size of the dataset. Also,

Fig 3. Clustering illustration of hybrid SOSK-means for the listed datasets using DB-Index.

https://doi.org/10.1371/journal.pone.0272861.g003
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some of the hybridized algorithms involving two metaheuristics algorithms outperformed

SOSK-means. This established the excellent performance of metaheuristic algorithms when

finding solutions to clustering problems.

For future research directions, improved variants of K-means can be combined with SOS to

reduce the local search time spent by the classical K-means. Also, improved versions of SOS

can be introduced to enhance the hybrid algorithm’s performance further. For better compari-

son, other metaheuristics algorithms hybridized with K-means can be executed using the same

dataset to show the proposed algorithm’s performance effectively. The performance of other

clustering validity indexes on the proposed hybrid SOSK-means can also be explored. Having

established the fact that the proposed hybrid SOSK-means algorithm is efficient in handling

automatic clustering, it can be applied to solve different real-world problems in other related

fields.
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to image classiÿcation,” Pattern Recognition vol. 35, pp. 1197–1208, 2002.

94. K. Bache and M. Lichman, “UCI Machine Learning Repository.,” Univ. California, Sch. Inf. Comput. Sci.

Irvine, CA, USA. [Online]. Available http//archive.ics.uci.edu/ml/.

95. Jain A. K. and Law M. H. C., “Data Clustering: A User ‘ s Dilemma,” In: Pal S.K., Bandyopadhyay S., Bis-

was S. (eds) Pattern Recognition and Machine Intelligence. PReMI 2005. Lecture Notes in Computer

Science, vol 3776. pp. 1–10, 2005 Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590316_1.

96. Fu L. and Medico E., “FLAME, a novel fuzzy clustering method for the analysis of DNA microarray

data,” BMC Bioinformatics vol. 15, pp. 1–15, 2007, https://doi.org/10.1186/1471-2105-8-3 PMID:

17204155

97. Chang H. and Yeung D., “Robust path-based spectral clustering,” Pattern Recognition, vol. 41, pp.

191–203, 2008, https://doi.org/10.1016/j.patcog.2007.04.010

98. Abraham A., Das S., and Roy S., “Swarm intelligence algorithms for data clustering,” Soft Comput.

Knowl. Discov. Data Min., pp. 279–313, 2008, https://doi.org/10.1007/978-0-387-69935-6_12

99. Zhang X., Li J., and Yu H., "Local density adaptive similarity measurement for spectral clustering," Pat-

tern Recognition Letters, 32(2), pp.352–358. 2011, https://doi.org/10.1016/j.patrec.2010.09.014

PLOS ONE Boosting k-means clustering with symbiotic organisms search algorithm for clustering problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0272861 August 11, 2022 33 / 33

https://doi.org/10.1016/J.KNOSYS.2021.107779
https://doi.org/10.1007/S00521-016-2624-X
https://doi.org/10.1007/S00521-016-2624-X
https://doi.org/10.1111/coin.12290
https://doi.org/10.1016/J.KNOSYS.2015.11.016
https://doi.org/10.1016/J.ASOC.2016.04.030
https://doi.org/10.1109/TMAG.2017.2665350
https://doi.org/10.1109/TPAMI.2004.105
http://www.ncbi.nlm.nih.gov/pubmed/15521491
https://doi.org/10.1016/J.ESWA.2017.01.053
https://doi.org/10.1371/JOURNAL.PONE.0158229
https://doi.org/10.1371/JOURNAL.PONE.0158229
http://www.ncbi.nlm.nih.gov/pubmed/27348127
https://doi.org/10.1007/s12293-016-0194-1
https://doi.org/10.1007/s12293-016-0194-1
https://doi.org/10.1007/s40009-013-0129-z
https://doi.org/10.1007/s40009-013-0129-z
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s10044-005-0015-5
https://doi.org/10.1007/s10044-005-0015-5
https://doi.org/10.1007/s10044-005-0015-5
http//archive.ics.uci.edu/ml/
https://doi.org/10.1007/11590316_1
https://doi.org/10.1186/1471-2105-8-3
http://www.ncbi.nlm.nih.gov/pubmed/17204155
https://doi.org/10.1016/j.patcog.2007.04.010
https://doi.org/10.1007/978-0-387-69935-6%5F12
https://doi.org/10.1016/j.patrec.2010.09.014
https://doi.org/10.1371/journal.pone.0272861

