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Abstract

Background: The endomembrane system, known as secretory pathway, is responsible for the synthesis and
transport of protein molecules in cells. Therefore, genes involved in the secretory pathway are essential for the cellular
development and function. Recent scientific investigations show that ER and Golgi apparatus may provide a
convenient drug target for cancer therapy. On the other hand, it is known that abundantly expressed genes in different
cellular organelles share interconnected pathways and co-regulate each other activities. The cross-talks among these
genes play an important role in signaling pathways, associated to the regulation of intracellular protein transport.

Results: In the present study, we device an integrated approach to understand these complex interactions. We
analyze gene perturbation expression profiles, reconstruct a directed gene interaction network and decipher the
regulatory interactions among genes involved in protein transport signaling. In particular, we focus on expression
signatures of genes involved in the secretory pathway of MCF7 breast cancer cell line. Furthermore, network biology
analysis delineates these gene-centric cross-talks at the level of specific modules/sub-networks, corresponding to

different signaling pathways.

Conclusions: We elucidate the regulatory connections between genes constituting signaling pathways such as PI3K-
Akt, Ras, Rap1, calcium, JAK-STAT, EFGR and FGFR signaling. Interestingly, we determine some key regulatory cross-talks
between signaling pathways (PI3K-Akt signaling and Ras signaling pathway) and intracellular protein transport.
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Background

The secretory pathway is composed of different organelles
suspended in the cytoplasm. It includes rough endoplas-
mic reticulum (rough ER), ER exit sites (ERESs), the
ER-to-Golgi intermediate compartment (ERGIC) and the
Golgi complex cellular organelles, which have distinct
functions in the transport of proteins to their final des-
tination in the cell. Not only does the secretory pathway
play an important role in proteins synthesis and delivery,
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but it also facilitates the proper folding and post-
translational modifications of protein [1].

At present, we know that these organelles are able to
interact dynamically with each other and play an impor-
tant role in the establishment of cellular homeostasis;
furthermore, the cross-talks between these inter cellular
compartments are also required to maintain the struc-
ture and shape of the cell and for its survival [2]. Recent
studies show all these cellular organelles within the secre-
tory pathway are sensitive to stress conditions and capable
to propagate the signaling for cell death [2]. Basically,
signaling implies the conversion of mechanical or chem-
ical stimuli directed towards the cell into a specific cel-
lular response. In a general signaling pathway, a signal
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is received by the receptor molecules, which leads to
a change in functioning and modulation of the cellular
response driven by series of molecular interactions within
the cellular boundary. These interactions include the acti-
vation and inhibition of numerous kinases and signaling
molecules producing a complex inter dependent molec-
ular cross-talks. To understand the complex relationship
between signaling and secretory pathway in a broader per-
spective, it is important to study the genetic interactions
within the cell and determine the gene regulatory net-
work.

Previously, researchers have been using correlation and
gene co-expression based networks, to infer a genome
wide representation of the complex functional organiza-
tion of gene interaction networks [3]. These networks are
predicted on the similarity of the gene expression pro-
files. However, these reconstructed gene networks are
undirected, and therefore it is difficult to infer the causal-
ity relationship between two connected genes. The other
caveat associated with co-expression network analysis
regards the handling of large data sets, which limits the
biological interpretation of the data [4, 5]. Though regres-
sion methods have been used to determine directed edges
and to identify the set of genes having regulatory effects
on their target, these methods are generally computational
demanding and often limited to predict the set of genes
regulated by transcription factors [6, 7].
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Recently, gene perturbation studies have started play-
ing an important role in directed gene networks recon-
struction and in determining their reciprocal influence
[8—11]. In the present work, we study the gene-gene inter-
actions in MCF7 breast cancer cell line using an integrated
approach (shown in Fig. 1) based on functional genomics
and network analysis, derived from expression profiles of
knocked-down or over-expressed genes within the secre-
tory pathway. Signaling associated to and from protein
transport machinery provides convenient therapeutic tar-
gets for drug development in cancer therapy [12]. There-
fore, we try to decipher the direct and indirect genetic
regulatory components of secretory pathway and their
corresponding cross-talk with cellular signaling within the
cell. Our goal is to understand the complex interactions
among genes, constituting important signaling pathways
with respect to protein transport in a cancer cells. Fur-
thermore, we investigate the cause and disturbance in the
delicate balance of cross-talks among these genes, which
can lead to cancer progression. We try to highlight the
interesting aspects of gene-gene interactions, which they
could be as potential drug target for cancer therapies.

Methods

Data retrieval

To reconstruct the regulatory networks of secretory
pathway we use the library of integrated network-based

U

functional annotation to infer regulatory patterns

Fig. 1 Schematic representation of the pipeline. a Perturbation experiments. b Perturbation expression profiles matrix. € Co-regulated gene-gene
interaction network. d Identification and clustering of functional modules. e Identification of expression activated seb network (hotspot
identification). f pathways and GO term enrichment analysis to infer cross-talk between different clusters. g Interaction database analysis along with
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cellular signatures (LINCS) L1000, which contains more
than a million gene expression profiles of perturbed
human cancer cell lines (http://lincs.hms.harvard.edu). In
more detail, it consists of 1328098 expression profiles of
22268 genes (Fig. 1a). A set of 978 genes, named land-
mark genes, were directly measured using a microarray
technology. The remaining 21290 are target genes, whose
expression has been inferred by a deep learning algorithm
(D-GEX) trained on GEO data. Perturbation experiments
were executed on different cell lines, at different time
points, silencing or over-expressing genes, or treating
cells with chemical compounds. For our work, we studied
3647 experiments in which genes have been knocked-
down/over-expressed in MCF7 breast cancer cell line.
Among the 2552 genes of the secretory pathway, only 591
were perturbed in L1000 dataset. For each perturbation
experiment, we collect data for all the biological and tech-
nical replicates at two different time points (96H, 144H).
We used the so called level 3 dataset, which includes
standardized gene expression profiles of directly mea-
sured landmark transcripts plus imputed genes (Fig. 1b).
Finally, to map transcription factors and gene interactions
information on the 591 perturbation experiments, we
use the human transcription factors from AnimalTFDB
2.0 [13] and manually curated human signaling network
data from Edwin Wang and associated group (http://
www.cancer-systemsbiology.org/data-software). This sig-
naling network dataset contains more than 6000 proteins
and 63,000 relations. These relations represent activa-
tion, inhibition and physical interactions, which in turn
describe complexes that play crucial roles in cell signaling.

Reconstruction of Regulatory Interactions
To obtain gene regulatory interactions and reconstruct
gene network (Fig. 1c) from gene perturbation exper-
iments, we developed a computational pipeline, which
is divided into several steps. The z-scored perturbation
expression profiles are represented as Z; € Z with j
=1,...,n, in our case n = 591. Each profile Z; com-
prises m; biological replicates (usually between 2 and 4),
which are repeated measurements of biologically distinct
samples and capture random biological variation [14].
Each biological replicate is the average of gx technical
replicates, which are repeated measurements of the same
sample (usually between 4 and 6). A given perturbation
experiment is represented as:

m k=1,... I=1,...

Py wherej=1,... yqr (1)

» M
where m; is the number of biological replicates in j-th
profile, and gj is the number of technical replicates for
the k-th biological sample in the perturbation experiment.
The mean biological sample P from the gi technical
replicates is calculated as:
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In the second step, we create a matrix with all biolog-
ical replicates (averages), for which we calculate the first
principal component, that is the linear combination of the
biological replicates pointing in the direction of maximum
variance. Before performing the Principal Component
Analysis, we pre-processed the data to normalize their
mean as follow:

_ "
P = "DPji/m 3)
k=1
ﬁjyl - ﬁ] ﬁ)vmi B ﬁ/

where 0} is the standard deviation of Pj1, . . ., Pj ;.

For each perturbation j, we select one biological repli-
cate Zj, with maximum correlation with first principal
component of Z;. Each column of the matrix A =

A

[21, e ,Zn] represents the influence of perturbation on

the expression values of all the genes in the experiments.
Finally, for each perturbation, we selected only those
genes, for which we observed a differential fold change
>4 or < —4, in case of over expressed or under expressed
genes respectively, in at least one biological replicate.
Generally, any selection based solely on fold change is
arbitrary and there is no right nor wrong threshold; but
fold change (FC) cut-off of > 2 or < —2, leads to look only
at genes which vary widely among the other genes. For
this reason in our work, to reduce the number of genes,
we decided to use a most stringent FC, finally obtaining a
list of 576 perturbed genes. The construction of the net-
work is now straightforward, because the perturbation of
a gene directly or indirectly affects the regulation of the
others that have been detected as differentially expressed
in that experiment. We applied a simplification algorithm
to get rid of direct regulations introduced by the described
reconstruction method [9].

Network analysis

In this work we consider only gene interaction networks
in which directed edges connecting two genes represent
a biochemical process such as a reaction, transforma-
tion, interaction, activation or inhibition. We have not
considered gene co-expression networks (GCN) in which
the direction and type of co-expression relationships are
not determined, because they are an undirected graphs
where each node corresponds to a gene, and a pair of
nodes is connected with an edge if they show a similar
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expression pattern. Therefore with the help of Cytoscape
network visualization tool [15], we visualize the gene-gene
interaction network from obtained regulatory interac-
tions (Fig. 1c) and carry out directed network analysis
using Network Analyzer [16]. We computed the topo-
logical parameters, such as number of nodes, edges and
connected components for directed regulatory network.
Further, we also computed the network diameter, radius,
clustering coefficient, characteristic path length, between-
ness and closeness, as well as the distributions of degrees,
neighborhood connectivity and number of shared neigh-
bors.

Network hot-spot identification

In Cytoscape, the j-Active Modules plugin identifies
expression activated sub-networks (Fig. le) from previ-
ously obtained molecular interaction network [17]. These
sub-networks are highly connected components of the
existing network, where the genes show similar signifi-
cant expression changes in response to particular subsets
of conditions (perturbations). The method uses a sta-
tistical approach to score sub-networks with a search
algorithm for finding sub-networks with high score. The
idea of finding these sub-networks is to determine func-
tional modules represented by highly connected network
regions with similar responses to experimental condi-
tions. We run j-Active Modules on our gene interaction
network in default mode, taking betweenness central-
ity and neighborhood connectivity as node attributes. In
advanced parameter section, we set number of modules to
5 and overlap threshold to 0.8. Further, we employ search
strategy to obtain high-scoring modules using local and
greedy search.

Reactome functional interaction (Fl) network analysis

To study the pathways enrichment and network patterns
in the sub-network with respect to signaling and intra-
cellular protein transport, we use ReactomeFI-plugin [18]
in Cytoscape, to integrate the Reactome database [19],
and other tools such as Transcriptator [20] and Metabox
library [21]. Taking a FDR cut-off value < 0.05, we carry
out pathway enrichment analysis for a set of genes in a
given sub network, and investigate the functional relation-
ships among genes in enriched pathways. With the help
of this plugin, we first access the Reactome Functional
Interaction (FI) network, and fetch FI indexing for all the
nodes (genes) present in sub-network. Later, we build a
FI sub-network based on a set of genes, query the FI data
source for the underlying evidence for the interaction to
construct modules by running a network clustering algo-
rithm (spectral partition based network clustering) [22]
and analyze these network modules of highly interacting
groups of genes (Fig. 1d). Finally, we carried out functional
enrichment analysis to annotate the modules, and expand
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the network by finding genes related to the experimental
data set.

Inferring gene regulatory interactions with respect to
protein transport signaling

To understand the functional and regulatory relation-
ship among genes in expression activated sub-networks,
we use GeneMania plugin [23] (Fig. 1g). It extends the
sub-networks by searching publicly available biological
datasets to find related genes. These include protein-
protein, protein-DNA and genetic interactions, path-
ways, reactions, gene and protein expression data, protein
domains and phenotype screening profiles. Integration of
physical interaction, genetic interaction, co-localization
and pathway information related to the nodes present
in the sub-networks, helps to show regulatory interac-
tions among specific genes involved in signaling of protein
transport.

Extending regulatory interaction network through
external resources to determine genetic cross-talks

By analyzing manually curated human signaling network
data, we obtain further signaling interactions and intro-
duce them to extend the regulatory interaction network
already obtained from ReactomeFI network analysis. The
signaling interaction data contain activation, inhibition
and physical interactions. The physical relations represent
complexes that play a role in cell signaling. Furthermore,
we also map the transcription factors, gene ontology, and
gene specific enriched reactome and KEGG pathways
information on the reconstructed direct sub-network to
infer direct physical and genetic interactions between per-
turbed genes and their effected components (Fig. 1f). We
primarily focus on Ras and PI3K-Akt signaling pathways,
to study and infer cross-talks among genetic components
between them.

Results and Discussion

Biological function enrichment analysis of perturbed genes
We carried out Gene Ontology and pathway enrich-
ment analysis of the complete list of perturbed genes, for
which corresponding expression profiles are utilized in
this study. It includes 576 unique perturbed genes which
have regulatory effects on the other genes. DAVID and
Transcriptator functional annotation tools are used to
carry out enrichment analysis taking a multiple correc-
tion p-value cutoff <0.05. The complete list of perturbed
genes is provided as Additional file 1. The functional
term enrichment analysis suggests the role of these genes
in intracellular protein transport such as exocytosis and
endocytosis. As expected, the cellular components enrich-
ment analysis suggests that most of these genes functions
are localized in ER, Golgi apparatus, Golgi membrane, ER
lumen, extracellular exosome, plasma membrane, trans-
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Golgi network, ER to Golgi transport vesicle membrane,
endosome, endocytic vesicle membrane and lysosome etc.
Similarly, biological process enrichment analysis shows
biological processes related to regulation of intracellular
protein transport such as exocytic and endocytic cellular
mechanism, protein folding and modification process,
as highly enriched terms. Some of these enriched bio-
logical functional terms are: positive regulation of pro-
tein phosphorylation, protein phosphorylation, protein
glycosylation, ER to Golgi vesicle-mediated transport, ret-
rograde vesicle-mediated transport, Golgi to ER, endo-
cytosis, autophagy, Golgi organization, vesicle-mediated
transport, sphingolipid biosynthetic process, ER unfolded
protein response, ER calcium ion homeostasis, response
to ER stress, IRE1-mediated unfolded protein response,
lipoprotein biosynthetic process, protein autophospho-
rylation, chaperone-mediated protein folding, intrinsic
apoptotic signaling pathway in response to ER stress
and positive regulation of ERK1 and ERK2 cascade. The
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complete results of enrichment analysis is provided in
Additional file 2.

Regulatory interaction network from 591 gene
perturbation expression data profile

Using our pipeline we reconstructed a network based
on regulatory interactions consisting of 4467 nodes and
12871 edges (Fig. 2a). The edges between the nodes in this
network represent the 4 folds up or down regulation of
affected genes in response to perturbation experiments.
The characteristic path length of this network is 5.24- and
average number of neighbors is 5.76. We calculate the fol-
lowing network statistics for all the constituting nodes in
the network: topological coefficients, betweenness, close-
ness, distributions of degrees, neighborhood connectivity,
average clustering coefficient and stress centrality. The
table with all topological parameters for each node in the
network is provided in Additional file 3 . VHL shows a
maximum out-degree of 923, which implies that its per-
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turbation has a regulatory effect on the whole network.
From the analysis of the network, we obtained 349 nodes
having out-degree greater or equal to 10 (Fig. 2b). Among
these 349 high out-degree nodes (represented in Fig. 2a,
in darker color), there are 15 nodes which represent the
maximum (> 100) of out-degrees, in other words, the per-
turbations in these genes have a significant effect on the
transcriptional response. These nodes are represented in
Table 1. Enriched Gene ontology terms associated with
these genes are protein transport, localization, protein
and lipid metabolism. Nodes (effected genes) with high
in-degree’s (Fig. 2c) are highly enriched in kinase activ-
ity, transcriptional regulation, cell adhesion, RNA binding,
protein binding, purine nucleotide binding, signal trans-
duction, catalytic activities. The perturbed genes with
high out-degrees in this directed network, are enriched
in protein transport, localization and protein and lipid
metabolism (Fig. 2d) and perturbation of these genes have
direct and indirect regulatory effects on the elements
of signal transduction, binding, transcriptional regulation
and kinase activities (Fig. 2e). The complete functional
enrichments are provided in the Additional file 4.

Inferring gene regulatory components through the
identification and analysis of expression activated
(hotspot) sub-network

With the help of j-Active plugin, we disaggregate the
larger perturbation network into 5 smaller expression
activated sub-network modules represented in Table 2.
In the sub-networks, all the nodes are directly connected
to the hub node/perturbed gene, and show similar sig-
nificant changes (up or down-regulations) in expression
in response to particular subsets of conditions (pertur-
bations). For the sake of understanding the underlying
gene-regulatory interaction within these sub networks,
we selected the smallest module 5 for our study (Fig. 3).
Firstly, we obtained the pathways, molecular function
and biological processes enrichment analysis of module
5 sub-network using Reactome FI analysis. The genes
are divided into three functional modules and are reg-
ulated by the perturbations of FAM3C, PPAP2B and
CLTA respectively. Enrichment analysis shows that ini-
tiation, elongation and termination of translation pro-
cesses, along with nonsense mediated decay are sig-
nificantly enriched in genes regulated by FAM3C and

Table 1 15 nodes with the maximum (> 100) of out-degrees

VHL TORTA CSNK1D
CHEK2 STK16 POR
SP3 USP32 SRPRB
GPR107 RAF1 FEZ1
CFTR PPAP2B CRTAP
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Table 2 The 5 modules obtained with j-Active Modules

Module n of nodes n of edges
1 3136 4424

2 375 573

3 334 364

4 225 231

5 159 162

perturbations of PPAP2B and CLTA do not have any
effect on the regulation of these pathways. The pertur-
bation of FAM3C may plays an important role in the
eukaryotic translation pathways as well as nonsense medi-
ated decay. Further, integration of co-expression, physical
interaction, genetic interaction, co-localization and path-
way information related to the nodes present in the sub-
network, strengthen the relationship between FAM3C
and its regulatory effects on the genes with respect to
nonsense mediated decay. While many biological process,
such as translation, RNA-metabolic process, cellular pro-
tein metabolic process, mesenchymal to epithelial transi-
tion, positive regulation of transcription, meiosis, negative
regulation of interferon-gamma production, rRNA pro-
cessing are not directly effected by the perturbation of
FAM3C, they are regulated by the PPAP2B perturbation.

Cross-talks in signaling pathway
To understand the complex gene-gene interaction net-
work of cell signaling in the context of cellular protein
transport and cancer progression, we carried out func-
tional gene ontology and reactome pathways enrichment
analysis for the constructed gene regulatory network.
Based on the pathways enrichment, we extracted the sub-
network consisting of gene/nodes involved in prominent
signaling such as PI3K-Akt, RAP1, Ras pathway, calcium,
P53 and MAPK signaling. Furthermore, we carried out
the indexing of nodes with the help of ReactomeFI plu-
gin and we clustered the sub-network into 5 functional
modules based on gene ontology terms in biological pro-
cess, molecular function, cellular components and reac-
tome pathways enrichment analysis. The results are pro-
vided in the Additional file 5. Taking into account highly
enriched signaling pathways (p-value < 0.05) and cut-off
for constituent nodes > 12 in each module, we observed
high intensity of cross-talks between signaling involved
in protein transport (such as Ras signaling) and cancer
progression (PI3K-Akt). Genes associated with PI3K-Akt
signaling interacts with calcium signaling pathway. Con-
sidering module wise study, we notice that PI3K-Akt
signaling is the most prominent and enriched signaling
pathway, forming the core of each cluster (Fig. 4).

In cluster/module 0, PI3K-Akt interacts with Ras and
Rapl signaling pathways, while Ras pathway forms the
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major component of protein transport. Ras is a part of
well described mitogen activated protein (MAP) kinase-
Ras-Raf-MEK-ERK- pathway downstream initiated by
receptor tyrosine kinase and integrins, leading to sev-
eral cellular processes such proliferation, differentiation of
cell, membrane genesis, protein synthesis and secretion
and also has an intermediate effect on gene expression [1].

In cluster/modulel, cluster/module2 and clus-
ter/module3, we observe the interactions between
PI3K-Akt and kinase signaling such as ERBB2, EGFR and
ERBB#4. In the last module/cluster 4, enrichment of PI3K-
Akt signaling, JAK-STAT and calcium signaling suggests
activation of PI3K-Akt signaling through both calcium
and stress-activated protein Jun kinases and vice versa.
In the past, researchers portrays the role of intracellular
Ca2+ and disturbances in its cellular concentration, with
respect to tumor initiation, angiogenesis, progression and
metastasis in the normal cells [24]. To delve further into

the relationship between Ras and PI3K-Akt signaling, we
extracted the constituent genes/nodes from regulatory
interactions within module 0, and we observed interest-
ing relationship among them, as shown in Table 3. The
regulatory interactions among these genes (Fig. 5) show
that important constituent genes in PI3K-Akt signaling
are regulated by the genetic components of Ras signaling
pathway. In some cases, common genes regulate both
pathways, exhibiting higher level of cross-talk between
them. It is worth noting that perturbation of CDHI
leads to the 4 fold decrease in the expression of YWHAZ
gene, which is a member of the 14-3-3 protein family
and a central hub protein for many signal transduction
pathways. YWHAZ gene regulates apoptotic pathways
critical to cell survival and plays a key role in a number of
cancers and neuro-degenerative diseases [25]. This gene
is a well-known target for cancer therapy (14-3-3 zeta as
novel molecular target for cancer therapy). Hence CDH1
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Fig. 4 Clustering of regulatory network into 5 functional modules. Signaling pathway enrichment analysis in each functional module obtained from
clustering of gene-gene interaction network. The color represents the functional module in clustered network. The blue color represents the
module 0, light green represents module 1, khaki color represents module 2, bright green represents module 3 and in the last, module 4 is
represented by violet color. The bar plot for each functional module shows the number of genes enriched in signaling pathways, by taking the

could be a potential gene as a molecular target for cancer
therapy.

All these genetic regulatory interactions might provide
a viable target for cancer drug therapy. From our results,
we observed that PTEN is heavily down-regulated by the
perturbation of TSC2 gene. Both the genes play an impor-
tant role in PI3K-Akt signaling. PTEN gene is a tumor
suppressor [26], and mutation in this gene leads to cancer
developments. TSC2 mutations lead to tuberous sclerosis,
and its gene products is supposedly a tumor suppressor

Table 3 Genes enriched in PI3K-Akt and Ras signaling

Signaling pathway Genes

PI3K-Akt YWHAZ,COL4A5,5GK1,ITGB5,TSC2,LAMA2,
PTEN,GRB2,PP2R3A

Ras signaling pathway CDH1,HRAS,CALM1,FGFR3,KDR,AKT1,FGFR4,
Rap1A,PRKC1

PI3k-AKT and Ras signaling ~ HRAS,KDR FGFR3,AKT1,FGFR2,FGFR4

[27]. From this information, we can infer that perturbation
of TSC2 gene plays an important role in increasing cancer
risk in muscular dystrophy, as it regulates LAMA?2 gene.
Genetic mutations in LAMA2 genes have their implica-
tion in a severe form of muscular dystrophy [28]. TSC2,
LAMAZ2 and PTEN interactions could be useful to study
a potential drug therapy for cancer as well as muscular
dystrophy. Similarly CCNDI amplification and its protein
expression is strongly correlated with breast cancer [29],
the perturbation of KDR gene, which is a type III receptor
tyrosine kinase involved in Ras pathway, down-regulates
the CCND1 expression and controls its amplification with
respect to cancer.

From the regulatory interaction network analysis, we
infer that genetic perturbations involved in protein trans-
port have profound effects on the signal transduction,
and transcriptional regulation activities of the cell. We
also carried out functional analysis of the nodes with
high value of betweenness centrality, as these nodes
do play an important role in bridging between the
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Fig. 5 Interesting gene regulatory interactions with respect to PI3K-Akt signaling and Ras signaling pathway. PI3K-Akt signaling components are
represented by oval shape. Genes involved in Ras signaling are represented by rectangular shape. Yellow color represent the perturbed genes
involved in both signaling pathway. In this figure, we have shown the PI3K-Akt enriched genes in red color, while the genes enriched in Ras
pathway are represented by rectangular shape. The yellow color represents the genes which undergoes perturbation experiments to obtain the
gene-gene regulatory network. The edges with arrow signs represent the four fold increase in the expression of target/effected genes, while edges

sub-networks and hub nodes. The results show sev-
eral enriched pathway: ER-nucleus signaling pathway
(GO:0006984), cellular response to topologically incor-
rect protein (GO:0035967), response to topologically
incorrect protein (G0:0035966), response to unfolded
protein (GO:0006986) with significant p-value < 0.05.
Furthermore, functional enrichment analysis of the nodes
with respect to out-degree, in-degree and betweenness
centrality, helps us to understand the underlying cross-
talk between protein transport, localization on the sig-
nal transduction and transcriptional rewiring and their
mutual effects on protein folding. In our regulatory net-
work, we find some interesting and significantly enriched
signaling pathways, such as PI3K-Akt, Ras, Rap1, calcium,
JAK-STAT, EFGR and FGER signaling.

In recent years, researchers observed the role of PI3K-
Akt signaling in cancer progression, which is basically a
disturbance in the balance of cell division and growth with
respect to programmed cell death. This particular signal-
ing pathway is disturbed in many human cancer and not
only does it play a major role in tumor development, but
also in its potential response to the treatment [30]. In our
results, we observe that PI3K-Akt signaling interacts with
several kinases, such as ERBB2, EGFR and ERBB4. These
kinases are known to play an important role in a very
aggressive form of breast cancer [31]. This kind of signal-
ing leads to a characteristic behavior of cancer cells such
as uncontrolled proliferation, resistance to apoptosis and
increased motility. Apart from this, PI3K-Akt signaling
shares interactions with platelets and fibroblast growth
factors signaling pathways, which play a very important
part in cell growth regulation, proliferation, survival, dif-
ferentiation and angiogenesis [31]. Most of these path-
ways are involved in the normal deployment of protein

transport but also have a potential role in activating both
upstream and downstream important signaling pathways.
Some of these functions are cell proliferation, differentia-
tion, membrane biogenesis, inflammation protein synthe-
ses, cell migration and gene expression regulation. In a
broader sense, all these signaling networks comprise a fine
tuning balance for cellular function. Any disturbance in
such a balance leads to negative signaling cascades and has
a deteriorating effect on cell functioning, possible leading
to cancer progression.

Cross-talks between intracellular protein transport and
signaling pathways

In addition to study the cross-talks between different sig-
naling pathways in intracellular protein transport, we also
infer the regulatory effects of signaling pathways on intra-
cellular protein trafficking mechanism related to exocytic
and endocytic pathways [32]. Through exocytic pathway,
protein cargo moves from ER, via Golgi apparatus, to
the plasma membrane. During this movement, it also
undergoes to a modification by the addition of sugar and
lipids. On the other hand, moving through this forward
exocytic pathway via ER-Golgi-plasma membrane com-
partments, the protein cargo has to be retrieved back to
its original compartment in a reverse direction, to main-
tain the compartment identity. This backward movement
of protein cargo from plasma membrane to Golgi to ER
compartment is known as retrograde protein transport.
There is also an endocytic pathway, through which cargo
is internalized from the cell milieu. The best character-
ized endocytic pathway proceeds from clathrin coated
vesicles through early and late endosomes to lysosomes.
The lysosomes is a major degradation site for internal-
ized cargo and cellular membrane proteins [32]. In our
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results, we observed regulatory interactions among genes
involved in intracellular protein transport and PI3K-Akt,
Ras, MAPK, interferon and calcium signaling. In the mod-
ules study, we specifically focus on PI3K-Akt and Ras
signaling pathways and their regulatory interactions with
intracellular protein transport components in MCF-7 cell
line. In the previously described module 0, as shown in
Fig. 6, genes enriched in PI3K-Akt signaling pathway such
as IL7R,TNN, ITGB4, CSF1R, STK11, ITGB1, ITGB7,
FGF17, COL5A3, PDGFRA, PP2R3A, AKT1, HSP90AA,
CCND1 and PTEN and YWHAZ are regulated by the
perturbations in CSNK1D, TSC2, PML, SHH, KDR and
SGK1 genes. Out of these perturbed genes, KDR,SGK1
and TSC2 also play an important role in PI3K-Akt sig-
naling [33, 34]. The CSNK1D gene is involved in protein
phosphorylation process, endocytosis and Golgi organi-
zation [35]. The result agrees with the fact that PI3K-
Akt is a signal transduction pathway, which helps in cell
survival, growth, proliferation, cell migration and angio-
genesis. The key proteins are PI3K (phosphatidylinositol
3-kinase) and AKT (Protein Kinase B). It is interesting
to observe that CSNK1D perturbation positively regulates
most of the components of PI3K-Akt signaling except it
down-regulates the PTEN gene. The PTEN (phosphatase
and tensin homolog) gene is a major antagonist of PI3K
activity [36]. It is a tumor suppressor gene and often
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mutated or lost in cancer cells. Additionally, CSNK1D
perturbation also down-regulate YWHAZ gene, which is
also a major regulator of apoptotic pathways and plays an
important role in cell survival [25, 37, 38]. Being a con-
stituent of PI3K-Akt signaling, TSC2 gene also contributes
to endocytosis, and when perturbed, down-regulates the
PTEN gene. PML and SHH genes, which are associated
with ER calcium ion homeostasis and endocytosis process
respectively, along with CSNK1D gene, down-regulate
HSP90AA2 (Heat shock protein 90kDa alpha (cytosolic),
class A member 2) gene. HSP90AA2 is a heat shock gene,
generally expressed to combat a stressful situation and
whose protein product functions as chaperon by stabiliz-
ing new proteins to ensure correct folding [39]. In sum-
mary, we observe that the perturbation in genes involved
in protein phosphorylation, endocytosis, Golgi organiza-
tion and calcium ion homeostasis in ER, have a stronger
effect in the activation of PI3K-Akt signaling, and in
the down regulation of PTEN, YWHAZ and HSP90AA2
genes which are important for the normal functioning of
the cell.

Similarly, we also observe the cross-talks between Ras
signaling pathways and intracellular protein transport
mechanism. The cross regulatory interactions between
the components of Ras and intracellular protein trans-
port pathways are depicted in resultant (Fig. 7). We

edges with dot represent the four fold down-regulation

Fig. 6 Regulatory interactions between PI3K-Akt signaling and intracellular protein transport. Genes enriched in PI3K-Akt signaling pathway are
represented by diamond shape in pink color such as IL7R,TNN, ITGB4, CSF1R, STK11, ITGB1, ITGB7, FGF17, COL5A3, PDGFRA, PP2R3A, AKT1, HSPOOAA,
CCND1 and PTEN and YWHAZ. These genes are regulated by the perturbation in CSNK1D, TSC2, PML, SHH, KDR and SGK1 gene represented by oval
shape in red color. Out of these perturbed genes, KDR, SGK1 and TSC2 also plays an important role in PI3K-Akt signaling; and they are represented
by diamond shape and in red color. The edges with arrow signs represent the four fold increase in the expression of target/effected genes, while
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observe constituent genes of Ras pathway such as CSF1R,
PDGFRA, FGF17 [40], FGFR2, FGFR4, RAP1A [41],
GRB2 [42] and KDR are either regulated by the com-
ponents of intracellular protein transport or they also
regulate each other. CSFIR (Colony stimulating factor
1 receptor (CSF1R)) is a receptor for a cytokine called
colony stimulating factor 1. PDGFRA (platelet-derived
growth factor receptor A) encodes a typical recep-
tor tyrosine kinase, which binds to platelets derived
growth factors and plays an active role in initiating
cell signaling pathways responsible for cellular growth
and differentiation [43—-45]. Both of them are positively
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regulated by the perturbation in CSNK1D gene [46].
The CSNKI1D gene is involved in endocytosis, Golgi
organization,positive regulation of protein phosphory-
lation,protein phosphorylation. Some of the compo-
nents of Ras pathway such as KDR [47], FGFR4 [48],
FGFR2 [48, 49] are also involved in intracellular pro-
tein transport mechanism [50]. KDR which is a type
III receptor tyrosine kinase, also known as vascular
endothelial growth factor receptor 2 (VEGFR-2), is also
involved in positive regulation of protein phosphoryla-
tion [50]. Perturbation in KDR, affects the ETS2 gene
in Ras pathway. Fibroblast growth factor receptor 2

down-regulation

Fig. 7 Ras signaling cross-talk protein transport. The cross regulatory interactions between the components of Ras (represented by diamond shape
and in pink color) and intracellular pathways represented by oval shape and in red color. Constituent genes of Ras pathway such as CSF1R, PDGFRA,
FGF17, FGFR2, FGFR4, RAPTA, GRB2 and KDR are either regulated by the components of intracellular protein transport or they also regulate each
other variably. Some of the components of Ras pathway such as KDR, FGFR4, FGFR2 are also involved in intracellular protein transport mechanism.
The edges with arrow signs represent the four fold increase in the expression of target/effected genes, while edges with dot represent the four fold
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(FGFR2) and Fibroblast growth factor receptor 4 (FGFR4)
are members of the fibroblast growth factor receptor
family. These receptors signal by binding to their lig-
and and dimerisation and initiate a cascade of intra-
cellular signals. These signals are involved in cell divi-
sion, growth and differentiation [51, 52]. Perturbation in
FGFR2, down-regulates TMED10 and AKT1. TMEDI10
is involved in ER to Golgi vesicle-mediated trans-
port, retrograde vesicle-mediated transport, Golgi to ER,
Golgi organization. While AKT1 is a serine-threonine
protein kinase, activation of this gene phosphorylates
and inactivates components of the apoptotic machinery
[53-55]. Perturbation in FGFR4 gene, down-regulates
VAMP7 [56, 57] and RAPIA expression [58], which
are involved in ER to Golgi vesicle-mediated transport,
endocytosis, vesicle-mediated transport and Ras Pathway
respectively. The results of all the regulatory interactions
and subsequent enriched pathways are provided in the
Additional file 6.

Conclusions

In this work, we develop a computational integrated
pipeline to analyze genes perturbation experimental
data and uncover the regulatory interactions among
genes. We use functional genomics and network biology
approach to create a directed network, where nodes rep-
resent the perturbed and impacted genes, while direct
edges represents the positive and negative regulatory
effects of perturbation on its neighboring elements. We
implemented this approach to infer regulatory cross-
talk between signaling pathways and intracellular protein
transport in MCF7 cell line. Our aim is to elucidate the
regulatory connection between genes constituting sig-
naling pathways such as PI3K-Akt, Ras, Rapl, calcium,
JAK-STAT, EFGR and FGEFR signaling and intracellular
protein transport mechanism in MCF7 cell line. We focus
on PI3k-Akt signaling and Ras pathway, to highlight some
of their mutual key regulatory features. In our results,
we find some interesting regulatory components of PI3k-
AKT signaling with respect to Ras pathway as well as
intracellular protein transport mechanism. From the lit-
erature, it is known that development of resistance to
cancer therapy is an important clinical problem [30]. Inac-
tivation of apoptotic programme leads to drug resistance
in tumor cells. This resistance is mainly supported by
PI3K-Akt signaling and hence this signaling contributes
to the resistance of cancer cell [59, 60]. As it is known
that Ras and calcium signaling activate the PI3K-Akt sig-
naling in a cell, targeting the upstream and downstream
signaling pathways with respect PI3K-Akt signaling is a
feasible approach to procrastinate resistance in cancer
cells. In future, we will hopefully extend this work and
develop a methodology as well as computational inte-
grated platform to construct an interaction network from
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perturbation data not only from one cell line but simul-
taneously from multiple tissue samples/cell lines, for the
comparative analysis of putative regulatory interactions
among genes in different experimental conditions.

Additional files

Additional file 1: Perturbed gene list. Complete list of perturbed genes.
(ZIP 11 kb)

Additional file 2: DAVID Enrichment analysis 591 genes. Gene ontology
and pathway enrichment analysis of the complete list of perturbed genes.
(ZIP 203 kb)

Additional file 3: Node statistics table. Topological parameters of each
nodes in the network. (ZIP 50 kb)

Additional file 4: Network enrichment. Gene Ontology and Pathways
enrichment analysis results for the complete regulatory interaction
network from 591 gene perturbation expression data. (ZIP 41 kb)

Additional file 5: Network functional modules enrichment. Module wise
functional and pathways enrichment analysis of the network. (ZIP 131 kb)

Additional file 6: Enrichment terms for gene cross-talks. All regulatory
interactions and enriched pathways for genes involved in cross-talk
between intracellular protein transport and signaling pathway. (ZIP 100 kb)
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