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Abstract: The thermodynamic phase behavior of charged polymers is a crucial property underlying
their role in biology and various industrial applications. A complete understanding of the phase
behaviors of such polymer solutions remains challenging due to the multi-component nature of
the system and the delicate interplay among various factors, including the translational entropy of
each component, excluded volume interactions, chain connectivity, electrostatic interactions, and
other specific interactions. In this work, the phase behavior of partially charged ion-containing
polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local short-
range interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte
solutions. Specific interactions between charged groups of the polymer and counterions, between
neutral segments of the polymer, and between charged segments of the polymer are incorporated
into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating
fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is
modeled by the number of connections between bonded segments. The effects of chain length, charge
fraction, counterion valency, and specific short-range interactions are explored. A computational App
for salt-free polymer solutions is developed and presented, which allows easy computation of the
binodal curve and critical point by specifying values for the relevant model parameters.

Keywords: charged polymers; polymer solutions; electrostatic interactions; counterion; water-soluble
polymers; theory

1. Introduction

Charged polymers [1–3], or according to the “Terminology of polymers containing
ionizable or ionic groups and of polymers containing ions (IUPAC Recommendations
2006)” [4], ion-containing polymers or ionic polymers, are macromolecules containing ionic
or ionizable groups, or both, irrespective of their nature, content, and location. In the
category of ionic polymers, there are anionic polymers, cationic polymers, and ampholytic
polymers [5]. If a substantial portion of the constitutional units contains ionic or ionizable
groups, or both, such ion-containing polymers are often called polyelectrolytes [6,7]. Ac-
cording to Hoagland [7], charged polymers possessing only a low density of charged units
along their backbones, with the fraction of these units typically less than about 15% on a
mole basis, are often referred to as ionomers. The ionic groups that endow ionic polymers
are no different than those found in small organic molecules bearing charges. The list of
anionic groups includes, e.g., sulfate, phosphate, sulfonate, and carboxyl groups. The list of
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cationic groups includes, e.g., protonated ammonium, quaternized ammonium, sulfonium,
and phosphonium groups. For summaries of chemical structures of those ionizable or ionic
groups, interested readers are directed to the reviews by Hoagland [7], Mecerreyes [8], and
more recently Kocak et al. [9] and Ofridam et al. [10].

Charged polymers are ubiquitous throughout nature and have myriad technological
applications [7–16]. Most of the water-soluble polymers, either natural or synthetic, are
charged, and they have a wide range of applications in various industrial sectors, includ-
ing the pharmaceutical and biomedical industries [12], the oil and gas industries [17–20],
construction chemicals [13], coatings, inks, flocculants, papers, agrochemicals (or agrichem-
icals), adhesives, foodstuffs, pharmaceuticals, cosmetics, and personal care products [21].
When water-soluble polymers containing ionizable groups come into contact with water,
which is a polar solvent, they dissolve and release “counterions” into their surroundings.
Counterions have more freedom to move around within the solvent domain, although
long-range electrostatic interactions may limit the extent to which they do so [22,23]. Even
in liquid water, which possesses a relatively high dielectric constant, electrostatic forces
strongly oppose the dissociation and physical separation of unlike charges [7]. Thus, a
diffuse cloud of small counterions closely surrounds a dissolved charged polymer. Coun-
terions in the diffuse cloud, as well as other small ions of an added electrolyte, screen
electrostatic interactions. Thus, adding an electrolyte to a polyelectrolyte solution con-
tracts the counterion cloud; at sufficiently high electrolyte concentrations, the cloud’s
shrinkage onto the chain transforms many polyelectrolyte properties to those of a neutral
polymer [24]. Conversely, with no added electrolyte, and thus only liberated counterions
present (a special condition termed “salt-free”), distinctive polyelectrolyte behaviors are
strongly magnified [7].

The phase behavior of polymer solutions and blends, including those of charged poly-
mers, is a fundamental problem in polymer science [25,26]. Understanding of the phase
behavior of polymer solutions and blends has grown steadily following the development of
the Flory–Huggins theory in 1942 [27–31]. For neutral polymers dissolved in poor solvents,
when the polymer concentration is increased, the polymers tend to aggregate, and beyond a
certain concentration two phases appear, one of dilute solution and another of concentration
solution. This phenomenon is called “phase separation”. When studying the thermody-
namics of polymers, the binodal curve (or coexistence curve) [32] denotes the temperature
and composition conditions at which two distinct phases may coexist. Equivalently, it is
the boundary between the set of conditions in which it is thermodynamically favorable for
the system to be fully mixed and the set of conditions in which it is thermodynamically
favorable for it to phase separate. For solutions of simple neutral polymers, the binodal
curves can often be predicted by theories of the Flory–Huggins type [25,26]. A number
of studies [33–40] have been devoted to the phase behavior of polyelectrolyte solutions.
Michaeli, Overbeek, and Voorn [33,34] showed that phase separation may arise in solutions
of polyelectrolytes due to electrostatic correlations using the generalized Flory–Huggins
theory and the Debye–Hückel theory. Moreover, Jiang et al. [41–43] developed a thermo-
dynamic theory based on the simplified charged hard-sphere chain model to study the
phase equilibria of polyelectrolyte solutions. Such a theoretical framework was further
developed by Zhang et al. [44], who presented what is referred to as a liquid-state (LS)
theory to predict the phase behavior of fully-charged polymer solutions in both salt-free
conditions and with added salt. This LS theory, which accounts for hard-core excluded
volume repulsion by the Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) [45,46]
equation of state, electrostatic correlation by mean-spherical approximation (MSA) [47–49],
and chain connectivity by Wertheim’s first order thermodynamic perturbation theory
(TPT1) [50–54], has shown remarkable success in predicting the phase behavior of poly-
electrolyte solutions [44,55,56]. Such an LS theory has been applied to study the phase
behaviors of concentration-asymmetric mixtures of polycation and polyanion solutions,
and has revealed a wealth of interesting and complex phase separation scenarios [57].
Classical density functional theories (cDFT) for charged polymers have been developed



Polymers 2022, 14, 4421 3 of 28

based on a similar framework, and have found wide application in many polyelectrolyte
systems [58–65]. A complete theoretical understanding of the solution phase behaviors of
charged polymers, however, remains challenging, both because of the multi-component nature
of the system (which, in the simplest case of a salt-free solution of fully charged polymers,
consists of solvent, counterions, and charged polymers) and because of the delicate interplay
among various factors, including the translational entropy of each component, excluded
volume interactions, chain connectivity, and more importantly, the long-range electrostatic
interactions. Considering the complexity of the systems, most polyelectrolyte models in
theoretical studies focus on electrostatic interactions and hard-sphere type excluded volume
interactions, and ignore the effects of local short-range interactions [66–69]such as hydro-
gen bonding and dipolar interactions [70–74], hydrophobic interactions [75–80], specific ion
binding interactions [81–90], and couplings among them.

In a recent work [91], the LS theory of Zhang et al. [44] was applied to study the phase
behavior of partially charged ionic polymers in both the salt-free case and with salt added
2:1. Previous studies have shown that there can be an additional short-range attraction,
often referred to as the “calcium-binding” interaction [92–97], between calcium ions and
the negatively-charged carboxylate groups of polycarboxylate-based superplasticizers
(PCEs) [13]. Such a calcium-binding interaction and how its strength affects the phase
behavior were investigated in our earlier work by introducing a modified square well
potential for the Ca2+ and R−CO−2 pairs, which was incorporated into the LS theory by
an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory
(PC-SAFT) [98,99]. We found that increasing the calcium-binding strength expands the
phase-separated region and increases the critical extra salt concentration, and leads to a
wider phase-separated region for salting-out and salting-in phenomena. The structural
parameters of PCEs affect phase behavior as well. Increasing the length of the neutral side
chains shrinks the phase-separated region, while increasing the acid-to-ether ratio expands
the phase-separated region. A combination of PC-SAFT and cDFT for charged polymers
has found applications in studies of the thermodynamically responsive properties of a
grafted polyanion layer on a planar surface [63] and the effects of polyelectrolyte surface
coating on the energy storage performance of supercapacitors [64].

In the present work, we consider a linear polymer consisting of two types of monomers,
A (charged) and B (neutral), in a polar solvent. The counterions released are referred to
as type C. In a recent work by Qiu et al. [91], we considered only dispersion interactions
between A and C, which are often referred to as specific ion binding interactions. In the
present work, dispersion interactions between A and A and between B and B are considered.
In addition to reporting the phase diagrams of such a system and how they are affected by
the various parameters, this work presents a graphical user interface application (GUI App)
that allows users to calculate such phase diagrams by inserting the values of the model
parameters. The rest of this paper is organized as follows. Section 2 presents the system of
interest, the model, the theoretical framework and its details, and the numerical methods.
Section 3 presents the key results of this work, and Section 4 concludes the paper. In the
Supporting Materials, the Matlab (version R2022a) codes that were used to produce the
results and the GUI App presented in the paper are presented.

2. Model and Methods
2.1. Polymer and Solution Models

Figure 1 presents the model system considered in this work. It is a coarse-grained
model where chain segments are described by spherical beads, a common approach in the
modeling of polymers [100–102]. We consider a linear copolymer made up of two types of
segments, A and B, where A is charged with valence ZA (i.e., every A segment carries an
electric charge of ZA in units of the elementary charge) and B is uncharged. Note that if the
ionic groups are from weak acids or bases that are only partially ionized [103,104], then A
and B may have nearly the same chemical structure except that one is ionized and the other
one is not. Let NA and NB be the number of A segments and the number of B segments in
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the polymer, respectively; then, the polymer has NT ≡ NA + NB segments in total and has
a charge fraction

η =
NA

NT
=

NA

NA + NB
(1)

Furthermore, the condition of charge neutrality for a single chain (i.e., polymer)
provides

NAZA + NCZC = 0 (2)

where NC is the total number of counterions associated with a single chain and ZC is the
valence of a single counterion.

A (charged)

B (Neutral)

C (Counterion)

Charge fraction, 

Charge neutrality: 

Figure 1. Illustration of a partially charged polymer with total length N, a sum of the charged
(NA) segments (type A) and neutral (NB) segments (type B) and its counterions (type C). There are
short-range interactions between A and C, between A and A, and between B and B.

In connection with the real world, the model system considered here may be relevant to
weak polyelectrolytes [9,10] such as Poly(acrylic acid) (PAA) brushes and poly(methacrylic
acid) (PMAA), partially hydrolyzed polyacrylamide (HPAM) [105–107], hydrophobically
modified polyelectrolytes [77,108,109] or an approximation, partially hydrolyzed hydropho-
bically modified polyacrylamide [110], or hydrophobically modified PCEs [111,112]. Such
polymers have important applications as absorbents, polymeric dispersants, polymer
flooding for enhanced oil recovery, wastewater treatment, and concrete admixtures.

It is well known in polymer science that copolymers can be random (statistical), blocks,
alternating, etc., in terms of sequence distribution. As is shown in the next section, while
the present work does not provide a complete description of how the monomer sequence
distribution affects its phase behavior, there is indeed one parameter in the model that
depends on the sequence distribution, i.e., the number of bond connections among charged
beads, denoted by N1. For a fully charged (charge fraction, η = 1) linear polyelectrolyte
chain, we have N1 = NT − 1. However, depending on the charge fraction and monomer
sequence distribution, N1 can be substantially smaller than NT. Figure 2 demonstrates
schematically how the polymer charge fraction and monomer sequence distribution affect
the relationship between the number of bond connections among charged beads and the
total number of chain segments.

The solvent is treated as a dielectric continuum with a dielectric constant εr. The
electrostatic interaction between any two charged beads with valences Zi and Zj and
separated by a distance rij is described by a superposition of the Coulomb potential and
the hard-sphere potential:

UCoul(rij) =

{
β−1ZiZj`B/rij rij > σij
∞ rij ≤ σij

(3)
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where β−1 ≡ kBT is the thermal energy scale, kB is the Boltzmann constant, T is the absolute
temperature in degrees Kelvin, σij refers to the effective radii between the two beads (i
and j) of diameter σi and σj, respectively. By the Lorentz rule, σij = (σi + σj)/2, while `B is
the Bjerrum length, which is the separation at which the electrostatic interaction between
two elementary charges is comparable in magnitude to the thermal energy scale kBT. In
standard units, `B is provided by

`B =
e2

4πε0εrkBT
(4)

where e is the elementary charge, εr is the relative dielectric constant of the medium,
and ε0 is the vacuum permittivity. For water at room temperature (T ≈ 293 K), εr ≈ 80,
meaning that `B ≈ 7.1 Å. It appears from Equation (4) that `B is proportional to T−1 such
that the higher the temperature, the lower the Bjerrum length. However, this notion is
only correct when εr is treated as a constant, i.e., independent of temperature. For real
liquids, the relative dielectric constant depends on the temperature, i.e., εr = εr(T). In
the case of liquid water at 1 atm, as shown by Figure 3, εr decreases with the increase of
temperature [56,113,114], which leads to an increase of `B as the temperature increases.
In the temperature range for liquid water at 1 atm, `B falls in the interval of [7.0 Å, 8.0 Å].
As recently reported by Ylitalo and coworkers [56], accounting for the temperature de-
pendence of the dielectric constant of water is essential when modeling a lower critical
solution temperature (LCST) because it results in a Bjerrum length that increases (rather
than decreases) with temperature, leading to stronger electrostatic correlations that drive
phase separation at higher temperatures.

A (charged)

B (Neutral)

Figure 2. Examples illustrating how the charge fraction η and sequence distribution (from top
to bottom: fully charged, block copolymer, random copolymer, alternating copolymer, and block
copolymer) affect the relationship between the number of bond connections among charged beads
and the total number of chain segments.

Pairwise Dispersion interactions between A and A, between B and B, and between
A and C are considered in the present work. Their interaction strengths are described by
three energy (in the unit of kBT) parameters: εA for the dispersion interaction between A
and A, εB for that between B and B, and εAC for the dispersion interaction between A and
C, as shown schematically in Figure 1. The pair potential for the dispersion interactions
between pair species is provided by a modified square well potential, which was suggested
by Chen and Kreglewski [98] and used in the PC-SAFT equation of state developed by
Gross and Sadowski [99]. This pair potential between two beads separated by a distance rij
is provided by
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βUdisp(rij) =


∞ rij < λ1σij

3ε∗ λ1σij ≤ rij < σij

−ε∗ σij < rij < λ2σij

0 rij ≥ λ2σij

(5)

where σij =
(
σi + σj

)
/2, λ1 = 0.88 and λ2 = 1.5 are two parameters from the PC-SAFT

model, and ε∗ (dimensionless), which can be εA, εB, or εAC in this work, is the depth of
the potential well relative to the thermal energy scale. In this work, we limited ourselves
to considering pairwise dispersion interactions between A and A, between B and B, and
between A and C, which represent specific interactions between the charged segments
of the polymer, between the neutral segments of the polymer, and between the charged
polymer segments and their counterions, respectively. In principle, all other dispersion
interactions, which are assumed to be pairwise additive, could be introduced into the
model by extending the source codes provided.

2 8 0 3 0 0 3 2 0 3 4 0 3 6 0 3 8 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0

 
 

T e m p e r a t u r e  ( K )
6 . 8
7 . 0
7 . 2
7 . 4
7 . 6
7 . 8
8 . 0
8 . 2

 
 (

)

Figure 3. Relative dielectric constant εr (left y-axis) and the corresponding Bjerrum length `B (right
y-axis) are shown as a function of temperature for liquid water at 1 atm. In preparing this fig-
ure, we used Malmberg and Maryott’s empirical model [114] of the dielectric constant of water,
εr(T) = 87.740− 0.40008T + 9.398× 10−4T2 − 1.410× 10−6T3, where T is the temperature value in
degrees Celsius (°C).

2.2. Theoretical Formulation

Table 1 presents a summary of the different species in the systems examined in this
work. For the more general case of a polymer solution with added salt, after ionization in
a polar solvent (described as a dielectric continuum), there are four types of beads in the
solution: Type A for the charged segments of the polymer, Type B for the neutral segments
of the polymer, Type C for the counterions of the charged segments of the polymer and
salt co-ions, and type D for the co-ions from the added salt (assumed to be C + D). For the
simplicity of writing, we denote the whole polymer by “p” (which consists of type A and
type B segments), and the polymer segmental density by ρp = ρA + ρB. In this study, we
mainly focus on the salt-free polymer solution case where ρD = 0.

The theoretical framework and LS theory used in this study to predict the phase
behavior of ion-containing polymers in polar solvents are similar to those reported in
a recent work by Qiu et al. [91]. The LS theory was adapted from that developed by
Zhang et al. [44,55,57] for the phase behavior and salt partitioning of polyelectrolyte
solutions, and dispersion interactions were introduced to the LS theory by an additional
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free energy term from the PC-SAFT equation of state, following the recent work by Xu and
coworkers [63,115]. The system Helmholtz free energy density f can generally be written
as the sum of an ideal contribution ( f id) and an excess contribution ( f ex) [44]:

f = f id + f ex (6)

The ideal part f id describes the translational degrees of freedom, and is known ex-
actly [44]:

β f id =
ρp

NT

[
ln
(

ρp

NT
Λ3

p

)
− 1
]
+ ∑

i=C,D
ρi

[
ln
(

ρiΛ3
i

)
− 1
]

(7)

where ρp = ρA + ρB, NT = NA + NB, and Λp and Λi are length scales arising from inte-
grals over the momentum degrees of freedom; while they are kept in Equation (7) for
dimensional consistency, they have no consequences with respect to the phase behavior.
In this theoretical framework, f id describes only the translational entropy, and does not
distinguish the difference between neutral and charged segments of the polymer. Hence,
the total number of beads of a polymer, NT, is used in Equation (7).

Table 1. Summary of the different species considered in this work. A = Charged segments of the
polymer; B = Neutral segments of the polymer, C = Counterions of the charged segments of the
polymer and salt co-ions, D = Co-ions from the added salt (assumed to be C + D).

Component A B C D

Number density ρA ρB ρC ρD

Valence ZA ZB = 0 ZC ZD

The excess Helmholtz free energy density is provided by [91]:

f ex = f ex
hs + f ex

el + f ex
ch + f ex

disp (8)

The first term on the right side of Equation (8), f ex
hs , represents the contribution from the

hard-core excluded volume interactions (see Equation (3)) of an ensemble of “disconnected”
(assumed) hard spheres. This contribution is described by the BMCSL excess free energy
density [45,46]:

β f ex
hs = −ξ0 ln(1− ξ3) +

ξ1ξ2

1− ξ3
+

ξ3
2

3

[
ln(1− ξ3)

12πξ2
3

+
1

12πξ3(1− ξ3)2

]
(9)

with ξ0 ≡ ∑i ξ0i = ∑i ρi, ξ1 ≡ ∑i ξ1i = (1/2)(∑i ρiσi), ξ2 ≡ ∑i ξ2i = π ∑i ρiσ
2
i , and

ξ3 ≡ ∑i ξ3i = (π/6)∑i ρiσ
3
i , where the sum over i spans all species, A, B, C, and D (see

Table 1).
The electrostatic correlation of the “disconnected” (assumed) charged hard spheres

can be accounted for using the Ornstein–Zernike equation with MSA [116], and the corre-
sponding excess free energy density, f ex

el , is obtained as [44]

β f ex
el = −`B ∑

i

ξ0iZi
1 + σiΓ

[
ZiΓ +

πσi
2

Pn

1− ξ3

]
+

1
3π

Γ3 (10)

where the sum over i spans all species, A, B, C, and D (see Table 1). The screening parameter
Γ and the size asymmetric factor Pn are obtained from the following set of equations [44]:
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Γ2 = π`B ∑

i

ξ0i
(1 + σiΓ)2

[
Zi −

πσ2
i

2
Pn

1− ξ3

]2

Pn = ∑
i

2ξ1iZi
1 + σiΓ

/[
1 +

3
1− ξ3

∑
i

ξ3i
1 + σiΓ

] (11)

The third term on the right side of Equation (8), f ex
ch , represents a correction due

to chain connectivity. For the systems considered in this study, there are two types of
connections, namely, connections between charged beads and the remaining connections.
Let N1 and N2 be the number of connections among charged beads and the number of
remaining connections, respectively. The excess Helmholtz free energy density due to chain
connectivity may be considered as a sum of two contributions, one for the connectivity
among charged beads and the other from the remaining connections. For the former, we
use the same expression (rewritten in a slightly different form) as that used by Zhang
et al. [44,55,57], while for the latter we use the result from TPT1, originally proposed by
Wertheim for neutral hard-sphere chain systems [50,54]. In brief, f ex

ch is obtained as follows:

β f ex
ch = − 1

NT
ξ0p

{
N1 ln

[
1

1− ξ3
+

ξ2σp

4(1− ξ3)2

]
exp

(
−

a2
1Γ2

4π2σp`B
+

`BZ2
A

σp

)

+(NT − 1− N1) ln
[

1
1− ξ3

+
ξ2σp

4(1− ξ3)2

]} (12)

where N1 is the number of bond connections between two charged segments (type A),
NT − 1− N1 is the remaining number of bond connections, ξ0p = ρp = ρA + ρB according
to the definition of ξ0i, σp = σA = σB, and

a1 =
2π`B

[
ZA − πPnσ2

p/(1− ξ3)
]

(
1 + σpΓ

)
Γ

(13)

In Equation (12), N1 is the number of bond connections among charged beads, as is
illustrated in Figure 2 for partially charged polymers, while N1 depends on the monomer
sequence distribution and is used in the present theory to describe the influence of sequence
distribution on the polymer phase behavior.

The last term on the right side of Equation (8), fdisp, represents a contribution from
dispersion interactions. In this work, we consider three types of short-range interactions:
(i) between counterions C and charged segments A with strength parameter εAC, (ii) be-
tween two charged segments, A and A, with strength parameter εA, and (iii) between two
neutral segments, B and B, with strength parameter εB. From the PC-SAFT model [99,115],
we have

fdisp = f AC
disp + f AA

disp + f BB
disp (14)

where 
β f AC

disp = −2πρAρC
[
2J1εAC + N̄M−1 J2εAC

2]σ3
A,C

β f AA
disp = −2πρAρA

[
2J1εA + N̄M−1 J2εA

2]σ3
A

β f BB
disp = −2πρBρB

[
2J1εB + N̄M−1 J2εB

2]σ3
B

(15)

with

M = 1 + N̄
8ξ3 − 2ξ2

3
(1− ξ3)2 + (1− N̄)

20ξ3 − 27ξ2
3 + 12ξ3

3 − 2ξ4
3

(1− ξ3)2(2− ξ3)2 (16)

Here, σA,C = (σA + σC)/2 by the Lorentz rule; ξ3 ≡ ∑i ξ3i = (π/6)∑i ρiσ
3
i , as defined

underneath Equation (9), although here the sum over i runs only over the associating
species, A, B, and C; and N̄ is a weight-average number of segments of the associat-
ing species:
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N̄ =
NTρp + ρC

ρp + ρC
(17)

In Equation (15), J1 and J2 refer to contributions from integrals of the radial distribution
function, and are obtained as six-order polynomials [99] in the form of

Jk =
6

∑
i=0

a(k)i (N̄)ξ i
3 , k = 1, 2

with the coefficients

a(k)i (N̄) = a(k)i0 +
N̄ − 1

N̄
a(k)i1 +

N̄ − 1
N̄

N̄ − 2
N̄

a(k)i2

where a(k)ij , , k = 1, 2, are the universal model constants fixed by Gross and Sadowski [99]
in their development of PC-SAFT.

More recently, Zhang et al. [117] have presented a newer version of LS theory which
can capture the electrostatic correlations due to chain connectivity more accurately for
partially charged polymers. Although the present work is based on their earlier version of
the LS theory [44], we do not expect qualitative differences in the predicted phase diagrams.
A comparative study can be made in the future to quantify the differences between those
two versions of the LS theory by incorporating the new theory into the Matlab codes
presented in this work.

2.3. Construction of Phase Diagram

Phase equilibrium between the polymer-poor phase (denoted as phase I) and the
polymer-rich phase (denoted as phase II) is determined by the equality of the electrochemi-
cal potential for all components (see Table 1) and the equality of the osmotic pressure [44].
Charge neutrality is enforced by introducing a Lagrange multiplier Ψ in the grand free
energy minimization, similar to the approach conducted in earlier studies [44,118,119].
We have

F = f + eΨ ∑
k

ρkZk k = A, B, C, D (18)

where the Lagrange multiplier Ψ has the interpretation of an electrostatic potential. The
equality of the electrochemical potential for all components leads to

∂FI

∂ρI
k
=

∂FII

∂ρII
k

(19)

The superscripts I and II are introduced here to specify the polymer-poor phase and
the polymer-rich phase, respectively. Recall that the chemical potential of each species, µi,
is obtained from the overall Helmholtz free energy density and is provided by [44]

µk =
∂ f
∂ρk

, k ≡ p, C, D (20)

The equality of the electrochemical potential for all components, provided by
Equation (19), thus leads to

µI
j + eZjΨI = µII

j + eZjΨII , j = C, D (21)

µI
p + eZAηΨI = µII

p + eZAηΨII (22)

Equations (21) and (22) denote the equality of the electrochemical potential for all
charged species (C, D, and p), while for the polymer species p the valence is reduced to ηZA
because of its partially charged characteristics. While there are two Lagrange multipliers,
ΨI and ΨII, for the polymer-poor and the polymer rich phases, respectively, only their
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difference is meaningful, which can be understood as a Galvani potential (ΨG) [44], defined
as ΨG ≡ ΨII −ΨI. Using the Galvani potential, Equations (21) and (22) may be rewritten as

µI
j − µII

j = eZjΨG , j = C, D (23)

µI
p − µII

p = eZAηΨG (24)

The equality of the osmotic pressure (provided by P = ∑ ρµ− f ) [44] leads to

∑
k

µI
kρI

k − f I = ∑
k

µII
k ρII

k − f II , k = p, C, D (25)

The charge neutrality constraint is provided by

∂FI

∂ΨI =
∂FII

∂ΨII = 0 (26)

which may be rewritten as

∑
k

ρI
kZk = ∑

k
ρII

k Zk = 0 k = A, B, C, D (27)

Equation (25) denotes the equality of the osmotic pressure of phase I and that of phase
II, and Equation (27) denotes the charge neutrality constraint in each of the phases. To
construct the phase diagram, Equations (23)–(25) and (27) are solved to obtain the density
of the species in each of the phases and the Galvani potential.

Let F be the number of degrees of freedom C be the number of components and let
Ph be the number of phases. According to the Gibbs phase rule, F = C − Ph + 2. For
the salt-free case (polymer with counterions only), because of charge neutrality there is
only one independent component, i.e., C = 1; for such a system at two-phase coexistence
(Ph = 2), there should only be one degree of freedom, i.e., F = 1, and its phase diagrams
can be drawn by specifying a `B value. Applying the same analysis to solutions with salt,
we have F = 2, and the resulting phase diagram is a curved surface in 3D, which is not easy
to illustrate or understand. In this study, such phase diagrams are constructed by varying
the osmotic pressure (Equation (25)) at a fixed `B value.

The detailed numerical procedure was explained in an earlier work [91]. The globally
convergent Newton method [120] is employed to minimize the errors (tolerance < 10−12)
when solving the system of nonlinear equations. We have assembled our Matlab (version
R2022a) codes for the salt-free case into a GUI App (introduced in Section sec:Results), and
the codes are provided in the Supplementary Materials.

In this work, we consider all beads (monomer segments, counterions, salt ions) to
have the same diameter of 4.0 Å, following the work of Zhang et al. [44,57]. For simplicity
of notation, we use σ to denote the bead diameter, i.e., σ = σA = σB = σC = σD = 4.0 Å.
The segmental number densities ρi are expressed in units of σ−3. In other words, ρiσ

3

is dimensionless. With σ = 4.0 Å, a polymer segmental number density of ρpσ3 = 0.01
corresponds to a polymer concentration of

ρp

NT
=

0.01σ−3

NT
=

0.01× (4.0 Å× 10−9 dm/Å)−3

NT

1
NA
≈ 0.26N−1

T mol/L (28)

where NT is the total number of segments of the polymer. Note that it is possible to consider
beads of different sizes, as was done in our recent work [91], and to consider bead diameter
as a function of temperature, as described in the PC-SAFT literature [99] and a recent work
by Xu et al. [63]. However, because the theoretical formulation presented in this section is
already complicated, in pursue of a minimalist model such detailed factors are not included
in this study; we do not expect qualitative differences from the results presented in this
work when those factors are included.
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3. Results and Discussions
3.1. GUI App for the Salt-Free Case and Selected Sample Results

Inspired by the work of Thompson et al., efforts have been made in this study to make
the theoretical model more transparent, reproducible, usable by others, and extensible
(TRUE) [121]. As a result, in this work we have developed a GUI App based on MATLAB
(version R2022a), which allows for convenient calculation of the binodal curve for the
salt-free case. All the source codes are supplied in the Supplementary Materials. Table 2
summarizes the list of parameters in the model and in the GUI App. After the values
for these parameters are set, the App calculates the corresponding phase diagram for the
salt-free case by clicking the “Run” button. The calculated result are shown in the GUI.
Users can use the App to easily compare the results from different sets of parameters. The
App can generate a Matlab “.mat” file of the numerical results labeled by the parameters
for further analysis (see Figure 4). The source codes for the App and the traditional Matlab
Run file are provided for further extensions of the code.

Table 2. Input parameters used in the GUI App. For the salt-free polymer solution, there are three
types of beads (see Figure 1): Type A = Charged segments of the polymer; Type B = Neutral segments
of the polymer; Type C = Counterions. The strength parameter for the dispersion interaction is
introduced in Equation (5).

Notions Definition

`B max Upper bound of the range of the Bjerrum length
`B min Lower bound of the range of the Bjerrum length
`B step Step length (bin size) of the Bjerrum length
NT Total number of (A+B) segments of the polymer chain
N1 Number of bond connections between charged segments (A)
η Charge fraction of the polymer chain
εAC Strength of dispersion interaction between A and C
εA Strength of dispersion interaction between A and A
εB Strength of dispersion interaction between B and B
ZA Valence of individual ionized groups of the polymer
ZC Valence of counterions

（a） （b）

Figure 4. Illustration of the GUI App of a Liquid State Theory Calculator based on MATLAB (version
R2022a): (a) after setting values for the parameters but before clicking “Run” and (b) the resulting
binodal curve and critical point (shown by the filled circle). Here, the polymer solution is in a single
phase below the binodal curve and is separated into two phases above the binodal curve. The
App generates a Matlab “.mat” file containing the numerical results labeled by the parameters for
further analysis.
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The resulting binodal curve, which separates one phase and two phases systems, is
shown in the form of `B/σ vs. ρpσ3 (see Figure 4b). As `B depends on temperature (see
Equation (4) and Figure 3), such an `B/σ vs. ρpσ3 binodal curve can be easily mapped to
the transitional form of a temperature vs. composition binodal curve. On a `B/σ vs. ρpσ3

graph, the polymer solution is in two-phase coexistence above the binodal and is a single
phase below the binodal. The critical point is depicted on the binodal curve as a filled circle
(see Figure 4).

In this section, we present results from two sample problems to demonstrate how
such results can be obtained easily using the GUI App developed in this work. Note
that the theoretical model presented in Section 2 is a deterministic model and there is no
randomness in the results other than truncation errors. The same set of parameters should
always generate the same results, and therefore readers may compare their results with the
results shown in this section to check whether the App was run properly. In both cases (see
Figures 5 and 6), the total number of segments of the polymer was fixed at NT = 100. Note
that the relationship between the charge fraction η and the number of bond connections
between charged segments N1 is nontrivial. For block copolymers (see Figure 2), we have
N1 = ηNT − 1, which is the upper bound for the N1 parameter when η and NT are fixed.
For other types of monomer sequence distributions apart from a block copolymer, the
corresponding N1 values would be smaller than ηNT − 1, leaving the question of what
the lower bound for N1 is. As shown in Figure 2, compared to other types of monomer
sequence distributions, the alternating monomer sequence distribution leads to a lower N1
value; if η ≤ 0.5, then the lower bound for N1 would be 0, i.e., N1 ∈ [0, ηNT − 1]. However,
if the charge fraction is notably larger than 0.5, then the lower bound for N1 would be
notably larger than 0. A more careful analysis of the influence of charge fraction and
monomer sequence distribution on the range of N1 shows that the lower bound for N1 is

N1,min = max[0, NT(2η − 1)− 1] (29)

Therefore, we have N1 ∈ [N1,min, ηNT − 1]. For example, considering a polymer
chain with 100 beads and a charge fraction of η = 0.7, the acceptable range of N1 is from
100× (2× 0.7− 1)− 1 = 39 to 100× 0.7− 1 = 69. For the results shown in Figure 5, we have
NT = 100 and η = 0.5. Therefore, the acceptable range of N1 is from 0 to 49, with the lower
bound corresponding to an alternating copolymer and the upper bound corresponding to
a block copolymer. Here, we only consider short-range dispersion interactions between the
neutral segments (type B) in the polymer, i.e., we set εA = εAC = 0 and vary εB from 0 (no
interaction) to 1 (short-range dispersion interaction on the order of the thermal energy).

As shown in Figure 5, increasing the N1 value expands the phase-separated region.
In other words, increasing the N1 value promotes phase separation. That is to say, for
the same charge fraction, a block copolymer would have a wider phase-separated region
than an alternating copolymer. Similarly, for a given N1 value, an increase in εB, which
is the strength of the dispersion interactions between the neutral segments, promotes
phase separation. We now turn to the underlying physics. As shown in the theoretical
formulation, the translational entropy term promotes mixing and works against phase
separation; however, the electrostatic correlation effects, chain connectivity, and short-range
dispersion interactions all weaken the entropy term, and thus promote phase separation.
This notion agrees with the results shown in Figure 5.

The results shown in Figure 5 are for monovalent counterions, i.e., ZC = +1. In
Figure 6, the valency of the counterions is varied, and results are shown for three different
polymers: (i) an alternating copolymer with charge fraction η = 0.5 (thus N1 = 0); (ii) a
block copolymer with charge fraction η = 0.5 (thus N1 = 49); and (iii) a fully charged
homopolymer with charge fraction η = 1.0 (thus N1 = 99). The valency of the counterions
was varied from ZC = +1 to ZC = +3, and as this work is based on a coarse-grained model,
it is possible to have fractional charges. To demonstrate this point, we included a case with
ZC = +1.5. Note that the case for η = 1.0 and ZC = +1 as well as those for η = 1.0 and
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ZC = +2 have been studied by Zhang et al. [44], and our results shown in Figure 5 agree
quantitatively with theirs.

0 . 0 0 0 . 0 6 0 . 1 2 0 . 1 8 0 . 2 4
3
4
5
6
7
8
9

1 0
1 1
1 2

� p σ 3

N 1  =        0          4 9
                 � B  =  0
            0 . 5
           1
   c r i t i c a l  p o i n t

Figure 5. Predicted binodal curves from the GUI App presented in this work. The values for the
following parameters were fixed: NT = 100, η = 0.5, εAC = εA = 0, ZA = −1, ZC = +1. Values for
N1 and εB were varied, as shown in the figure. Critical points are shown as open circles.

0 . 0 0 0 . 0 8 0 . 1 6 0 . 2 4 0 . 3 2 0 . 4 0
0
1
2
3
4
5
6
7
8
9

� p σ 3

                       Z C  =    + 1    + 1 . 5   + 2     +  3
    �  =  0 . 5  N 1 = 0       
    �  =  0 . 5  N 1 = 4 9       
    �  =  1 . 0  N 1 = 9 9       

Figure 6. Predicted binodal curves from the GUI App presented in this work. The values for the
following parameters were fixed: NT = 100, εAC = εA = εB = 0, ZA = −1. Values for η, N1 and ZC

were varied, as shown in the figure. Critical points are depicted by filled symbols.

As shown in Figure 6, increasing the valence of the counterions expands the phase-
separated region and thus promotes phase separation. When the valence of the counterions
is fixed, increasing the charge fraction results in two effects: (i) enhancing the electrostatic
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contribution (which promotes phase separation) and (ii) enhancing the contribution from
translational entropy, as from charge neutrality, a higher charge fraction requires more
counterions to maintain charge neutrality. If the valence of the counterion is large enough,
e.g., ZC = 3, fewer counterions are needed to maintain charge neutrality, and therefore
increasing the charge fraction always promotes phase separation.

In the case of liquid water at 1 atm, we have `B ∈ [7.0 Å, 8.0 Å] (see Figure 3), and with
σ = 4.0 Å, we have `B/σ ∈ [1.75, 2.0]. This means that aqueous solutions of the polymers
investigated in Figure 5 with monovalent counterions will be in a single phase (no phase
separation), as the critical Bjerrum length for phase separation is well above the accessible
range for liquid water. However, as the counterion valency increases, phase separation
could take place, as shown in Figure 6 for the cases with ZC = 3.

3.2. Effect of Chain Length and Charge Fraction

The critical point on the binodal curve of a salt-free solution can be fully characterized
by a critical Bjerrum length `B,c (Y-coordinate) and a critical polymer segmental concen-
tration ρp,c (X-coordinate). This section addresses the question of how the critical point is
affected by the polymer chain length and its charge fraction.

Figure 7 presents the effect of the polymer chain length parameter NT on the critical
point for a fully charged polymer chain. As shown in the figure, the critical polymer
concentration (ρp,c) is not sensitive to the chain length, although for small NT values it
increases slightly with the increase of NT. In comparison, the critical Bjerrum length `B,c

decreases monotonically with the increase of NT. The underlying physics is that a larger
NT results in a lower translational entropy, which promotes phase separation.

As noted by Zhang et al. [44], previous theories [42,122,123] and Monte Carlo simula-
tion [124] suggest that the critical concentration ρp,c remains finite and is nearly independent
of the chain length when NT > 100 because of the translational entropy of free counterions,
while the critical Bjerrum length `B,c decreases slightly with increasing chain length due
to both the smaller chain translational entropy and the stronger electrostatic correlation.
Our results (see Figure 7) are fully consistent with these earlier findings. The results shown
in Figure 7 correspond to a fully charged (charge fraction η = 1) linear polymer with
monovalent monomeric units (ZA = −1) and divalent counterions (ZC = +2). There is a
very interesting feature in Figure 7 that has not been discussed in earlier studies. That is,
while it is fair to say that the critical Bjerrum length decreases only slightly with increasing
chain length, `B,c ≈ 8.0 Å for NT = 10, and `B,c ≈ 6.65 Å for NT > 104, this range of `B,c

happens to overlap with the accessible Bjerrum length values for liquid water at 1 atm (see
Figure 3). Recall that for water at room temperature (T ≈ 293 K), εr ≈ 80, meaning that
`B ≈ 7.1 Å. Therefore, if the chain is sufficiently short, phase separation may not take place
because its critical Bjerrum length is above the Bjerrum length of the solvent. However, if
the chain is long enough, then according to the results shown in Figure 7, phase separation
can be expected because its critical Bjerrum length is now below the Bjerrum length of the
solvent. It is interesting to observe in Figure 7 that the dependence of `B,c on the chain
length parameter NT can be fitted well by an expression with the form

`B,c/σ = aN−1
T + b (30)

That is, if one plots `B,c/σ against 1/NT, the results follow a straight line. To the best
of our knowledge, this finding has not been reported in previous studies. A follow-up
question is how versatile this `B,c ∼ N−1

T dependence is. This question is addressed later in
this subsection.



Polymers 2022, 14, 4421 15 of 28

1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
9 . 0 9

9 . 1 0

9 . 1 1

9 . 1 2

9 . 1 3

9 . 1 4

9 . 1 5

 � p , c σ 3

 
 F i t t i n g

N T

� p
,cσ

3

x 1 0 - 3

1 . 6 5
1 . 7 0
1 . 7 5
1 . 8 0
1 . 8 5
1 . 9 0
1 . 9 5
2 . 0 0
2 . 0 5

Figure 7. Effect of chain length: concentration of polymer ρp,c (left y-axis) and Bjerrum length `B,c

(right y-axis) of critical points in the binodal curves from the GUI App presented in this work. The
values for the following parameters were fixed: εAC = εA = εB = 0, ZA = −1, ZC = +2, η = 1.
Values for NT is were varied, therefore, N1 = NTη − 1 was varied. Symbols are numerical results.

Figure 8 presents the effect of the polymer charge fraction on the binodal curve and the
critical point. It is instructive to start from a simple general case, namely, partially charged
polymers with divalent counterions only without adding salt and with no dispersion
interactions or other specific interactions. In Figure 8a, we consider a realistic polymer
chain length NT = 105 and an η varied from 0.0256 to 1 (fully charged). The N1 parameter
was set to be N1 = NTη − 1, which corresponds to the case of a block copolymer. Note
that lowering the charge fraction reduces the effect of electrostatic interactions. As the
results show, increasing η lowers the binodal curves monotonously. In the beginning,
increasing η sharply enhances the phase separation, and the effect becomes milder as η
approaches 1 (fully charged). In Figure 8b, it can be seen that while the critical Bjerrum
length `B,c decreases monotonically as the charge fraction η increases, the dependence of
the critical polymer concentration (ρp,c) on the polymer charge fraction (η) is not monotonic,
and it first increases with the increase of η, reaches a maximum at η ≈ 0.4 (to be more
exact, η ≈ 0.385), and then decreases with the further increase of η to 1 (fully charged).
This non-monotonic behavior may be understood as a competition between electrostatic
interaction and translational entropy. At a low charge fraction, a higher concentration
of charged polymer is required to increase the electrostatic interaction. When the charge
fraction (η) reaches approximately 0.385, the critical polymer concentration (ρp,c) reaches its
maximum, and the critical Bjerrum length (`B,c) becomes insensitive to the charge fraction.
When η ' 0.385, which may be referred to as the critical charge fraction, increasing the
charge fraction linearly decreases the critical concentration, with a slope of approximately
−0.0035 (see Figure 8).

As mentioned in Figure 7, for a fully-charged polymer chain, the critical Bjerrum
length scales as `B,c ∼ N−1

T (see Equation (30)). To our knowledge, this is the first time
such a scaling relation between `B,c and NT has been reported, though previous studies
have noted that when NT is large, the phase separation is not sensitive to NT [44]. Figure 7
presents the results only for a fully charged polymer without any specific interactions. We
investigate whether this scaling relationship can be generalized to all situations, i.e., for
any values of η, N1, k, and even ε > 0. In Figure 9, we present results for nine cases under
different εAC and η values to show that such a scaling dependence is followed for all these
cases, and hence is quite general. For lower charge fractions, the phase separation is more
sensitive to NT. Note that the scaling law is followed, only with a larger slope (i.e., higher a
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in Equation (30)). Moreover, it seems that varying εAC mainly affects the intercept b, and
has little influence on the slope (see Figure 9).
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Figure 8. Effect of charge fraction: (a) Predicted binodal curves from the GUI App presented in this
work. The values for the following parameters were fixed: εAC = εA = εB = 0, ZA = −1, ZC = +2,
NT = 105, and N1 = NTη − 1 (block copolymer). (b) Concentration of polymer ρp,c (left y-axis) and
Bjerrum length `B,c (right y-axis) of critical points in the binodal curves versus η from 0 to 1 under
different total lengths NT of polymer. The values of all parameters are the same as those used in (a)
unless otherwise specified in the figure.
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Figure 9. The scaling relationship: `B,c ∼ N−1

T . The values for the following parameters were fixed:
εA = εB = 0, ZA = −1 and ZC = +2. Values for NT is were varied, therefore N1 = 1/3NTη − 1 was
varied as well.

Following a similar idea, we have investigated whether there exists a simple scal-
ing relationship between critical Bjerrum length (`B,c) and the polymer charge fraction
(η). As shown in Figure 10, it can be seen that in the absence of specific interactions
(εA = εB = εAC = 0), the critical Bjerrum length shows a linear dependence on η−3/4 for
NT ≥ 104, i.e., `B,c ∼ η−3/4. When NT is small, e.g., when NT = 100, `B,c ∼ η−0.922. When
varying η values from 0.01 to 1, the scaling law of `B,c ∼ η−3/4 is followed for a broad range
of η values. Hence, the larger the charge fraction, the smaller the critical Bjerrum length
(see Figure 8b). In Figure 10, we introduce a k-parameter to describe the monomer sequence
distribution and define the N1-parameter as N1 = kNTη − 1. Here, the k-parameter has a
maximum value of 1, which is for the case of a block copolymer. As the results show, the
larger the k value, the smaller the critical Bjerrum length. The effect of the N1-parameter
was discussed in our recent work [91]; increasing N1 without changing other parameters
increases the electrostatic contribution to the excess Helmholtz free energy density, and
hence promotes phase separation. We varied the valency of the charged groups; as is shown
in Figure 10, increasing the valency of the charged groups of the polymer or the counterions
lowers the critical Bjerrum length.

Notice that once the k-parameter, k ∈ (0, 1], is provided, the available charge fraction
cannot exceed its maximum of ηmax = 1/(2− k) (which can be derived from Equation (29)).
Therefore, for k→ 0, k = 1/4, and k = 1, the corresponding ηmax values ae 0.5, 0.57, and
1, respectively. This explains why for the two curves at the top we cannot reach higher η
values than those shown in Figure 10.
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Figure 10. The scaling relationship: `B,c ∼ η−3/4. The values for the following parameters were
fixed: NT = 104, N1 = kNTη − 1, and εA = εB = εAC = 0. Values for η is were varied, and therefore
values for the N1-parameter were varied as well. From top to bottom: (i) N1 = 0 (k→ 0), Zp = −1,
ZC = +1; (ii) k = 1/4, Zp = −1, ZC = +1; (iii) k = 1, Zp = −1, ZC = +1; (iv) k = 1, Zp = −2,
ZC = +1; (v) N1 = 0, Zp = −1, ZC = +2.

3.3. Effect of Local Short-Range Interactions

Here, we investigate in detail the effects of short-range specific interactions on the
binodal curves and the critical points. Figure 11 presents the effect of specific interactions
between the neural segments of the polymer, where we varied the interaction strength εB

and the charge fraction. Notice that for the cases of η = 0.11 and εB = 0.89, it is predicted
that the system is always in a phase-separated situation, as its phase separation is mainly
driven by the dispersion interaction εB, which is assumed to be athermal (Udisp ∼ kBT; see
Equation (5)) in the present model. Figure 12 presents the effect of the specific interactions
between the charged segments of the polymer and the counterions on the relationship
between the critical Bjerrum length and the charge fraction, where we varied the interaction
strength εAC and the monomer sequence distribution (k = 0.5 vs. k = 1). Figure 13 presents
the binodal curves for a series of partially charged polymers in the presence of specific
interactions described by εAC = 1.0 and εB = 0.2, where we have varied the charge fraction
from η = 0 to η = 0.6. In Figure 14, we show how the critical Bjerrum length depends on
the charge fraction (η) and the specific interactions (strength parameter εB) between the
neural segments of the polymer for different εAC values. All these results were obtained by
the computational App presented in Figure 4, and are reprocessed and assembled here for
better presentation of the results.
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Figure 11. Predicted binodal curves from the GUI App presented in this work. The values for the
following parameters were fixed: εA = 0, εAC = 0, NT = 100, ZC = +1 and ZA = −1. Values for the
charge fraction η and the interaction strength between the neutral segments of the polymer εB were
varied. As η was varied, the N1-parameter, N1 = NTη− 1 (block copolymer), was varied as well. The
dashed line shows the limiting value of `B/σ = 0.
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Figure 12. Bjerrum length of critical points `B,c in the binodal curves. The values for the following
parameters were fixed: εA = εB = 0, ZA = −1, ZC = −2, NT = 105. Values for η were varied under
different εAC and N1 values.
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Figure 13. (a) Predicted binodal curves from the GUI App presented in this work. The values for the
following parameters were fixed: εAC = 1, εB = 0.2, εA = 0, ZA = −1, ZC = −2, NT = 105. Values
for η were varied, therefore, N1 = 1/3NTη − 1 was varied as well. The blue arrow indicates the
direction of increasing charged fraction (η from 0 to 0.6). The red hollow circles are the critical points.
(b) The subfigure at the bottom is a zoomed-in view showing a closer look at the binodal curves for
the range of `B/σ ∈ [0, 4] and ρpσ3 ∈ [0, 0.05].



Polymers 2022, 14, 4421 21 of 28

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 . 0
1 . 0
2 . 0
3 . 0
4 . 0
5 . 0
6 . 0
7 . 0
8 . 0

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 . 0
1 . 0
2 . 0
3 . 0
4 . 0
5 . 0
6 . 0
7 . 0
8 . 0

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 . 0
1 . 0
2 . 0
3 . 0
4 . 0
5 . 0
6 . 0
7 . 0
8 . 0

( a )  � A C  =  0 ( b )  � A C  =  0 . 5

( c )  � A C  =  1 . 0
( d )

� A C  =  1 . 0
� A C  =  0 . 5

� A C  =  0

Figure 14. Critical Bjerrum length (`B,c/σ) for the critical points in the binodal curves. The values
for the following parameters were fixed: εA = 0, NT = 100, ZC = +1 and ZA = −1 and (a) εAC = 0,
(b) εAC = 0.5 and (c) εAC = 1.0. Values for η and εB were varied, therefore, N1 = NTη − 1N1

was varied as well. (d) The 3D surfaces for (a–c). Notice that the maximum of `B/σ shown here is
`B/σ = 8.

If there is no specific interaction present, decreasing the polymer charge fraction in-
creases the critical Bjerrum length, as shown earlier in Figure 10. However, after we include
an attractive short-range interaction between the neural segments of the polymer, it is pos-
sible that partially charged polymers may have an even lower critical Bjerrum length than
their fully charged case (see Figure 11). The lower the charge fraction, the more interaction
pairs between the neutral segments; hence, when the interaction strength is strong enough,
such specific interactions may become the dominating force for phase separation.

When increasing εAC, the strength of the short-range interaction between the charged
segments of the polymer and the counterions further lowers the critical Bjerrum length
in comparison to cases in which such interactions are not present. As shown in Figure 12,
such an effect becomes more pronounced as the charge fraction increases, as there are
more such interacting pairs compared to the case of polymers with a lower charge fraction.
Moreover, the results shown in Figure 12 reinforce our earlier findings that (i) the larger the
charge fraction, the lower the critical Bjerrum length and (ii) the larger the N1-parameter
(or equivalently, the k-parameter), the lower the critical Bjerrum length. We may now add
(iii): the larger the εAC-parameter, the lower the critical Bjerrum length.

As an example. Figure 13 presents a case study where two types of specific interactions
are present: εAC = 1.0 and εB = 0.2. The binodal curves are shown for various charge
fractions in the range of [0, 0.6]. As seen from the dependence of the critical point on the
charge fraction, when η < 0.024, phase separation is mainly determined by the attractive
short-range interaction between the neural segments of the polymer, εB, and therefore,
as η increases, the critical Bjerrum length increases and it becomes more difficult for
phase separation to occur. When η > 0.024, phase separation is mainly determined by
electrostatic interaction and εAC, and therefore the critical Bjerrum length decreases as η
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increases. Notice that the competition between the electrostatic interaction and both εAC-
dominated phase separation and εB-dominated phase separation depends on the respective
values of εAC and εB. Therefore, the critical charge fraction (η) separating those two regimes
depends on the values of εAC and εB used in our calculations. This is investigated further
in Figure 14.

Figure 14 presents density plots and a 3D plot to show how the critical Bjerrum length
depends on the charge fraction (η) and specific interactions between the neutral segments
of the polymer, characterized by a strength parameter εB, for three different εAC values:
(a) εAC = 0, (b) εAC = 0.5, and (c) εAC = 1.0. The existence of the two regimes, namely,
electrostatic interaction along with εAC-dominated phase separation and εB-dominated
phase separation, is apparent from the clear non-monotonic dependence of the critical
Bjerrum length on the polymer charge fraction with a sufficiently large εB value. Note that
we consider monovalent counterions in Figure 14. Changing the monovalent counterions
to divalent or multivalent counterions brings the critical Bjerrum length to lower values, as
demonstrated earlier in Figure 6.

As noted earlier, in the case of liquid water at 1 atm, we have `B ∈ [7.0 Å, 8.0 Å]
(see Figure 3), and with σ = 4.0 Å, we have `B/σ ∈ [1.75, 2.0]. In the absence of specific
interactions (εAC = εB = 0), aqueous solutions of the polymers investigated in Figure 14
with monovalent counterions will be in a single phase (no phase separation) because the
critical Bjerrum length for phase separation is well above the accessible range for liquid
water. However, in the presence of specific interactions between the neural segments of the
polymer, phase separation could take place for partially charged polymers if εB becomes
sufficiently large.

4. Conclusions

In the present work, the phase behavior of partially charged ion-containing polymers
in polar solvents is studied by further developing a liquid state theory with local short-range
interactions. This work is based on the LS theory previously developed for fully-charged
polyelectrolyte solutions. Specific interactions between charged groups of the polymer and
counterions, specific interactions between neutral segments of the polymer, and specific
interactions between charged segments of the polymer are incorporated into the liquid
state theory by an extra Helmholtz free energy from the PC-SAFT model. The influence
of the sequence structure of the partially charged polymer is modeled by the number of
connections (the N1-parameter) between bonded segments. The effects of chain length (NT),
charge fraction (η), valencies of charged groups and counterions (ZA and ZC), and specific
short-range interactions (εA, εAC, and εB) are explored.

Concerning the effect of polymer chain length and charge fraction, we report for the
first time that (i) the critical Bjerrum length (`B,c) decreases as the chain length increases
and follows a scaling relation of `B,c ∼ η−1, and (ii) for NT > 104 and in the absence
of specific interactions, the critical Bjerrum length (`B,c) decreases as the charge fraction
increases and follows a scaling relation of `B,c ∼ η−3/4. The linear dependence of the
critical Bjerrum length on N−1

T , i.e., `B,c/σ = aN−1
T + b, where a and b are fitting parameters

of the polymer following N−1
T , is rather general and holds for a variety of NT, η, ZA and ZC,

the N1-parameter, and strengths of the specific interactions εA, εAC, and εB. These scaling
relations allow for simple and useful predictions of the critical Bjerrum length for solution
phase behavior.

In addition to the two scaling relations found in the present study, the results pre-
sented in this work elucidate in detail the influence of the valencies of charged groups
and counterions, monomer sequence distribution (characterized by the N1-parameter, and
specific interactions between the neural segments of the polymer (as a primitive model
for hydrophobic interactions) and between the charged groups of the polymer and coun-
terions (as a primitive model for ion-binding interactions). Increasing the valence of the
counterions reduces the critical Bjerrum length and expands the phase-separated region,
thus promoting phase separation. Increasing the N1-parameter without changing other
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parameters promotes phase separation; therefore, for partially charged polymers of a given
charge fraction, the block-type of monomer sequence distribution is more prone to phase
separation. Increasing the strength of specific interactions between the charged groups of
the polymer and counterions promotes phase separation, and the larger the εAC-parameter,
the lower the critical Bjerrum length.

If there is no specific interaction present between the neural segments of the polymer,
decreasing the polymer charge fraction monotonically increases the critical Bjerrum length.
However, when including an attractive short-range interaction between the neural seg-
ments of the polymer, it is possible that partially charged polymers may have an even lower
critical Bjerrum length than their fully charged case. The lower the charge fraction, the
more interaction pairs between the neutral segments; hence, when the interaction strength
is strong enough, such specific interactions may become the dominating force for phase
separation. For partially charged polymers with specific interactions between neutral seg-
ments, there may exist two regimes in their phase behavior, namely, electrostatic interaction
and εAC-dominated phase separation and εB-dominated phase separation. In such cases,
the critical Bjerrum length may show a non-monotonic dependence on the polymer charge
fraction, in which it first increases with increasing charge fraction in the εB-dominated
phase separation regime, then decreases with further increasing charge fraction in the
electrostatic interaction and εAC-dominated phase separation regime.

To facilitate easy access to the theoretical model and numerical results presented in
this work, a computational App for the salt-free case is presented and provided in the
Supplementary Materials. This App allows easy computation of the binodal curve and
critical point by specifying values for the relevant model parameters.

For future work, it remains necessary to compare the theoretical predictions of this
work with results from experiments or computer simulations. Our results on the effect
of chain length agree with earlier findings on the effect of chain length on the phase
behavior of fully-charged polyelectrolytes, and our results on the qualitative effect of
charge fraction and that of the specific interactions are more or less expected. However,
on a more quantitative level, we are not aware of any existing experimental or computer
simulation studies that address these effects. We encourage research groups with such
expertise to investigate the two scaling relations reported in this work.

In addition, it would be interesting to look into the structural details of the phase
behavior of ion-containing polymers. The present work does not provide such structural
information, as it is based on a mean-field formulation. It is possible to extend the work
to a DFT formulation, similar to that of Xu et al. [63], who investigated the structural and
responsive properties of grafted polyanion chains subjected to the effects of dispersion
interaction and salt. It is foreseeable that by extending the present research to a DFT
formulation, it could be possible to explore the rich structural properties of ion-containing
polymers with dispersion interactions and end-tethered weak ion-containing polymers at
interfaces. The study of weak ion-containing polymers that are confined in an interface is a
challenging field, although a very interesting one [125].
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Abbreviations

The following abbreviations are used in this work:

BMCSL Boublík–Mansoori–Carnahan–Starling–Leland
cDFT classical Density Functional Theory
GUI App Graphical User Interface Application
HPAM partially hydrolyzed polyacrylamide
IUPAC International Union of Pure and Applied Chemistry
LCST Lower Critical Solution Temperature
LS Liquid State
MSA Mean-Spherical Approximation
PAA Poly(acrylic acid)
PCEs Polycarboxylate (ether/ester)-based Superplasticizers
PC-SAFT Perturbed-Chain Statistical Associating Fluid Theory
PMAA Poly(methacrylic acid)
TPT1 first-order thermodynamic perturbation theory
TRUE Transparent, Reproducible, Usable by others, and Extensible
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