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Salivary dysfunction commonly occurs in many older adults and is considered a

physiological phenomenon. However, the genetic changes in salivary glands during

aging have not been characterized. The present study analyzed the gene expression

profile in salivary glands from accelerated aging klotho deficient mice (klotho−/−,

4weeks old).Microarray analysis showed that 195 geneswere differentially expressed

(z-score > 2 in two independent arrays) in klotho null mice compared towild-typemice.

Importantly, alpha2-Na+/K+-ATPase (Atp1a2), Ca2+-ATPase (Atp2a1), epidermal

growth factor (EGF), and nerve growth factor (NGF), which have been suggested to

be regulators of submandibular salivary gland function, were significantly decreased.

When anetworkwas constructed from thedifferentially expressed genes, proliferator-

activated receptor-γ (PPAR γ), which regulates energy homeostasis and insulin

sensitivity, was located at the core of the network. In addition, the expression of genes

proposed to regulate various PPAR γ-related cellular pathways, such as Klk1b26,

Egfbp2, Cox8b, Gpx3, Fabp3, EGF, and NGFβ, was altered in the submandibular

salivary glands of klotho−/−mice. Our results may provide clues for the identification

of novel genes involved in salivary gland dysfunction. Further characterization of these

differentially expressed genes will be useful in elucidating the genetic basis of aging-

related changes in the submandibular salivary gland.
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1 | INTRODUCTION

Salivary glands are involved in the secretion of saliva, which

participates in the protection and hydration of mucosal structures

within the oral cavity, oropharynx, and esophagus, the maintenance of

tooth integrity, antimicrobial defense, and protection from chemical

and mechanical stress (Atkinson & Wu, 1994; Mandel, 1989). Saliva

contains biologically active peptide and hormones, including digestive

enzymes such as amylase, anti-microbial substances such as secretory

immunoglobulins, histatins, and growth factors such as epidermal

growth factor (EGF) and nerve growth factor (NGF) (Nori et al., 2008).

Aging affects the morphology and function of salivary glands, resulting
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in manifestations of dry mouth in elderly people (Barka, 1980). Many

previous studies have described age-related differences in the rate of

flow and volume of saliva, as well as the contents of saliva (Melvin,

Yule, Shuttleworth, & Begenisich, 2005; Nagler, 2004). In addition,

age-related changes in the salivary glands are consistently associated

with a reduction of total and/or secretory protein synthesis (Nakamoto

et al., 2007). However, the extent to which genetic alterations affect

the function of these glands is unclear.

The klotho gene plays a critical role in regulating aging and the

development of age-related diseases in mammals. Life span is

extended by up to 30% in transgenic mice over-expressing the klotho

gene compared with wild-type mice (Kuro-o, 2009; Kuro-o et al.,

1997). Klotho-deficient phenotypes include osteoporosis, skin atro-

phy, ectopic calcification, pulmonary emphysema, hypogonadism,

impaired bone mineralization, and neurodegeneration, which are also

observed in the human aging phenotype (Kuro-o et al., 1997). Many

researchers have recently demonstrated an association between single

nucleotide polymorphisms of the klotho gene and age-related

disorders, including coronary artery disease, senile osteoporosis, and

stroke (Kawano et al., 2002; Ogata et al., 2002).

A few reports have shown a lack of eosinophilic granules and

diminished granular ducts and lobes in the submandibular salivary

glands of klotho-deficient mice (Suzuki, Amizuka, Noda, Amano, &

Maeda, 2006). In addition, histological observations have shown that

the numbers of NGF- and EGF-immunopositive ducts in the

submandibular salivary gland are decreased in klotho-deficient mice

compared to wild-type mice (Suzuki et al., 2006). However, these gene

depletion studies have not provided insights on the regulation of

salivary gland function during aging.

The purpose of the present study was to evaluate and compare

differences in gene expression associated with aging in the subman-

dibular salivary gland of klotho-deficient mice. We used DNA

microarray platforms in combination with functional signaling pathway

analysis in this study. In addition, the data provided a network for

investigating PARP-γ transcriptional programs in the submandibular

salivary gland in klotho-related aging. These differentially expressed

geneswill contribute to an understanding of the genetic basis of klotho

and the elucidation of the mechanism of biological behavior in the

submandibular salivary gland.

2 | MATERIALS AND METHODS

2.1 | Animal models and genotyping assay for klotho
gene

Experiments were performed in accordance with the Animal Research

Institute Committee of Chosun University for the Care and Use of

Laboratory Animals. All mice were generated by mating pairs of

heterozygous klotho mice (Kl±) generously provided by Dr. Kuro-o

(University of Texas Southwestern, Dallas, TX, USA), and their

genotypes were verified by PCR using genomic DNA extracted from

the tail. For genotyping PCR analysis, 1–2mm sections of tail were

dissolved in 0.1 ml of 50mM Tris (pH 8.0), 100mM EDTA, 0.5% SDS,

and 0.5 mg/ml proteinase K (Roche) solution at 55°C for at least 1 hr

with vigorous shaking. The DNA was purified by phenol/chloroform

extraction followed by ethanol precipitation and then dissolved in

0.1ml of TE solution.Weused the following specific primers: wild-type

klotho, forward 5′-TTGTGGAGATTGGAAGTGGACGAAAGAG-3′ and

reverse 5′-CTGGACCCCCTG-AAGCTGGA-GTTAC-3′; klothomutant,

forward 5′-TTGTGGAGATTGGAAGTGGACGAAAGAG-3′ and re-

verse 5′-CGCCCCGACCGGAGCTGAGA-GTA-3′. The GAPDH PCR

primers were forward 5′-CCAAGGTCATCCATGACAACT-3′ and

reverse 5′-GCATTGCTGATGATCTTGAGGCTG-3′. These primers

were expected to produce 815 bp (WT) and 419 bp (klotho-deficient)

amplification products. The PCR conditions were as follows: denatur-

ation at 94°C for 5min, 30 cycles of 94°C for 30 s, annealing at

60°C for 1min, and extension at 72°C for 45 s, and a final extension at

72°C for 10min.

2.2 | Cell culture

Human submandibular gland cells (HSG) were maintained in complete

medium comprising Dulbecco's modified Eagle's medium (DMEM),

10% fetal bovine serum, 100 units/ml penicillin and 100 μg/ml

streptomycin. Immortalized human salivary gland acinar cells (AC)

were cultured on keratinocyte serum-freemedium (K-SFM, Gibco/Life

Technologies, Grand Island, NY) containing 100 unit/ml penicillin and

100 μg/ml streptomycin. The cells were maintained at 37°C in an

humidified 5% CO2/95% air atmosphere.

2.3 | Tissue preparation and histological examination

At 4 weeks of age, all animals were killed under ether anesthesia, and

the submandibular salivary glands were dissected. The submandibular

salivary gland tissue and tonguewere fixed in 10% formalin, embedded

in paraffin and cut into 4 μm-thick sections for staining. All sections

were stainedwith hematoxylin and eosin. Sections of tonguewere also

stained with von Kossa, Elastin, and Congo Red to detect histological

alterations such as calcification, fibrosis, and amyloid accumulation.

2.4 | RNA purification and RT-PCR

Total RNA was isolated from the salivary glands of wild or klotho−/−

mice (4 weeks old) using TRIzol reagent (Invitrogen, Calsbad, CA). To

avoid genomic DNA contamination, the extracted RNA was purified

using an RNeasy kit (Invitrogen). The quantity and quality of the RNA

were determined by measuring the optical density (OD) at 260 and

280 nm. A 2 µg of RNA were used for cDNA synthesis using an oligo-

(dt)15 primer and M-MLV reverse transcriptase. The reverse transcrip-

tion (RT) reaction included an initial 10 min incubation at room

temperature, followed by 60min at 42°C and 10min at 70°C to

terminate the reaction. Subsequently, a 2 µl aliquot of cDNA was PCR

amplified in a total volume of 25 µl containing 2.5 µl of 10 × PCR buffer

(0.2M Tris-HCl (pH 8.4), and 0.5M KCl), 0.2 mM dNTP mix, 1.5 mM

MgCl2, 0.2 µM each primer, and 1.25 units of Platinum Taq DNA

polymerase (Invitrogen). The thermal cycler profile was 95°C for 5min,
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followed by 30 cycles of 95°C for 30 s, 55–60°C for 30 s, and 72°C for

30 s, with a final extension step at 72°C for 10min. The specific

primers for RT-PCR are described in Table 1. The PCR products were

then electrophoresed on a 2% acrylamide gel and visualized using a gel

documentation system (Bio-Rad, Hercules, CA).

2.5 | Microarray raw data preparation and statistical
analysis

Total RNA was amplified and purified using an Ambion Illumina RNA

amplification kit (Ambion, Austin, TX) to obtain biotinylated cRNA

according to the manufacturer's instructions. The array signal was

detected using an Illumina MouseRef-8 v2 Expression BeadChip

(Illumina, Inc., San Diego, CA) following the bead array manual. The

arrays were scanned with an Illumina bead array reader confocal

scanner according to the manufacturer's instructions. Array data

export processing and analysis were performed using Illumina

BeadStudio v3.1.3 (Gene Expression Module v3.3.8, Illumina, Inc.).

The quality of hybridization and overall chip performance were

monitored by visual inspection of both internal quality control

checks and raw scanned data. The raw data were extracted using the

software provided by the manufacturer (Gene Expression Module

v1.5.4, Illumina, Inc., San Diego, CA). The array data were filtered by

a detection p-value <0.05 (similar to signal to noise) in at least 50%

samples (we applied a filtering criterion for data analysis; a higher

signal value was required to obtain a detection p-value <0.05). The

selected gene signal value was transformed by logarithm and

normalized by the quantile method. Comparative analysis between

the control group and test group was performed using fold-change.

Biological ontology-based analysis was performed using the Panther

database (http://www.pantherdb.org).

2.6 | Functional and network analysis

We used Ingenuity Pathway Analysis (Ingenuity Systems, Inc.,

Redwood city, CA) to determine the statistically significant pathways,

functions, and networks in which the identified genes regulated by

klotho may be involved. Fisher's exact test was used to identify the

significant functions and pathways represented within the respective

gene sets.

TABLE 1 Primer sequences for RT-PCR validation of the microarray data

Gene Primer sequences (5′-3′) Gene Primer sequences (5′-3′)

Aifm 2 F: CCTGGCAAGTTTAACGAGGTGTC FGFR1 F: GCGACTTCCATAGCCAGATGGCTG

R: CCTGGCAAGTTTAACGAGGTGTC R: TCGCCAAGTGGTTTGCCTAAGACC

Atp2a1 F: GAGCAGTTCGAAGACCTGCTTGTG FGF15 F: ATACGGGCTGATTCGCTACTCGGA

R: CCTGTCAGGATGGACTGGTCGA R: TGAACGGATCCATGCTGTCAC

Atp1a2 F: TGCCATGGATGACCACAAGCTGTC FGF23 F; GTCTGCAGCTTGGGCACTGCTA

R: ACTACAGCCGCTAGCACGATACC R: CACCAGGTAATGCTTCTGCGA

Aquaporin 3 F: AAGCTGCCCATCTATGCACTGGCA Gpx3 F: AGTATGGAGCCCTCACCATCGA

R: CAGTCGTGAAGACTTCTGAGC R: CGCCTCATGTAAGACAGGATGTCC

Aquaporin 4 F: GCAGTGCTTTGGCCACATCAGTGG Muc19 F: TGCTGGTTCCACATCTGCAAGAGC

R: GTTCGTTGGAATCACAGCTGGCA R: TTCGGTACAGGTACACTGATGGCA

Aquaporin 5 F: CATTGCTGGAGCAGGCATCCTGTA Klk1b26 F: GTCGACCAGTGTGAGGTTTGGCTG

R: CACGATCGGTCCTACCCAGAAGAC R: GCCATCTTGTGGGTGTAATGCTGC

Cidea F: CCTGCAGGAACTTATCAGCAAGAC Klotho (Kl) F: TGACCCGAATGTCTATCTGTGGGA

R: TCGTGGCTTTGACATTGAGACAGC R: GCACGATAGGTCATGTTCCGTGTG

CTGF F: TGAGTCCTTCCAAAGCAGCTGCAA Lcn2 F: TGGCAGGCAATGGGCTCCAGAA

R: AACTCGGGTGGAGATGCCCATTCC R: TGGCGAACTGGTTGTAGTCCGTG

Cxcl9 F: GGGCATCATCTTCCTGGAGCAGTG Muc1 F: GCAGTTCCTTAGCATCGACTACCA

R: ACATTTGCCGAGTCCGGATCTAGG R: GAGGTGCTACTATGGTCTGGAG

Cox8b F: TGCGAAGTTCACAGTGGTTCCCAA NGFb F: AGCATGGTGGAGTTTTGGCCTGTG

R: CAAGTGGGCTAAGACCCATCCTGC R: GTCCACAGTGATGTTGCGGGTCTG

EGF F: ACGGTCAGGATTAACCTCCATCCA Trpv1 F: GCCTGAAGCAGTTTGTCAATGCCA

R: GCTGCATCCACCATTGTCAGGCGA R: ACGAACTTGGTGTTGTCAGCTGTG

EGFBP2 F: GTCGACCAGTATGAGGTTTGGCTG Ucp1) F: GACACTGCCAAAGTCCGCCTTCAG

R: TGGCACAGTTCTCATTGGGCA R: TGTAGGCTGCCCAATGAACACTGC

FABP3 F: AGTCACTCGGTGTGGGCTTTGCCA VCAM1 F: CCAAGTCCGTTCTGACCATGGAGC

R: GAGTGCTCACCACACTGCCATGAG R: TCATGAGCTGGTCACCCTTGAA
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3 | RESULTS

3.1 | Histological differences in the salivary glands of
klotho-deficient mice.

First, to confirm the depletion of klotho gene expression in the salivary

glands of Klotho mutant mice, we performed RT-PCR analysis. As

shown in Figure 1a, the mRNA expression levels of Klotho were

suppressed in the salivary glands of Klotho mutant mice compared

with wild-type mice.

Histological analysis of the salivary glands ofwild-type and klotho-

deficient mice was performed at 4 weeks of age. In the klotho

wild-type and hetero mice, normally duct cells were found in the

submandibular salivary gland, and in particular, there were many

granular convoluted tubules with abundant granules. Compared to

wild-type mice, klotho-deficient mice had less tubules and connective

tissue in the submandibular salivary gland. In addition, the subman-

dibular salivary gland was composed of serous acini and mucous acini

in the wild-type mice. However, in the klotho-deficient mice, the

submandibular salivary gland was composed of only mucous acini, and

no serous acini were present (Figure 1b).

3.2 | Strategy to identify genes related to salivary
gland dysfunction in klotho−/− aging mice

The aim of this studywas to identify salivary gland dysfunction-related

gene alterations in accelerated aging klotho−/) mice. The sample sets

were as follows: klotho+/+ (WT), klotho± (HT), klotho−/− (MT). The

gene expression data from all samples were obtained, quality control

steps were performed, and the data were analyzed using Illumina

BeadStudio v3.1.3. Genes related to submandibular salivary gland

dysfunction in klotho−/− mice were identified by performing gene

expression analysis followed by Gene Ontology (GO) analysis.

Differential gene expression analysiswas performed by comparing

the klotho+/+ and klotho± mice or klotho+/+ and klotho−/− mice. All

genes with p-value <0.05 and fold-change in expression ≥2.0 were

considered statistically significant. The majority of genes displayed

changes in expression levels in the submandibular salivary gland in

klotho −/− compared with klotho wild-type. The expression levels of

64 genes decreased by more than twofold in klotho −/−, whereas 67

genes exhibited increases in expression of greater than twofold in

klotho−/− mice, based on statistical group comparison between the

wild-type and klotho-deficient mice. The statistical analysis of the data

generated a set of 131 genes, and the top 20 up- or down-regulated

genes are shown in Tables 2 and 3. In the Venn diagram, among a total

of 195 genes (klotho+/+ vs. klotho−/−), 64 genes were present in

klotho+/+ versus klotho± mice (Figure 2a).

To further investigate the biological function classifications of the

genes related to submandibular salivary gland dysfunction in klotho-

deficientmice, we performedGO analysis of all sets of genes regulated

in klotho WT versus klotho−/− mice. Among the identified genes,

signal transduction (16%), protein metabolism and modification (13%),

lipid, fatty acid and steroid metabolism (11%), immunity and defense

(10%), and transport (8%) were over-represented (Figure 2b). Molecu-

lar function analysis revealed that, in klotho−/− mice, many pathway

genes were differentially expressed, especially in the transferase (9%),

oxidoreductase (9%), protease (9%), receptor (7%), and transcription

factor (6%) categories (data not shown).

FIGURE 1 Histological features of the salivary gland in klotho−/− mice. (a) PCR genotyping of klotho-deficient mice. Genomic DNA from
mouse tails was used to amplify the fragments derived from the wild-type and mutant alleles using two specific primers. (b) Staining with
hematoxylin and eosin (×12.5 and ×100 magnification). Photomicrographs of the salivary glands in klotho wild-type (kl+/+), hetero (kl±), and
klotho-deficient mice (kl−/−). SM, submandibular gland; SL, sublingual gland; P, parotid gland
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3.3 | Validation of the microarray results

Quantitative reverse transcription PCR (qRT-PCR)was used to validate

the alterations in gene expression detected in klotho−/− mouse

submandibular tissues using microarray analysis. The mRNA expres-

sion levels of six selected genes in submandibular tissues from

wild-type and klotho-deficient mice were showed by RT-PCR analysis.

The mRNA expression levels of the Egf, Ngf, Atp1a2, Atp2a1, and

Gpx3 genes significantly decreased in klotho-deficient mice compared

with wild-type mice. However, the Cxcl9 and Ctgf genes significantly

increased in klotho-deficient mice (Figures 3a and 3b). Immunoblotting

constantly showed that klotho and ATP1α2 were upregulated in

submandibular tissues of wild-type mice. The level of CTGF protein

was downregulated in wild-type mice compared with klotho-deficient

mice (Figure 3c).

3.4 | Ingenuity pathway analysis in klotho−/− mice
submandibular salivary dysfunction

Ingenuity pathway analysis (IPA) was performed on all genes identified

as regulated in the submandibular salivary gland in klotho−/− mice.

Fisher's exact test was applied, and we identified the top 20 significant

canonical pathways based on p-value <0.05 and a threshold value of

log (p-value) of 0.05. The significant pathways, which included fatty

acid metabolism, calcium signaling, AMPK signaling, endoplasmic

reticulum stress pathway, glycerolipidmetabolism, and type II diabetes

mellitus signaling, are shown in Figure 4. Themost significant canonical

pathwaywas energymetabolic signaling, followed by lipid metabolism,

glycerolipid metabolism, hepatic fibrosis, and differential regulation of

cytokine production in intestinal epithelial cells. Among the genes

belonging to energy metabolic signaling, peroxisome proliferator-

activated receptor gamma (PPAR γ), which is a ligand-activated

transcription factor that mainly regulates genes responsible for cellular

differentiation, development, fatty acid (FA) storage, and energy

metabolism, was significantly differentially expressed between klotho

+/+ and klotho−/− mice. The expression of this gene was 2.4-fold

lower in klotho−/− mice compared with klotho+/+ mice (Table 4). We

specifically focused on several genes linked to the PPAR γ networks.

Gene network analysis also revealed overlapping network connectivity

for 42 of the differentially expressed genes in the klotho−/−

submandibular gland (Figure 5).

3.5 | Gene expression of the PPAR γ pathway in the
klotho−/− salivary gland

PPARs mainly control the expression of gene networks involved in

adipogenesis, lipid metabolism, anti-inflammation, and the mainte-

nance of metabolic homeostasis (Echeverría, Ortiz, Valenzuela, &

Videla, 2016). To further substantiate the differences in the DNA

microarrays and the expression levels of PPAR γ and genes related to

the PPAR γ pathway, we performed RT-PCR and Western blot

analysis. The mRNA and protein of PPAR γ were down-regulated in

TABLE 2 Top 20 genes differentially up-regulated in the salivary gland of klotho wild-type mice versus klotho-deficient mice

Refseq Gene symbol Fold change Regulation Gene description

NM_011414 SLPI 34.34 Up Antileukoproteinase

NM_027222 2010001M09Rik 9.64 Up RIKEN cDNA 2010001M09 gene

NM_011066 PER2 8.21 Up Period circadian protein homolog 2

NM_001012 MUP20 6.22 Up Major urinary protein 20

NM_008647 MUP2 5.68 Up Major urinary protein 2

NM_026929 CHAC1 5.67 Up Cation transport regulator-like 1

NM_198091 USP2 5.46 Up Ubiquitin carboxyl-terminal hydrolase 2

NM_029720 CRELD2 4.38 Up Cycteine-rich with EGF-like domain protein 2

NM_013650 S100A8 4.03 Up S100 calcium-binding protein A8

NM_008039 FPR2 3.93 Up Formyl peptide receptor 2

NM_011136 POU2AF1 3.64 Up POU domain class 2-associating factor 1

NM_010220 FKBP5 3.64 Up FK506-binding protein 5

NM_001039 COQ10B 3.57 Up Coenzyme Q10 homolog B

NM_010217 CTGF 3.50 Up Connective tissue growth factor

NM_025290 RSPH1 3.18 Up Radial spoke head 1 homolog

NM_008491 LCN2 3.13 Up Lipocalin 2

NM_009787 PDIA4 3.12 Up Protein disulfide isomerase family A

NM_031188 MUP1 2.93 Up Major urinary protein 1

NM_009251 SERPINA3G 2.82 Up Serine protease inhibitor A3G

NM_007812 CYP2A5 2.68 Up Cytochrome P450, family 2, subfamily a, polypeptide 5
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klotho-deficient submandibular tissues (Figure 6a). PPAR γ-related

genes involved in “signaling transduction,” especially oxidative

phosphorylation (Cox8b), proteolysis (Klk1b26 and Egfbp2), ion

transport (Atp1α2 and Atp2α1), and stress response (Gxp3), were

down-regulated. By contrast, the expression of genes (Lcn2, IL-10, and

IL-1β) involved in “small molecular transport and cytokine” was

increased in klotho−/−mice (Figure 6b). In addition, several key players

in the water channel (Aqp3, Aqp4, and Aqp5) and endocrine signaling

(FGF15 and FGF23) were differently regulated in klotho-deficient

submandibular tissues (data not shown). The changes in the expression

of TLR5, TLR7, TLR9, and NODR2, toll-like receptor (TLR) genes that

play a key role in the innate immune system, were also validated

(Figure 6c). No significant changes were seen in the expression of

TLR2, TLR3, TLR4, and TLR7.

To investigate the molecular mechanism underlying the PPARG

function in klotho overexpressed AC and HSG cells, the mRNA

expression levels of ATP1α2 and ATP2α1, a known transcriptional

target of PPARG, was analyzed.We observed higher levels of klotho in

the klotho-transfected cells compared with the control cells. Remark-

ably, the overexpression of klotho caused increased expression of

ATP1α2 and ATP2α1 mRNA in AC and HSG cells (Figure 6d).

We next evaluated the effect of the PPARG antagonist BADGE in

klotho-overexpressed HSG cells. Results revealed that Klotho induced

the expression of target proteins of PPARG such asSCD, ATP2α1, and

CIDEA, compared to control cells. In this study, the expression of SCD

and ATP1α2 partially inhibited by PPARG antagonist BADGE

treatment (Figure 6e). However, BADGE did not affect CIDEA

expression in klotho overexpressed HSG cells. These results indicated

that use of a PPARG antagonist partly affected the mechanisms of

klotho-mediated fatty acid and/or water channel.

3.6 | Histological differences in the tongues of
klotho-deficient mice

To investigate the effect of salivary gland dysfunction on tongue

morphology, we analyzed the tongues of klotho+/+ and klotho−/− mice

(4 weeks). Histological sections of tonguewere stained with hematoxylin-

eosin and subjected to von Kossa staining, elastin staining, Congo red

staining, and TUNEL staining. As illustrated in Figure 7a, excessive

calcification was observed in the tongue muscle of klotho−/− mice.

Therefore, increased elastin fiber in the blood vessel wall and amyloidosis

were observed in the tongues of klotho−/−mice compared to klotho+/+

mice. Tongue sections were then analyzed by TUNEL for apoptotic cells.

The klotho−/− mice exhibited an increased number of TUNEL-positive

cells, and thequantitativeanalysisofTUNEL-positivecells in thedorsal and

ventral portions of the tongue is summarized in Figure 7b.

4 | DISCUSSION

We have performed gene profiling of the salivary gland to provide a

database for the interpretation of age-dependent alterations. Because

TABLE 3 Top 20 genes differentially down-regulated in the salivary gland of klotho wild-type mice versus klotho-deficient mice

Refseq Gene symbol Fold change Regulation Gene description

NM_023186 CHIA −20.30 Down Chitinase, chitin, and chitotriose degradation

NM_010644 KLK1B26 −17.33 Down Kallikrein 1-related peptidase b26

NM_007751 COX8B −15.35 Down Cytochrome c oxidase subunit VIIIB

NM_009463 UCP1 −14.85 Down Uncoupling protein 1, proton carrier

NM_010642 KLK1B21 −14.29 Down Kallikrein 1-related peptidase b21

NM_010915 KLK1B4 −14.00 Down Kallikrein 1-related peptidase b4

NM_013645 PVALB −13.44 Down Parvalbumin

NM_021285 MYL1 −12.04 Down Myosin light chain 3 skeletal muscle isoform

NM_010116 KLK1B9 −11.48 Down Kallikrein 1-related peptidase b9

NM_009606 ACTA1 −11.17 Down Actin, alpha skeletal muscle

NM_010115 EGFBP2 −10.92 Down Epidermal growth factor binding protein type b

NM_007702.1 CIDEA −10.21 Down Cell death-inducing DFFA-like effector a

NM_198669 PRB1 −9.73 Down Basic salivary proline-rich protein 1

NM_010174 FABP3 −9.47 Down Fatty acid binding protein 3

NM_001004 Gm5154 −8.96 Down Predicted gene 5154

NM_011174 PRH1 −8.73 Down Proline-rich protein haelll subfamily 1

NM_010645 KLK1B1 −8.16 Down Kallikrein 1-related peptidase b1

NM_009394 TNNC2 −7.86 Down Troponin C type2

NM_031499 PRP2 −7.17 Down Mus musculus proline-rich protein 2

NM_001024 PRPMP5 −6.44 Down Proline-rich protein MP5
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older healthy individuals who do not use medications exhibit salivary

gland dysfunction, such as a lower resting salivary flow rate, compared

with younger individuals, there is an urgent need to detect and identify

proteins that regulate salivary gland function under aging conditions. In

this investigation, we analyzed gene expression in mouse submandib-

ular glands using cDNAmicroarray and assessed themicroarray results

by semi-quantitative RT-PCR in accelerated aging klotho-deficient

mice. The semi-quantitative RT-PCR results for six genes were largely

consistent with the results of the microarray analysis. Therefore, the

results for the large number of genes in the cDNA microarray analysis

may be useful for comparing gene expression in the salivary gland

between wild-type and klotho-deficient mice.

The submandibular salivary glands have been considered an age-

stable organ (Ramirez & Soley, 2011). However, we and others have

reported that submandibular salivary glands in accelerated aging klotho-

deficient mice show a loss of granular ducts andmucous acini compared

to wild type mice (Suzuki et al., 2006). Except for a loss of ducts in the

submandibular salivary gland, we observed a comparatively stable

structure of the submandibular gland, parotid, and sublingual gland in

aging klotho-deficient mice. The mouse submandibular gland contains

various biological molecules such as epidermal growth factor (EGF),

nerve growth factor (NGF), renin, kallikreins, and proteases (Atkinson &

Wu, 1994; Sabbadini &Berczi, 1995). EGF andNGFhave been reported

to be biosynthesized in granular convoluted tubule (GCT) cells of the

FIGURE 2 Gene ontology (GO) analysis of the altered genes in the submandibular gland of klotho-deficient mice. (a) Venn diagrams
showing the number of genes identified as genuinely regulated in klotho wild-type versus klotho-deficient mice. (b) The differentially
expressed transcripts mapped to numerous biological processes of the hierarchical GO system. The gene expression ratio (≥2-fold) was
evaluated from gene expression profiles in the submandibular glands of wild-type and klotho-deficient mice
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FIGURE 3 Comparison of gene expression in wild-type and klotho-deficient mice. (a,b) Total RNAs were extracted from submandibular
gland tissues isolated from individual mice. cDNA was synthesized by reverse transcription-polymerase chain reaction (RT-PCR). mRNA levels
were normalized to GAPDH. The bar graph represents expression relative to GAPDH. The data are reported as the mean ± SD of three
independent experiments. *p < 0.05, **p < 0.001. (c) Expression of klotho, ATP1α2, and CTGF protein in submandibular gland tissues of
wild-type and klotho-deficient mice. The total protein was extracted, and klotho, ATP1α2, and CTGF protein levels were measured by
Western blot, respectively. Actin was used as a loading control

FIGURE 4 Ingenuity Pathway Analysis of the genes that were regulated in the klotho-deficient salivary gland. (a) The significance of each
function or canonical pathway was determined based on the p-values determined using Fisher's exact test and a threshold less than 0.05. The
top 20 possible functions and canonical pathways are shown
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submandibular ducts and secreted in the saliva ofmice (Gresik, 1994). A

previous study showed that the granular ducts of the salivary glands

exhibited remarkably decreased immunoreactivities forNGFandEGF in

klotho-deficient mice (Suzuki et al., 2006). Interestingly, we also

confirmed that the expression of EGF and NGF was inhibited in the

submandibular glands of klotho-deficient mice.

Our data analysis suggested that ATP1α2 and ATP2α1/SERCA1,

subtypes of Na+/K+-ATPase and Ca2+ATPase, were downregulated in

the submandibular salivary glands of aging Klotho-deficient mice. In

the salivary glands, ATP1α2, a subtype of Na+/K+-ATPase, is localized

mainly at basal infolding of the striated duct and excretory ducts,

though it is also weakly expressed on the membranes of granular

convoluted tubules (GCT) and on acinar basolateral membranes

(Sims-Sampson, Gresik, & Barka, 1984). The activity of ATP1α2

establishes transmembrane ion gradients and is essential to cell

function and survival (De Lores Arnaiz & Ordieres, 2014).

However, the link between disruption of Na+/K+-ATPase activity

and salivary gland dysfunction in aging remains to be clarified. The

TABLE 4 Identification of differentially expressed transcription factors in the salivary gland of klotho-deficient mice

Transcription regulator p-value of overlap Regulation z-score Predicted activation state

PPARG 1.61E-09 −2.416 Inhibited

PPARA 1.70E-08 −2.967 Inhibited

NFE2L2 4.79E-06 0.715

CEBPA 1.51E-05 −0.381

MYOD1 7.61E-05 −2.020 Inhibited

FIGURE 5 Network connectivity of differentially regulated genes in the salivary glands of klotho-deficient mice. Ingenuity Pathway
Analysis was applied to genes showing significant dysregulation, with filtering on their relative distance from the mean ratio of the population.
The first main pathway that appeared to be differentially expressed was PPAR γ signaling. Genes belonging to this pathway were significantly
differentially down-regulated
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salivary fluid secretion is dependent on Cl- transport across the apical

membrane of acinar cells. Intracellular accumulation of Cl- requires a

Na+ gradient (Chaib, Kabre, Metioui, Franco, & Dehaye, 1999). Thus,

saliva secretion from the salivary gland may be dependent on Na+/K+-

ATPase activity.

Additionally, in the salivary gland, saliva secretion is initiated by

activation of phospholipase C, generation of inositol 1,4,5 trisphos-

phate (IP3), and release of Ca2+ from the ER to the cytosol. The

cytosolic Ca2+ is taken up by sarco/endoplasmic reticulum Ca2

+-ATPases (SERCA1-3) (Homann, Kinne-Saffran, Arnold, Gaengler, &

Kinne, 2006). The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)

is the active Ca2+ transporter in the sarcoplasmic reticulum (SR), and

regulation of its function is a key mechanism of Ca2+ homeostasis and

depends on the cell type and state of differentiation (Homann et al.,

2006). A significant age-dependent loss in Ca2+-ATPase activity and

Ca2+-uptake rate has been observed specifically in the rat skeletal-

muscle SR (Schöneich, Viner, Ferrington, & Bigelow, 1999). Despite

these changes in aging, whether Ca2+-ATPase (SERCA) affects salivary

gland function in aged mice is unclear. However, in the salivary gland,

cytosolic calcium or sodium reduction may be important for salivary

gland dysfunction during aging as well as in dystrophic pathological

conditions. Further studies are needed to precisely elucidate the

functional significance of changes in the ion efflux pump as well as

salivary gland dysfunction both in aging and in diseases.

We also observed that CXCL9 was increased in the klotho−/−

salivary gland. CXCL9 proteins are predominantly expressed in the

ductal epithelium adjacent to lymphoid infiltrates in the Sjögren's

syndrome salivary gland but are not expressed in the normal salivary

FIGURE 6 Validation of genes expression belonging to the PPAR γ pathway in the salivary glands of mice. mRNA and protein were
extracted from the salivary glands of klotho wild-type (Kl+/+), hetero (Kl±), and klotho-deficient mice (Kl−/−). (a) RT–PCR and Western blot
analysis of klotho and PPARG in klotho wild-type (Kl+/+) and klotho-deficient mice (Kl−/−). (b) The mRNA expression of genes related to the
PPAR γ pathway. (c) Validation of toll-like receptor (TLR) genes. RT–PCR was performed using the primers described in Table 1. (d) Expression
of endogenous ATP1α2 and ATP2α1 (SERCA1) in klotho-overexpressing AC and HSG salivary gland cells. Cells were transfected with klotho
expression plasmids. A total of 48 hr after transfection, total RNA was prepared and subjected to RT-PCR. (e) HSG cells were transfected with
pcDNA3.1-klotho for 24 hr, treated to PPARG antagonist BADGE (30 µM) and incubated for another 20 hr. A Western blot analysis was
performed to assess the PPARG, SCD, ATP1α2, and CIDEA levels
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gland (Ogawa, Ping, Zhenjun, Takada, & Sugai, 2002). Therefore, in our

study, the up-regulation of CXCL9 might reflect a higher proportion of

T cells in aged inflammatory tissue compared with healthy controls.

CXCL9 is a validated biomarker of the development of tissue

dysfunction, suggesting an underlying pathophysiological relation

between the levels of these chemokines and the development of aged

salivary dysfunction.

In our downregulated gene lists (Table 3), we found that several

Kallikrein-related peptidases are strongly downregulated in klotho−/−

salivary glands. Recent studies suggested that activated KLKs may

degrade insulin-like growth factor-binding proteins and extracellular

matrix proteins such as fibronectin, laminin, and type IV collagen (Dong

et al., 2014; Hekim et al., 2010; Linardoutsos, Gazouli, Machairas,

Bramis, & Zografos, 2014). Degradation of extracellular insulin-like

growth factor-binding proteins would increase the concentration of

free insulin-like growth factor, and this could eventually stimulate cell

growth and lifespan extension. In addition, IGF-1 binding proteins are

important is regulation of the IGF-1 axis that also regulates peripheral

glucose metabolism and body fat distribution.

We may suspect that KLKs is important in longevity mechanisms

that link IGF signaling and aging with availability of energy resources.

However, the current knowledge is insufficient to establish a precise,

causal relationship between klotho and KLKs in aging phenotypes to

which they contribute and to understand how biological specificity can

be obtained. A comprehensive study of the expression patterns and/or

function of klotho and KLKs in aging are needed to fill these gaps in the

available knowledge.

Interestingly, IPA revealed that the deregulated genes in the

klotho-deficient mice submandibular gland are involved in a variety

of pathways. Some of the major metabolic pathways are involved

in fatty acid metabolism and calcium signaling, reflecting the

cellular phenotype that accompanies activation of the peroxisome

proliferator-activated receptor. PPAR α and PPAR γ, member of the

nuclear receptor family of transcription factors, play important roles in

lipid and glucosemetabolism, stress, and aging (Berger &Moller, 2002;

Feige, Gelman, Michalik, Desvergne, &Wahli, 2006; Ulrich-Lai & Ryan,

2013). PPAR γ agonists exhibit anti-inflammatory activity by inhibiting

cytokine production in a variety of mouse models for chronic

inflammatory disease and immune disease, including multiple sclerosis

(MS) and uveitis (Antonelli et al., 2014; Beauregard & Brandt, 2003;

Shen et al., 2014). In addition, PPAR γ ameliorates Sjögren's syndrome

through regulation of the expression of cytokines in peripheral blood

and/or salivary gland in non-obese diabetic mice (Li, Xu, Wang, &Wei,

2014). PPAR α and PPAR γ can inhibit IL-1β-induced NO production in

cultured lacrimal gland acinar cells, suggesting that PPARmay be useful

therapeutic target for preventing NO-mediated gland damage.

However, the effects of PPAR α and PPAR γ on the progression of

aged salivary gland dysfunction are not clear.

Many specific genes targeting various metabolic pathways are

modulated by both PPAR γ and PPAR α/γ in the aged klotho−/−

salivary gland (Figure 5). Thus, many genes involved in PPAR-targeted

functions were regulated, including lipid metabolism (CIDEA, SCD, and

Fabp3), chronic kidney disease (FGF23), ion transport (Atp2a1 and

Atp1a2), mitochondrial oxidative phosphorylation (Cox8b), stress

response (Gpx3), inflammation (IL-10 and IL-1β), immunity (TLR2-9

and NODR1-2), and water channel (AQP3-5). Therefore, IPA and gene

network analysis indicated that the nodal point in this cross-talk in

aged salivary gland dysfunction may be PPARα and/or PPARγ. Further

studies are also needed to precisely elucidate the functional

significance of changes in PARPs in aged-salivary gland dysfunction.

FIGURE 7 Histological features of the tongue in klotho−/− mice. (a) Staining with hematoxylin and eosin (×100 magnification).
Photomicrographs of the tongues of klotho wild-type (Kl+/+) and klotho-deficient mice (Kl−/−). FP, filiform papillae; E, epithelium; M, muscle.
Tongue tissue sections were evaluated using von Kossa, Congo red (CR), and elastin staining. (b) TUNEL assays were performed on paraffin
sections from the tongues (dorsal or ventral) of klotho-deficient mice. The TUNEL-positive cells were counted, and the results are expressed.
The data are reported as the mean ± SD of three independent experiments
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The function of the salivary glands is to produce saliva, which is

crucial for digestion, taste, the maintenance of tooth integrity, and

anti-microbial. Previous studies have indicated that anatomical

changes in salivary gland with age is accompanied by atrophy of the

acinar cells and replacement of the normal gland parenchyma with

fibrous and/or adipose tissue (Azevedo, Damante, Lara, & Lauris, 2005;

Choi, Park, Kim, Lim, & Kim, 2013; Syrjanen, 1984). A reduction in

saliva leads to xerostomia or dry mouth. Xerostomia, or chronic dry

mouth, is a common syndrome caused by a lack of saliva that can lead

to severe eating difficulties, dental caries, and oral candida infections

(Gupta, Epstein, & Sroussi, 2006). In our study was designed to

investigate the effects of klotho depletion salivary gland dysfunction

on certain aspects of the morphology and cell proliferation rate of

mouse tongue tissues. We found that the excessive calcification was

observed in the tongue muscle of klotho−/− mice. Therefore,

increased elastin fiber in the blood vessel wall and amyloidosis were

observed in the tongues of klotho−/− mice compared to klotho+/+

mice. We also demonstrated that cell death induces the tongues in

klotho−/− mice and that cell death in tongue may be associated with

calcification and fibrosis in muscle and blood vessel wall. These

observed klotho may be important to salivary gland function, and may

contribute to maintenance of oral health.

In this study, we detected changes in global gene expression

patterns in the submandibular glands of wild-type and klotho-

deficient mouse. This is the first investigation to use genome-wide

screening by cDNA microarray technology to identify changes in

gene expression in aged submandibular gland tissue, which consists

of mixed cell types such as acinar, ductal, stroma, and fatty, in

klotho-deficient mice.
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