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Abstract

Background: The recently updated European LeukemiaNet risk stratification guidelines combine cytogenetic
abnormalities and genetic mutations to provide the means to triage patients with acute myeloid leukemia for
optimal therapies. Despite the identification of many prognostic factors, relatively few have made their way into
clinical practice.

Methods: In order to assess and improve the performance of the European LeukemiaNet guidelines, we developed
novel prognostic models using the biomarkers from the guidelines, age, performance status and select transcript
biomarkers. The models were developed separately for mononuclear cells and viable leukemic blasts from previously
untreated acute myeloid leukemia patients (discovery cohort, N = 185) who received intensive chemotherapy. Models
were validated in an independent set of similarly treated patients (validation cohort, N = 166).

Results: Models using European LeukemiaNet guidelines were significantly associated with clinical outcomes and,
therefore, utilized as a baseline for comparisons. Models incorporating age and expression of select transcripts with
biomarkers from European LeukemiaNet guidelines demonstrated higher area under the curve and C-statistics but did
not show a substantial improvement in performance in the validation cohort. Subset analyses demonstrated that
models using only the European LeukemiaNet guidelines were a better fit for younger patients (age < 55) than for
older patients. Models integrating age and European LeukemiaNet guidelines visually showed more separation
between risk groups in older patients. Models excluding results for ASXL1, CEBPA, RUNX1 and TP53, demonstrated that
these mutations provide a limited overall contribution to risk stratification across the entire population, given the low
frequency of mutations and confounding risk factors.
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Conclusions: While European LeukemiaNet guidelines remain a critical tool for triaging patients with acute myeloid
leukemia, the findings illustrate the need for additional prognostic factors, including age, to improve risk stratification.

Keywords: AML, Acute myeloid leukemia, Prognostic factors, Mathematical modeling, Elderly, Biomarkers, European
LeukemiaNet guidelines, ELN, Model development and validation

Background
The recently revised European LeukemiaNet (ELN-2017)
recommendations for diagnosis and management of
adult patients with acute myeloid leukemia (AML) are
broadly accepted by physicians as a gold standard and
provide guidelines to stratify patients into three outcome
groups: favorable, intermediate, and adverse based on
cytogenetics and mutation status of ASXL1, CEBPA,
FLT3, NPM1, RUNX1, and TP53 [1]. This stratification
scheme provides a simple, yet powerful means to triage
patients for appropriate therapies. Two previous studies
have validated the performance of ELN-2017 guidelines
in patients ≤65 years old with AML [2, 3] and one study
has evaluated the use of non-coding RNA expression to
improve the prognostic significance of the ELN-2017
risk classification [4]. However, the majority of AML pa-
tients are older than the previously studied patients [5],
and clinical prognostic factors such as age and perform-
ance status (PS) were not examined in the previous stud-
ies, nor are these factors included in the ELN-2017
guidelines [1, 6–8]. Similarly, prognostic guidelines, in-
cluding ELN-2017, do not provide recommendations or
guidance about the optimal material for clinical testing.
Prognostic biomarkers have generally been identified,
optimized, and validated using cryopreserved samples
comprised of heterogeneous populations of mononuclear
cells (MNCs). The inter-sample variability in the per-
centage and viability of leukemic blasts may impact con-
tinuous biomarkers like FLT3-ITD allelic ratio (AR) or
transcript expression [6]. Thus, studies are needed to de-
termine if examining a more homogenous population of
malignant cells may improve the precision of risk strati-
fication guidelines, and these studies, including those
examining the current ELN-2017 guidelines, need to be
extended to older patients [5, 9–12].
Therefore, we developed novel prognostic models

using ELN-2017 risk stratification guidelines (ELN2017),
clinical factors such as age and PS, and expression of se-
lect transcripts reported to be associated with prognosis
[6, 13–27]. The models provided continuous risk scores
that were used to define risk stratification thresholds.
The models were developed separately for unsorted
MNCs and highly enriched viable leukemic blasts (VLBs)
to examine the potential prognostic benefit of testing a
more homogenous population of malignant cells, repre-
senting the largest systematic evaluation of paired MNCs

and VLBs from patients with AML to date. These risk
models were then validated in an independent popula-
tion of patients. Given that clinical assays for ASXL1,
CEBPA, RUNX1 and TP53 are not available at every in-
stitution, we also examined the performance of models
without the mutation status of these four genes
(ELN2017-MOD). The results demonstrated the utility of
the ELN-2017 guidelines for younger patients with AML
and caution for applying the same risk strata to older pa-
tients. Integration of the selected expression biomarkers
into models did not markedly improve the model per-
formance. In addition, the findings highlight the need
for new prognostic biomarkers and risk stratification ap-
proaches for older adults with AML.

Methods
Patient materials
A review of SWOG Cancer Research Network leukemia
repository inventory identified 383 out of 1042 previ-
ously untreated AML patients 1) with pretreatment bone
marrow or peripheral blood samples containing ≥3 cryo-
preserved vials and 2) who were enrolled onto trials to
receive cytarabine- and daunorubicin-based induction
chemotherapy and consolidation with curative intent.
These patients were enrolled onto protocols SWOG-
9031, SWOG-9333, S0106 and S0112 and treated as pre-
viously described [28–31]. The included patients were
assigned into two cohorts by simple randomization: a
discovery cohort (n = 190) and a validation cohort (n =
193) by the SWOG Statistical Center [32]. Specimen
handling and cryopreservation were consistent across
the studies per previously described standard operating
procedures [6]. All participants provided written in-
formed consent to participate in correlative research in
compliance with the Declaration of Helsinki, and all
studies were conducted with the approval of Fred Hutch
Institutional Review Board.

Thawing, FACS preparation, analyses, and nucleic acid
extraction
Cryopreserved samples were thawed as previously de-
scribed [6]. A portion of unsorted MNCs was lysed,
while the remainder of the sample underwent
fluorescence-activated cell sorting (FACS) to isolate
VLBs using forward-by-side scatter, DAPI staining and
fluorescently-labeled antibodies to CD45, CD34 and
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CD117 as previously described [6]. RNA and DNA from
unsorted MNCs and VLBs were extracted and quantified
as previously described [6]. Of the randomly selected
samples, 185/190 (97%) and 166/193 (86%) yielded suffi-
cient materials in each cohort for downstream analyses.

Identification of genomic mutation
Internal tandem duplication in FLT3 (FLT3-ITD) and
mutations in NPM1 were assayed via fragment analyses
as previously described [7, 33, 34]. If the wild type FLT3
was not detected in a sample with an ITD, an allelic ra-
tio (AR) of 20 was assigned [35]. MNCs from the discov-
ery cohort were sequenced for mutations in ASXL1,
RUNX1 and TP53 using Wafergen technology by the
British Columbia Cancer Agency (BCCA) per standard
protocols (Additional File, Tables S1A and B). VLBs
from the discovery and validation cohorts were se-
quenced using TruSight™ Myeloid Sequencing Panel
(Illumina) as previously described [36]. Neither BCCA
nor TruSight™ platforms provided optimal coverage for
CEBPA, therefore, targeted MiSeq CEBPA assays were
developed (Additional File, Table S1C). Paired-end short
reads were first aligned to the human genome GRCh37/
hg19 reference assembly using Burrows-Wheeler
Aligner, BWA, v0.7.12 [37]. The resulting alignment data
were further processed based on the best practice of
Genome Analysis Toolkit (GATK, v3.5 https://www.
broadinstitute.org/gatk/). The overview of sequence
alignment statistics was computed for each sample using
Samtools (v1.0 http://samtools.sourceforge.net), and the
sequence coverage was computed for each sample using
GATK DepthOfCoverage. Variants were called per sam-
ple using GATK HaplotypeCaller in GVCF mode, then
jointly as a cohort using GenotypeGVCFs. The resulting
collection of variants, in the form of a VCF file, were an-
notated using Annovar, version 2016Feb01 [38]. The fol-
lowing exclusion filters were applied: synonymous
variants, low quality (Qual score < 150), variant read
depth < 65 [39], variant allele frequency (VAF) < 10%,
and non-exonic loci outside of splice sites. For in-frame
missense amino acid substitutions, additional filters ex-
cluded changes with a FATHMM_score < 0.7 [40] and/
or if ExAC_ALL score was > 0.0001, unless the missense
amino acid change was defined as likely pathogenic or
pathogenic by ClinVar and described as somatic in the
COSMIC databases (https://cancer.sanger.ac.uk) [41].
Sequencing depth for each read loci were calculated to
determine average percent coverage. For quality control
(QC), loci with > 20% of samples displaying < 65 read
coverage were removed from downstream analyses.
Three loci failed QC, but the excluded loci displayed a
very low abundance of previously reported somatic mu-
tations confirmed to be present in hematopoietic malig-
nancies in Cosmic Database (Additional File, Table S2).

Expression of transcript biomarkers
Taqman gene expression assays for BAALC, CEBPA,
CCNA1, CD34, ERG1, EVI1, FLT3, GATA2, IL3RA,
JAG1, KIT, MN1, RUNX1, and WT1 were used to quan-
tify gene expression as previously described [6, 22]. The
fold change (FC) for each transcript was computed using
the comparative Ct method with Beta-glucuronidase
(GUSB) normalization to pooled non-malignant bone
marrow calibrator, except for WT1 FC, which used
LAMA-84 cell line as a calibrator [6]. The FC was cen-
sored at maximum cycle threshold of 45 for samples
without evidence of expression by qRT/PCR. Transcript
expression was examined in experimental duplicates,
with the geometric mean of the duplicates used for
downstream analyses. If either of the replicates was cen-
sored, their mean was also marked as censored. If a du-
plicate was not available, we used the FC and censoring
of that single expression value. Censored values were
assigned the minimum expression observed for that
gene, divided by the square root of two [42].

Statistical analyses
Cytogenetic and mutation risk classification was based
on the ELN-2017 guidelines [1]. Complete remission
(CR) required the following: > 20% marrow cellularity
with maturation of all cell lines, < 5% blasts, no Auer
rods, absolute neutrophil count (ANC) ≥1500/μL, plate-
lets > 100,000/μL, no peripheral blasts, and no extrame-
dullary disease. Study S0106 required ANC ≥1000/μL
and did not have any marrow cellularity or peripheral
blasts requirements. Overall survival (OS) was measured
from the date of study registration to the date of death
by any cause, with patients last known to be alive cen-
sored at the date of last contact. Relapse-free survival
(RFS) was measured from date of CR to date of death or
relapse, with patients last known to be alive and without
report of relapse censored at the date of last contact.
Transplant data were not collected on these trials and,
thus, are not available for incorporation into the model-
ing algorithms. Disease characteristics, patient demo-
graphics, and clinical responses were compared between
the pool of patients who were selected to be analyzed
herein (N = 351) versus patients enrolled on the four tri-
als who were not analyzed (N = 691) using Chi-squared,
Fisher’s exact, or Wilcoxon rank-sum tests as appropri-
ate. The same analyses were used to compare the discov-
ery (N = 185) and validation (N = 166) cohorts.
Differences in mutation status, gene expression, and

FLT3-ITD AR in paired MNC and VLB samples were
assessed using McNemar’s test or the Wilcoxon signed
rank test, as appropriate. OS and RFS were estimated
using the Kaplan-Meier method and compared across
groups using log-rank tests. RFS and OS models used
Cox proportional hazards regression; CR models used

Pogosova-Agadjanyan et al. Biomarker Research            (2020) 8:29 Page 3 of 13

https://www.broadinstitute.org/gatk/
https://www.broadinstitute.org/gatk/
http://samtools.sourceforge.net
https://cancer.sanger.ac.uk


logistic regression. Model building in the discovery co-
hort was composed of the following steps, done separ-
ately for each outcome and for each type of material
(unsorted MNCs and VLBs). 1) Univariate models were
fit for each of the following baseline variables: age (quan-
titative), performance status (0–1 vs. 2–3), AML onset
(secondary vs de novo), clinical trial, immunophenotype
(IP) and ELN-2017 risk group. 2) Multivariable models
were fit with covariates with p-value < 0.10 from step 1
for each of the expression variables. These adjusted ex-
pression p-values were ranked, and the 5 expression var-
iables with the smallest p-values were selected for
additional modeling. If ELN-2017 risk group or IP were
included in the multivariable models, interactions with
expression variables were also evaluated, and interac-
tions with p-values less than 0.15 were selected for add-
itional modeling; if more than 5 interactions had p-
values less than 0.15, the 5 with the smallest p-values
were selected for additional modeling. 3) A multivariable
model including selected baseline variables, selected ex-
pression variables, and selected interaction variables was
built using backwards selection based on the Aikike In-
formation Criterion (AIC). Area under the Receiver Op-
erating Characteristic curve (AUC) and C-statistics were
estimating using 5-fold cross validation of the entire (3-
step) model building process. The locked parameter
values from step 3 were fit to the validation cohort and
AUC and C-statistics were calculated. We note that
AUC and C-statistic values of 0.50 indicate prediction
equivalent to a coin flip (random prediction), and values
of 1.00 indicate perfect prediction. Analyses were per-
formed using SAS version 9.4 (SAS Institute, Cary NC)
and R version 3.4.3 [43].

Results
Characteristics of patient population
Patients who were included in this study displayed
higher WBC, blast percentage, and ANC (P < 0.0001 for
all) compared to patients enrolled on these trials who
were not included in this study. In addition, there was a
significant difference in cytogenetic profiles (P = 0.0031),
FAB class (P < 0.0001), and proportions across clinical
trials (P = 0.0129, Additional File, Table S3). These dif-
ferences between included and not included patients
likely reflect reported biases for patients within reposi-
tories having a higher burden of disease at diagnosis and
depletion of specimens from older trials [6]. The differ-
ences between trial representation likely reflect the
higher abundance of samples from the more recent tri-
als. However, there were no significant differences be-
tween the included and not included patients with
respect to CR rates (60% vs. 58% P = 0.52), RFS (5-year
RFS 32% vs. 33%; P = 0.52) or OS (5-year OS 30% vs.
32%; P = 0.62, Additional File, Table S3 and Fig. S1).

Comparing the discovery and validation patients, the
two cohorts displayed some differences in clinical char-
acteristics despite randomization (e.g., WBC, P = 0.0188;
cytogenetics, P = 0.0296; cytogenetics risk group, P =
0.028 and distribution across clinical trials, P = 0.0209;
Additional File, Table S4), however there were no sig-
nificant differences in clinical outcomes between the dis-
covery and validation cohorts (CR 57% vs. 63% P = 0.31;
5-yr RFS 30% vs. 34%; P = 0.54; or 5-yr OS 30% vs. 31%;
P = 0.82, Additional File, Table S4 and Fig. S2).

Characterization of mutations and transcript expression
Mutation analyses focused on genes utilized for ELN-
2017 risk stratification. FLT3-ITD and NPM1 mutations
were examined in all specimens with available material
(i.e., MNCs and VLBs). There was 100% concordance
for NPM1 mutations in MNCs and VLBs. One FLT3-
ITD was observed in the MNCs but not VLBs (99.7%
concordant). FLT3-ITD and NPM1 mutations were de-
tected in 109 (31%) and 125 (36%) patients, respectively.
The distribution and mutation frequencies of NPM1 and
FLT3-ITD, as well as FLT3-ITD AR, were not signifi-
cantly different between discovery and validation cohorts
in either population of cells (Additional File, Table S5
and Fig. S3). Excluding the patient with discordant
FLT3-ITD results, FLT3-ITD AR was significantly higher
in VLBs than the MNCs (AR ranges 0.03–20 and 0.04–
13.2, respectively, P < 0.0001). Given that the ELN-2017
guidelines utilize FLT3-ITD AR of 0.5 for risk stratifica-
tion, we examined the impact that testing the FLT3-ITD
AR in VLBs had on ELN-2017 classification. In the
MNCs, percentages of patients with low and high FLT3-
ITD ARs were 34 and 66%, respectively, while percent-
ages for low and high AR in VLBs were 23 and 77%.
Examining FLT3 in VLBs resulted in a different AR clas-
sification for 19 patients, with 15 patients changing from
low AR in MNCs to high AR in VLBs and 4 patients
changing from high AR in MNCs to low AR in VLBs.
ASXL1, CEBPA, RUNX1, and TP53 mutations were ex-

amined in both MNC and VLB populations for the dis-
covery cohort. Similar to the results for NPM1 and
FLT3, there was a 99.4% concordance in mutations be-
tween MNCs and VLBs, with only one patient displaying
a discrepancy for an ASXL1 mutation. Therefore, muta-
tion analyses for ASXL1, CEBPA, RUNX1, and TP53
were examined in only VLBs for the validation cohort.
Overall, the frequencies of mutations in the examined
patients were as follows: ASXL1 (N = 35, 10%), CEBPA
(N = 20, 6%), RUNX1 (N = 40, 11%), and TP53 (N = 26,
7%). The frequency of ASXL1 mutations was modestly
higher in the discovery cohort (13% discovery vs. 7% val-
idation, P = 0.044); other mutations displayed similar fre-
quencies in both groups of patients (Additional File,
Table S5 and Fig. S3).
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Building upon the results examining transcript bio-
markers in the discovery cohort [6], analyses examined
transcript expression as a continuous variable for 13
genes, which had been previously reported to be poten-
tial prognostic biomarkers: BAALC, CCNA1, CEBPA,
ERG1, EVI1, FLT3, GATA2, IL3RA, JAG1, KIT, MN1,
RUNX1, and WT1 [13–27]. In the case of EVI1, tran-
script expression was not detectable and thus censored
in 69% of VLBs and 70% of MNCs. Given the dichotom-
ous nature of EVI1 expression, we also examined the
prognostic significance of EVI1 expression as a binary
variable (expressed vs. not expressed). In the discovery
cohort, univariate analyses showed a significant increase
in expression in VLBs relative to MNCs for BAALC (P <
0.0001), CCNA1 (P = 0.005), ERG1 (P < 0.0001), EVI1
(P = 0.001), FLT3 (P = 0.024), MN1 (P < 0.0001), RUNX1
(P = 0.001) and WT1 (P < 0.0001), while none of the
transcripts were expressed at significantly lower levels in
VLBs than MNCs (Additional File, Table S6).

Prognostic significance of biomarkers in univariate
analyses
Univariate analyses examined the prognostic significance
of FLT3-ITD AR, NPM1 mutation, and transcript expres-
sion in MNCs and VLBs in the discovery cohort. Increas-
ing FLT3-ITD AR in MNCs was associated with worse OS
(Table 1). NPM1 mutations were not associated with clin-
ical outcome in univariate analyses (Table 1). The prog-
nostic significance for some transcripts varied depending
upon tested cell type (Table 1, Additional File, Table S7).
Overall, increased expression of CCNA1, ERG1, EVI1,
FLT3, IL3RA, KIT and MN1 was significantly associated
with adverse risk for one or more clinical outcomes in one
or both cell populations (Table 1), while expression of
BAALC, CEBPA, GATA2, JAG1, RUNX1 and WT1 were
not significantly associated with clinical outcomes in ei-
ther MNCs or VLBs (Additional File, Table S7). Univariate
analyses also evaluated the prognostic significance of age,
cytogenetics, PS, secondary AML status, and ELN risk
groups in the discovery cohort. As expected, increasing
age, adverse cytogenetics, poor PS, and secondary AML
status were significantly associated with poor clinical out-
comes (Table 2). Favorable ELN-2017 risk was signifi-
cantly associated with improved CR, whether examining
MNCs or VLBs (OR = 3.11, P = 0.024 and OR = 3.69, P =
0.014, respectively), while adverse and unknown ELN-
2017 risks were not significantly associated with CR
(Table 2). Favorable ELN-2017 risk was also significantly
associated with improved OS in VLBs (MNCs, HR = 0.58,
P = 0.060 and VLBs, HR = 0.38, P = 0.001, Table 2). Ad-
verse ELN-2017 risk was associated with reduced OS in
MNCs (HR = 1.66, P = 0.050) but not in VLBs (HR = 1.10,
P = 0.720). In keeping with the CR and OS analyses, favor-
able ELN-2017 was significantly associated with improved

RFS in both MNCs and VLBs (HR = 0.47, P = 0.027 and
HR = 0.37, P = 0.008, respectively, Table 2).

Performance of novel risk models utilizing ELN and other
prognostic factors
Multivariable models for CR, OS, and RFS were developed
separately for each cell population using age, ELN-2017 risk
group, PS, AML onset, immunophenotype, clinical trial,
transcript biomarker and expression as possible covariates
(Additional File, Models Details). In the discovery cohort,
the models with the best performance were obtained when
clinical variables and expression biomarkers were inte-
grated; however, when applied to an independent popula-
tion of patients in the validation cohort, the performances
of integrated models for most outcomes were not superior
to AGE+ ELN2017 models (Table 3). If a model is
generalizable to a broad population, AUCs or C-statistics
will be nearly equivalent in the two cohorts. Generalizability
of the developed integrated models was inconsistent across
CR, OS and RFS outcomes.
The ELN2017 model divides patients into 4 groups: fa-

vorable, intermediate, adverse, and unknown. Figure 1
shows OS by ELN2017 risk in MNCs and VLBs from the
validation cohort. Since previous studies demonstrated a
worse prognosis for intermediate risk patients over the
age of 55 [8, 44], the ELN2017 models were also applied
to younger (age < 55) and older (age ≥ 55) patients.
ELN2017 models were a better fit for the younger pa-
tients, whether using data derived from MNCs (Fig. 1)
or VLBs (Fig. 2). To visualize the AGE + ELN2017 model
for OS, the continuous risk score from the AGE +
ELN2017 model in the discovery data was divided into
quartiles to parallel the ELN2017 model, and boundaries
of these quartiles were applied to the validation data
(Figs. 3 and 4). Though these plots are intended to be
exploratory, the quartiles defined by the AGE + ELN2017

models visually show more separation between curves
than do the ELN2017 risk groups in MNCs and in VLBs
(Figs. 3a and 4a vs Figs. 1a and 2a). The c-statistics for
the AGE + ELN2017 models are also slightly higher than
the c-statistics for the ELN2017 models. There were no
patients younger than 55 in the quartiles representing
the poorest outcomes (3rd and 4th quartiles in MNCs
and 4th quartile in VLBs) and no patients older than 55
in the 1st quartile, representing the best outcomes. This
is due to the fact that older age was associated with
poorer outcomes in the multivariable models controlling
for ELN risk and age, and these models were used to de-
rive the quartiles in the figure.

Evaluation of simplified ELN-2017 and AGE + ELN2017

models
To investigate the impact of ASXL1, CEBPA, RUNX1
and TP53 mutations on risk stratification, we evaluated
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Table 1 Genomic and transcript biomarkers significant in the discovery cohort

Variable Cell Population

Biomarker Value MNCs Blasts

Complete Response, CR OR (95% CI) P OR (95% CI) P

FLT3-ITD AR Continuous 0.61 (0.27–1.36) 0.229 0.92 (0.75–1.14) 0.446

≥ 0.5 vs. < 0.5 1.15 (0.38–3.51) 0.801 0.83 (0.24–2.84) 0.770

NPM1 Mutated vs. not 1.38 (0.74–2.59) 0.310 1.43 (0.76–2.72) 0.270

ERG1 Cont. 0.94 (0.88–1.00) 0.042 0.94 (0.90–0.99) 0.018

IQR 0.73 (0.54–0.99) 0.63 (0.43–0.93)

EVI1 Binary 0.46 (0.24–0.89) 0.020 0.38 (0.19–0.76) 0.006

Cont. 0.99 (0.98–1.00) 0.196 0.99 (0.98–1.01) 0.257

IQR 1.00 (1.00–1.00) 1.00 (1.00–1.00)

KIT Cont. 0.96 (0.91–1.01) 0.145 0.94 (0.88–0.99) 0.022

IQR 0.84 (0.67–1.06) 0.73 (0.56–0.95)

MN1 Cont. 0.99 (0.98–1.00) 0.064 0.99 (0.98–1.00) 0.020

IQR 0.86 (0.73–1.01) 0.78 (0.63–0.96)

Overall Survival, OS HR (95% CI) P HR (95% CI) P

FLT3-ITD AR Continuous 1.45 (1.03–2.06) 0.035 1.08 (0.98–1.19) 0.133

≥ 0.5 vs. < 0.5 1.05 (0.56–1.97) 0.879 0.92 (0.47–1.81) 0.807

NPM1 Mutated vs. not 1.10 (0.77–1.57) 0.610 1.04 (0.73–1.50) 0.820

CCNA1 Cont. 1.00 (1.00–1.00) < 0.001 1.00 (1.00–1.00) 0.020

IQR 1.08 (1.03–1.14) 1.07 (1.01–1.13)

ERG1 Cont. 1.04 (1.01–1.07) 0.020 1.04 (1.01–1.07) 0.002

IQR 1.21 (1.03–1.41) 1.36 (1.12–1.64)

EVI1 Binary 1.59 (1.10–2.29) 0.014 2.03 (1.39–2.96) < 0.001

Cont. 1.01 (1.00–1.01) 0.017 1.01 (1.00–1.01) 0.004

IQR 1.00 (1.00–1.00) 1.00 (1.00–1.00)

FLT3 Cont. 1.02 (1.00–1.03) 0.013 1.02 (1.00–1.03) 0.026

IQR 1.14 (1.03–1.27) 1.13 (1.01–1.26)

IL3RA Cont. 1.02 (0.99–1.05) 0.128 1.03 (1.00–1.06) 0.044

IQR 1.08 (0.98–1.19) 1.11 (1.00–1.22)

Relapse-Free Survival, RFS HR (95% CI) P HR (95% CI) P

FLT3-ITD AR Continuous 0.99 (0.30–3.30) 0.983 1.19 (0.92–1.55) 0.187

≥ 0.5 vs. < 0.5 0.88 (0.40–1.94) 0.750 1.95 (0.77–4.94) 0.161

NPM1 Mutated vs. not 0.96 (0.60–1.52) 0.850 0.96 (0.59–1.54) 0.860

CCNA1 Cont. 1.00 (1.00–1.01) 0.004 1.00 (1.00–1.00) 0.083

IQR 1.20 (1.06–1.36) 1.10 (0.99–1.22)

EVI1 Binary 1.89 (1.14–3.13) 0.014 1.94 (1.13–3.32) 0.015

Cont. 1.01 (1.00–1.02) 0.004 1.02 (1.01–1.03) 0.003

IQR 1.00 (1.00–1.00) 1.00 (1.00–1.00)

IL3RA Cont. 1.02 (1.00–1.05) 0.092 1.03 (1.00–1.07) 0.050

IQR 1.09 (0.99–1.21) 1.12 (1.00–1.25)

FLT3-ITD AR was analyzed both as a continuous variable (Cont.) and as a binary variable as defined by the ELN-2017 guidelines (≥0.5 vs. < 0.5). Transcript
expression fold changes were analyzed both as unadjusted variables (Cont.) and adjusted (divided) by the interquartile range (IQR) of the corresponding
expression variable in the discovery data. EVI1 was analyzed as a continuous and as a binary variable (expressed vs. not)
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Table 2 Univariate Analyses in the Discovery Cohort

Variable Complete Response,
CR (N = 185)

Overall Survival, OS
(N = 185)

Relapse-Free Survival,
RFS (N = 106)

OR (95% CI) P HR (95% CI) P HR (95% CI) P

Age Continuous 0.96 (0.94–0.98) < 0.001 1.06 (1.04–1.07) < 0.001 1.04 (1.02–1.05) < 0.001

By Decade 0.66 (0.53–0.82) < 0.001 1.75 (1.52–2.01) < 0.001 1.41 (1.20–1.67) < 0.001

Cytogenetics Fav. vs. Interm. 5.29 (1.15–24.40) 0.033* 0.24 (0.10–0.59) 0.002* 0.29 (0.12–0.69) 0.005*

Unfav. vs. Interm. 0.42 (0.18–0.97) 0.043* 1.77 (1.12–2.79) 0.014* 1.38 (0.71–2.68) 0.349*

Unk. vs. Interm. 0.57 (0.28–1.16) 0.124* 1.25 (0.84–1.88) 0.271* 0.80 (0.46–1.41) 0.446*

Performance Status Numeric 0.82 (0.58–1.15) 0.246 1.07 (0.89–1.30) 0.462 0.84 (0.62–1.15) 0.278

2–3 vs. 0–1 0.37 (0.17–0.81) 0.013 1.49 (0.97–2.29) 0.07 1.01 (0.50–2.03) 0.971

Study S0106 vs S9031 2.88 (1.20–6.87) 0.018* 0.28 (0.17–0.46) < 0.001* 0.35 (0.18–0.69) 0.002*

S9333 vs S9031 1.04 (0.40–2.73) 0.934* 0.87 (0.53–1.43) 0.58* 0.79 (0.38–1.67) 0.54*

S0112 vs S9031 0.63 (0.17–2.33) 0.484* 1.16 (0.61–2.22) 0.645* 0.79 (0.27–2.30) 0.669*

Immunophenotype 2 vs 0 1.37 (0.68–2.75) 0.384 1.14 (0.77–1.70) 0.504 1.26 (0.76–2.08) 0.373

1 vs 0 0.73 (0.33–1.57) 0.415 1.02 (0.64–1.61) 0.946 0.97 (0.51–1.86) 0.928

AML Onset Secondary vs. DN 0.23 (0.08–0.67) 0.007 1.89 (1.10–3.25) 0.02 0.95 (0.30–3.01) 0.925

ELN2017 in MNCs Fav. vs. Interm. 3.11 (1.16–8.32) 0.024* 0.58 (0.32–1.02) 0.06* 0.47 (0.24–0.92) 0.027*

Adv. vs. Interm. 0.64 (0.27–1.56) 0.328* 1.66 (1.00–2.77) 0.05* 1.72 (0.88–3.35) 0.113*

Unk. vs. Interm. 0.72 (0.29–1.75) 0.467* 1.32 (0.78–2.23) 0.305* 0.76 (0.37–1.54) 0.441*

ELN2017 in VLBs Fav. vs. Interm. 3.69 (1.30–10.52) 0.014* 0.38 (0.21–0.68) 0.001* 0.37 (0.18–0.77) 0.008*

Adv. vs. Interm. 0.77 (0.30–1.98) 0.587* 1.10 (0.66–1.84) 0.72* 1.45 (0.71–2.97) 0.312*

Unk. vs. Interm. 0.96 (0.37–2.47) 0.928* 0.78 (0.46–1.33) 0.36* 0.64 (0.31–1.35) 0.242*

* Indicates that the overall p-value was significant (< 0.05)

Table 3 Multivariable models for CR, OS and RFS

Models AUCs or C-statistics

MNCs VLBs

Complete Response (CR, AUC) Discovery Validation Discovery Validation

ELN2017 0.66 0.73 0.66 0.67

AGE + ELN2017 0.71 0.72 0.71 0.72

AGE + PS + GATA2 + BAALC (MNCs) 0.77a 0.67 N/A N/A

AGE + PS +MN1 + GATA2 (VLBs) N/A N/A 0.72a 0.70

Overall Survival (OS, C Statistic) Discovery Validation Discovery Validation

ELN2017 0.60 0.68 0.59 0.68

AGE + ELN2017 0.72 0.70 0.71 0.71

AGE + ELN2017 + ERG1 + EVI1 + JAG1 + JAG1aELN (MNCs) 0.73a 0.69 N/A N/A

AGE + ELN2017 + EVI1 + ERG1 + CCNA1 (VLBs) N/A N/A 0.71a 0.73

Relapse-Free Survival (RFS, C Statistic) Discovery Validation Discovery Validation

ELN2017
b 0.60 0.54 0.61 0.54

AGE + ELN2017
b 0.67 0.63 0.66 0.62

AGE + ELN2017
b + EVI1 + CCNA1 (MNCs) 0.69a 0.65 N/A N/A

AGE + ELN2017
b + EVI1 + CCNA1 (VLBs) N/A N/A 0.72a 0.65

aAUCs or C-statistics for the integrated models come from cross-validation. 1/5 of the discovery data were used to build a model, and the remaining 4/5 of the
data were fit to this model, resulting in five C-statistics or AUCs. The mean of the five is presented in the table
bDue to small sample size, ELN2017 in the RFS models was categorized into adverse vs. not adverse (including intermediate, favorable, and unknown)
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the performance of modified models that did not include
mutation data for these 4 genes without age (ELN2017--

MOD) and with age (AGE + ELN2017-MOD). Exclusion of
mutation status of these four genes resulted in an overall
reassignment of risk groups for 46 patients in MNCs
and 44 patients in VLBs of the 351 patients (Additional
File, Table S8). Both models were developed using the
discovery data from the MNCs and VLBs. In the valid-
ation cohort, the AUCs and C-statistics were similar be-
tween the ELN2017 and ELN2017-MOD models, allowing
comparable population risk prediction at the community
sites that may not have access to genomic mutation
screening. Furthermore, the AGE + ELN2017-MOD models
had almost the exact same performance characteristics
as the AGE + ELN2017 models (Table 4).

Discussion
Risk stratification of AML patients enables physicians to
triage patients for optimal therapy. Many prognostic

factors have been identified, but relatively few have made
their way into clinical practice. The revised ELN-2017
guidelines combine cytogenetic abnormalities and gen-
etic mutations to stratify patients with AML into favor-
able, intermediate, and adverse risk groups [1]. We
examined the predictive accuracy of risk models devel-
oped using the ELN-2017 guidelines with and without
incorporating additional prognostic factors, as well as
how these models performed in VLBs and MNCs.
ELN2017 predictive models were a better fit for younger
patients. Models utilizing the expression results from se-
lected transcript biomarkers did not provide substantial
improvement over the ELN2017 models, regardless of
whether transcripts were tested in MNCs or VLBs. In
addition, we examined the potential contribution of mu-
tations in ASXL1, CEBPA, RUNX1 and TP53, given that
clinical testing for these genes may not be readily avail-
able in many settings. The ELN2017-MOD demonstrated
that while these mutations may provide additional

Fig. 1 Performance of ELN2017 model in Mononuclear cells. Overall Survival probability over time by ELN2017 risk group in MNCs from the
validation cohort (n = 166). C-statistics are for the ELN2017 model fit to the validation cohort for all patients (age 18.5–88.8, a), patients younger
than 55 years old (N = 86, b), and patients 55 years and older (N = 80, c). The total number of patients who were at risk of death (alive and
uncensored) are shown for each year of follow-up

Fig. 2 Performance of ELN2017 model in Viable Leukemic Blasts. Overall Survival probability over time by ELN2017 risk group in VLBs from the
validation cohort (n = 166). C-statistics are for the ELN2017 model fit to the validation cohort for all patients (age 18.5–88.8, a), patients younger
than 55 years old (N = 86, b), and patients 55 years and older (N = 80, c). The total number of patients who were at risk of death (alive and
uncensored) are shown for each year of follow-up
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benefit for risk stratification of individual patients, their
contribution to the predictive accuracy of the ELN2017

models was limited in our cohorts of AML patients.
Thus, ELN-2017 guidelines remain a critical tool for risk
stratifying AML patients, but the findings illustrate the
need for additional prognostic factors to improve risk
stratification, especially in older adults with AML. More-
over, observations suggest that risk stratification models
may need to be developed separately for older patients.
Previous studies have examined the performance of

ELN-2017 guidelines in patients with AML [2–4, 10].
Similar to our observation in patients younger than 55,
authors confirmed the prognostic significance of the
ELN-2017 guidelines, with patients stratified as favor-
able, intermediate, and adverse having a 5-year OS of

approximately 60, 40, and 20%, respectively [2–4]. Our
results are consistent with the previous report that ELN-
2017 guidelines are not as informative for older adults,
supporting the need for additional studies for this popu-
lation [10]. Age remains one of the most robust prog-
nostic factors for patients with AML. As demonstrated
in Table 3, AGE models performed comparably to
ELN2017 models, with the AGE + ELN2017 models dis-
playing the best performances. Given that a majority of
patients diagnosed with AML are over the age of 65
[45], current risk stratification guidelines for patients
with AML need to be adjusted for age or recalibrated for
older patients. Similarly, the findings demonstrate the
need for more accurate risk stratification models for

Fig. 3 Performance of AGE + ELN2017 Model in Mononuclear Cells. Overall Survival probability over time as predicted by the AGE + ELN2017

models developed using the discovery cohort in MNCs. The continuous risk score from the AGE + ELN2017 model in the discovery cohort was
divided into quartiles and the boundaries of these quartiles were used to define a four-level categorical variable. A model was fit using this
categorical variable in the validation cohort for all patients (N = 166, age 18.5–88.8, a), patients younger than 55 years old (N = 86, b), and patients
55 years and older (N = 80, c). There were no patients younger than 55 in 3rd and 4th quartiles (b) or patients older than 55 in 1st quartile (c).
The total number of patients who were at risk of death (alive and uncensored) are shown for each year of follow-up

Fig. 4 Performance of AGE + ELN2017 Model in Viable Leukemic Blasts. Overall Survival probability over time as predicted by the AGE + ELN2017

models developed using the discovery cohort in MNCs. The continuous risk score from the AGE + ELN2017 model in the discovery cohort was
divided into quartiles and the boundaries of these quartiles were used to defined a four-level categorical variable. A model was fit using this
categorical variable in the validation cohort for all patients (N = 166, age 18.5–88.8, a), patients younger than 55 years old (N = 86, b), and patients
55 years and older (N = 80, c). There were no patients younger than 55 in 4th quartiles (b) or patients older than 55 in 1st quartile (c). The total
number of patients who were at risk of death (alive and uncensored) are shown for each year of follow-up
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older adults with AML. Such models will likely require
the inclusion of novel prognostic biomarkers.
Although age-related comorbidities and differences in

therapy play a role in the poor outcomes for older adults
with AML, these factors cannot fully explain the higher
relapse rates for these patients [7, 8]. Older adults with
AML frequently harbor mutations in genes associated
with the spliceosome, methylation and chromatin re-
modeling, which are commonly identified in patients
with MDS or secondary AML [10, 12, 46–49]. This age-
related mutational profile, as well as unknown molecular
factors, may contribute to the resistant biology that leads
to higher relapse rates and an adverse prognosis for
older adults with AML. The integration of age into prog-
nostic models partially compensated for some of
the age-related adverse biology. This approach, however,
cannot fully account for the intra- and inter-patient het-
erogeneity in AML blasts from older adults, and as such,
remains a relatively imprecise surrogate for the bio-
logical factors causing resistance in older patients. Inves-
tigations into the biology governing resistance in older
adults with AML are warranted to elucidate the molecu-
lar factors responsible for the poor outcomes.
The ELN recently integrated mutations in ASXL1,

RUNX1, and TP53 into their guidelines. In addition, the
ELN-2017 guidelines now require double CEBPA muta-
tions for patients to be deemed favorable risk. These
changes require either a part of or the entire reading
frame of genes to be sequenced. Such sequencing tech-
nology is either not available or may be cost-prohibitive
in many areas. To better understand the prognostic

benefit of these changes, we evaluated the performance
of a modified model (ELN2017-MOD), which excluded the
mutation data for ASXL1, RUNX1, TP53 and CEBPA.
The ELN2017-MOD had a similar performance to the
ELN2017 model. Inclusion of age into the model (AGE +
ELN2017-MOD) demonstrated an improved performance
over the ELN2017-MOD model. While a small number of
patients changed risk group between the ELN2017 and
ELN2017-MOD models, the incremental improvement
does not negate the potential individual prognostic value
of these additional mutations.
The studies also examined the prognostic impact of

testing biomarkers in a more homogenous cell popula-
tion (i.e., VLBs). The concordance in dichotomous mu-
tation calls was almost 100% between MNCs and VLBs.
Assays employed to detect mutation (fragment analyses
PCR for FLT3-ITD and targeted deep sequencing for
ASXL1, CEBPA, NPM1, RUNX1 and TP53) paralleled
those currently used in clinical testing. However, the se-
quencing depth of the experiments were not intended to
detect very low mutation loads, and as such, sequencing
at higher depths may have yielded different results. Un-
like dichotomous results, the FLT3-ITD AR was higher
in VLBs than MNCs, resulting in a shift of the risk clas-
sification for 19 patients. Nevertheless, these differences
in risk classification did not markedly impact the prog-
nostic significance of the biomarker by itself or when in-
corporated into models. The transcript biomarkers were
primarily selected based on their reported promise as
prognostic biomarkers, and some previously validated
transcript biomarkers, such as those involving leukemia
stem cell signatures, were not examined [50–53]. Simi-
larly, we assayed expression of select transcripts via q-
RT/PCR due to the focused nature of the studies and
global transcription profiling was not performed. Al-
though expression of the examined transcripts in VLBs
did not markedly improve the predictive accuracy of the
models, the analyses confirmed that expression of the
transcript biomarkers significantly differs between
MNCs and VLBs, with most transcripts being expressed
at higher levels in the VLBs. Therefore, it remains un-
clear whether examining VLBs may or may not provide
a mechanism to identify novel prognostic biomarkers or
improve the prognostic performance of other transcript
biomarkers. Studies are currently underway to examine
these questions using a more comprehensive approach,
which includes global RNA sequencing of the MNCs
and VLBs.
Although the current report represents the largest ana-

lysis of paired MNCs and VLBs from AML patients, the
number and source (i.e., BM vs. PB) of samples may
limit the ability to detect significant differences between
models utilizing MNCs vs. VLBs. The number of exam-
ined patients was limited by the availability of specimens

Table 4 Performance of simplified ELN-2017 risk stratification
criteria

Covariates Discovery Validation

Complete Response (CR, AUC)

ELN2017 0.65 0.74

AGE + ELN2017 0.71 0.76

ELN2017-MOD 0.65 0.72

AGE + ELN2017-MOD 0.71 0.77

Overall Survival (OS, C Statistic)

ELN2017 0.60 0.68

AGE + ELN2017 0.71 0.73

ELN2017-MOD 0.60 0.67

AGE + ELN2017-MOD 0.72 0.73

Relapse-Free Survival (RFS, C Statistic)

ELN2017 0.64 0.62

AGE + ELN2017 0.68 0.67

ELN2017-MOD 0.62 0.63

AGE + ELN2017-MOD 0.67 0.68

Comparison of predictive value of ELN2017 and ELN2017-MOD and change in
predictive value with the addition of age as a covariate
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with adequate vials and the resources. Nevertheless, the
data suggest that prognostic biomarkers (e.g., FLT3-ITD
AR) yield different results depending upon the examined
material (i.e., MNCs vs. VLBs) and highlight the need to
identify additional biomarkers to improve current risk
stratification guidelines. Unfortunately, large numbers of
paired diagnostic BM and PB samples are not readily
available for correlative studies to evaluate the impact of
specimen source. However, some comparisons between
MNCs from paired BM and PB have been performed by
our group and others. While some report potential func-
tional differences [54], others found subtle differences be-
tween the two tissue sources [55, 56]. Our previous
examination of transcript and mutation biomarkers in
paired BM and PB samples did not find any significant dif-
ferences between unsorted MNCs from the PB versus BM
with respect to the immunophenotype of leukemic blasts,
mutation detection in FLT3 and NPM1 genes, relative
quantities of mutations (allelic ratio of FLT3-ITD and
NPM1 insertions), or the expression of majority of specific
transcripts reported in this paper [6]. These additional
biomarker studies will likely require investigations into
previously untapped molecular components driving the
biology of AML such as the proteome. As a means to
improve the homogeneity of treatment, the study ex-
amined only those patients who received intensive
chemotherapy with curative intent as part of SWOG
trials. Despite randomization, the more recent trials
were better represented in evaluated populations than
older trials, however, the treatment regimens were
comparable among the four trials from which the pa-
tients were drawn. Thus, the results may not be
generalizable to patients receiving therapy outside of
evaluated clinical trials, low-intensity regimens (e.g.,
azacytidine), or targeted agents (e.g., midostaurin).
Nonetheless, some recent biomarker studies suggest
that previously recognized prognostic factors remain
highly informative and predictive for responses to
more “targeted’ agents [57–59], and as such, there
likely remains some role for the identification of
prognostic biomarkers that are applicable across a
variety of therapies.

Conclusions
In summary, this study represents the largest systematic
evaluation of prognostic biomarkers in paired MNC and
VLB from patients with AML. Overall, the ELN-2017
guidelines risk stratified younger adults with AML more
accurately than older adults with AML. In addition,
models developed utilizing ELN-2017 guidelines and
other selected biomarkers did not substantially improve
risk stratification. Similarly, the performance of these
models was not significantly impacted by the source of
material examined, (i.e., MNC vs. VLB).
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