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Abstract

Motivation: Single-cell RNA-sequencing (scRNA-seq) provides more granular biological information than bulk RNA-
sequencing; bulk RNA sequencing remains popular due to lower costs which allows processing more biological rep-
licates and design more powerful studies. As scRNA-seq costs have decreased, collecting data from more than one
biological replicate has become more feasible, but careful modeling of different layers of biological variation
remains challenging for many users. Here, we propose a statistical model for scRNA-seq gene counts, describe a
simple method for estimating model parameters and show that failing to account for additional biological variation
in scRNA-seq studies can inflate false discovery rates (FDRs) of statistical tests.

Results: First, in a simulation study, we show that when the gene expression distribution of a population of cells
varies between subjects, a naı̈ve approach to differential expression analysis will inflate the FDR. We then compare
multiple differential expression testing methods on scRNA-seq datasets from human samples and from animal mod-
els. These analyses suggest that a naı̈ve approach to differential expression testing could lead to many false discov-
eries; in contrast, an approach based on pseudobulk counts has better FDR control.

Availability and implementation: A software package, aggregateBioVar, is freely available on Bioconductor (https://
www.bioconductor.org/packages/release/bioc/html/aggregateBioVar.html) to accommodate compatibility with up-
stream and downstream methods in scRNA-seq data analysis pipelines.

Contact: thurman@uiowa.edu or alejandro-pezzulo@uiowa.edu

Supplementary information: Raw gene-by-cell count matrices for pig scRNA-seq data are available as GEO acces-
sion GSE150211. Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) enables analysis of the
effects of different conditions or perturbations on specific cell types
or cellular states. Multiple methods and bioinformatic tools exist for
initial scRNA-seq data processing, including normalization, dimen-
sionality reduction, visualization, cell type identification, lineage
relationships and differential gene expression (DGE) analysis (Chen
et al., 2019; Hwang et al., 2018; Luecken and Theis, 2019; Vieth
et al., 2019; Zaragosi et al., 2020).

A common use of DGE analysis for scRNA-seq data is to per-
form comparisons between pre-defined subsets of cells (referred to
here as marker detection methods); many methods have been devel-
oped to perform this analysis (Butler et al., 2018; Delmans and

Hemberg, 2016; Finak et al., 2015; Guo et al., 2015; Kharchenko
et al., 2014; Korthauer et al., 2016; Miao et al., 2018; Qiu et al.,
2017a, b; Wang et al., 2019; Wang and Nabavi, 2018). Marker de-
tection methods allow quantification of variation between cells and
exploration of expression heterogeneity within tissues. In scRNA-
seq studies, where cells are collected from multiple subjects (e.g.
healthy versus disease), an additional layer of variability is intro-
duced. DGE methods to address this additional complexity, which
have been referred to as differential state (DS) analysis are just being
explored in the scRNA-seq field (Crowell et al., 2020; Lun et al.,
2016; McCarthy et al., 2017; Van den Berge et al., 2019;
Zimmerman et al., 2021).

In recent years, the reagent and effort costs of scRNA-seq have
decreased dramatically as novel techniques have been developed
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(Aicher et al., 2019; Briggs et al., 2018; Cao et al., 2017; Chen
et al., 2019; Gehring et al., 2020; Gierahn et al., 2017; Klein et al.,
2015; Macosko et al., 2015; Natarajan et al., 2019; Rosenberg
et al., 2018; Vitak et al., 2017; Zhang et al., 2019; Ziegenhain et al.,
2017), so that biological replication, meaning data collected from
multiple independent biological units such as different research ani-
mals or human subjects, is becoming more feasible; biological repli-
cation allows generalization of results to the population from which
the sample was drawn. However, in studies with biological replica-
tion, gene expression is influenced by both cell-specific and subject-
specific effects. Therefore, as experiments that include biological
replication become more common, statistical frameworks to account
for multiple sources of biological variability will be critical, as re-
cently described by Lähnemann et al. (Lahnemann et al., 2020).

Crowell et al. (Crowell et al., 2020) provides a thorough com-
parison of a variety of DGE methods for scRNA-seq with biological
replicates including: (i) marker detection methods, (ii) pseudobulk
methods, where gene counts are aggregated between cells from dif-
ferent biological samples and (iii) mixed models, where models for
gene expression are adjusted for sample-specific or batch effects.
This study found that generally pseudobulk methods and mixed
models had better statistical characteristics than marker detection
methods, in terms of detecting differentially expressed genes with
well-controlled false discovery rates (FDRs), and pseudobulk meth-
ods had fast computation times. In another study, mixed models
were found to be superior alternatives to both pseudobulk and
marker detection methods (Zimmerman et al., 2021). Marker detec-
tion methods were found to have unacceptable FDR due to pseudor-
eplication bias, in which cells from the same individual are
correlated but treated as independent replicates, and pseudobulk
methods were found to be too conservative, in the sense that too
many differentially expressed genes were undiscovered.
Alternatively, batch correction methods have been proposed to re-
move inter-individual differences prior to DS analysis, however, this
increases type I error rates and disturbs the rank-order of results as
explained in Zimmerman et al. (Zimmerman et al., 2021).

Here, we introduce a mathematical framework for modeling dif-
ferent sources of biological variation introduced in scRNA-seq data,
and we provide a mathematical justification for the use of pseudo-
bulk methods for DS analysis. These methods provide interpretable
results that generalize to a population of research subjects, account
for important sources of biological and technical variability and pro-
vide adequate FDR control.

We proceed as follows. First, we present a statistical model link-
ing differences in gene counts at the cellular level to four sources: (i)
subject-specific factors (e.g. disease and intervention), (ii) variation
between subjects, (iii) variation between cells within subjects and
(iv) technical variation introduced by sampling RNA molecules, li-
brary preparation and sequencing. Second, we make a formal argu-
ment for the validity of a DS test with subjects as the units of
analysis and discuss our development of a Bioconductor package
that can be incorporated into scRNA-seq analysis workflows. Third,
we examine properties of DS testing in practice, comparing cells ver-
sus subjects as units of analysis in a simulation study and using avail-
able scRNA-seq data from humans and pigs. Finally, we discuss
potential shortcomings and future work.

2 Materials and methods

2.1 Statistical model
In bulk RNA-seq studies, gene counts are often assumed to follow a
negative binomial distribution (Hardcastle and Kelly, 2010; Leng
et al., 2013; Love et al., 2014; Robinson et al., 2010). The negative
binomial distribution has a convenient interpretation as a hierarch-
ical model, which is particularly useful for sequencing studies. In the
first stage of the hierarchy, gene expression for each sample is
assumed to follow a gamma distribution with mean expression mod-
eled as a function of sample-specific covariates. When samples cor-
respond to different experimental subjects, the first stage
characterizes biological variation in gene expression between

subjects. In the second stage, the observed data for each gene, meas-
ured as a count, is assumed to follow a Poisson distribution with
mean equal to the product of a size factor, such as sequencing depth,
and gene expression generated in the first stage. The second stage
represents technical variation introduced by the processes of sam-
pling from a population of RNAs, building a cDNA library and
sequencing. Increasing sequencing depth can reduce technical vari-
ation and achieve more precise expression estimates, and collecting
samples from more subjects can increase power to detect differen-
tially expressed genes.

In contrast, single-cell experiments contain an additional source
of biological variation between cells. We propose an extension of
the negative binomial model to scRNA-seq data by introducing an
additional stage in the model hierarchy.

For clarity of exposition, we adopt and extend notations similar
to (Love et al., 2014). In a scRNA-seq experiment with multiple sub-
jects, we assume that the observed data consist of gene counts for G
genes drawn from multiple cells among n subjects. We also assume
that cell types or states have been identified, DS analysis will be per-
formed within each cell type of interest and henceforth, the notation
corresponds to one cell type.

Define Kijc to be the count for gene i in cell ccollected from sub-
ject j, and a size factor sjc related to the amount of information col-
lected from cell c in subject j (i ¼ 1; . . . G; c ¼ 1; . . . ;Cj;
j ¼ 1; . . . ; n). For example, a simple definition of sjc is the number of
unique molecular identifiers (UMIs) collected from cell c of subject
j. To measure heterogeneity in expression among different groups,
we assume that mean expression for gene iin subject j is influenced
by R subject-specific covariates xj1; . . . ;xjR: Let Gamma a; bð Þ de-
note the gamma distribution with shape parameter a and scale par-
ameter b, Poisson mð Þ denote the Poisson distribution with mean m
and XjY½ � denote the conditional distribution of random variable X
given random variable Y. To characterize these sources of variation,
we consider the following three-stage model:

i. Expression of gene i in subject j follows a gamma distribution,

hij � Gamma a�1
i ; qijai

� �
;

where log qijð Þ ¼
P

r xjrbir. The dispersion parameter ai will be

termed subject-level variance. The mean of hij is qij, and its vari-

ance is ai.

ii. Given subject-level expression hij, the cell-level expression in

cell c, kijc, follows a gamma distribution,

kijcjhij

� �
� Gamma r�2

ij ; hijr
2
ij

� �
:

The parameter r2
ij is termed the cell-level variance for subject j,

which is allowed to vary between genes and subjects. The mean

of kijc is hij, and its variance is r2
ij:

iii. Conditional on the cell-level expression kijc, gene counts are

modeled using a Poisson distribution,

Kijcjkijc

� �
� Poisson sjckijc

� �
:

In stage i, variation in expression between subjects is due to differen-
ces in covariates via the regression function qij and residual subject-
to-subject variation via the dispersion parameter ai. In stage ii, we
assume that we have not measured cell-level covariates, so that vari-
ation in expression between cells of the same type occurs only
through the dispersion parameter r2

ij. In stage iii, technical variation
in counts is generated from a Poisson distribution. This model impli-
citly assumes that the only systematic variation in expression is due
to subject-level covariates, and for a fixed level of covariates, any
additional variation between subjects or cells is due to chance.

Although, in this work, we only consider the simple model pre-
sented above, the model could be extended to allow for systematic
variation between cells by imposing a regression model in stage ii. If
zjc1; zjc2; . . . ; zjcL are L cell-level covariates, then a log-linear regres-
sion model could take the form log hijc

� �
¼
P

l zjclcijl.
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2.2 Approximation for DS analysis
It is helpful to inspect the proposed model under a simplifying as-
sumption. Suppose that cell-level variance r2

ij � 0. Under this as-
sumption, kij � hij and the three-stage model reduces to a two-stage
model. Define the aggregated counts Kij ¼

P
cKijc, and let

sj ¼
P

csjc. The marginal distribution of Kij is approximately nega-
tive binomial with mean lij ¼ sjqij and variance lij þ ail2

ij. This is
the model used in DESeq2 (Love et al., 2014).

In practice, this assumption is unlikely to be satisfied, but if we
make modest assumptions about the growth rates of the size factors
and numbers of cells per subject, we can obtain a useful
approximation.

THEOREM 1: The expected value of Kij is lij ¼ sjqij. Further, if we assume

that, for some constants k1 and k2, C�1
j

P
csjc ! k1 and C�1

j

P
cs

2
jc ! k2

as Cj !1, then the variance of Kij is lij þ ai þ o 1ð Þ
� 	

l2
ij.

PROOF:

The expected value of Kij is computed by conditioning,

EðKijÞ ¼ E E Kijj kijc; c ¼ 1; . . . ;Cj

� 	� �� �
¼ E E

X
c
sjckijcjhij

� �h i

¼ E sjhij

� �
¼ sjqij

The variance of Kij is computed using iterative applications of
the total variance formula (Ross, 2019),

VarðKijÞ
¼ Var E Kijj kijc; c ¼ 1; . . . ;Cj

� 	� �� �
þ E Var Kijj kijc; c ¼ 1; . . . ;Cj

� 	� �� �

¼ Var
X

c
sjckijc

h i
þ E

X
c
sjckijc

h i

¼ Var E
X

c
sjckijcjhij

� �h i
þ E Var

X
c
sjckijcjhij

� �h i
þ sjqij

¼ Var sjhij

� �
þ E r2

ijhij

X
c

s2
jc


 �
þ sjqij

¼ s2
j q2

ijai þ r2
ij q2

ijai þ q2
ij

� � X
c

s2
jc

� 

þ sjqij

¼ s2
j q2

ij ai þ r2
ij 1þ aið Þ

X
c

s2
jc

� 

=s2

j

� �
þ sjqij

¼ s2
j q2

ij ai þ r2
ij 1þ aið Þ C�1

j

X
c

s2
jc

� 

C�1

j = C�1
j

X
c

sjc

� 
2
( )

þ sjqij

Applying the assumptions C�1
j

P
csjc ! k1 and C�1

j

P
cs

2
jc ! k2

completes the proof. �

To better illustrate the assumptions of the theorem, consider the
case when the size factor sjcis the same for all cells in a sample j and
denote the common size factor as s�j : In this case, C�1

j

P
csjc ¼ s�j and

C�1
j

P
cs

2
jc ¼ s�j

� �2, and the theorem holds. The main idea of the the-
orem is that if gene counts are summed across cells and the number
of cells grows large for each subject, the influence of cell-level vari-
ation on the summed counts is negligible.

Because these assumptions are difficult to validate in practice,
we suggest following the guidelines for library complexity in bulk
RNA-seq studies. Consider a purified cell type (PCT) study design,
in which many cells from a cell type of interest could be isolated and
profiled using bulk RNA-seq. The observed counts for the PCT
study are analogous to the aggregated counts for one cell type in a
scRNA-seq study. Furthermore, guidelines for library complexity in
bulk RNA-seq studies apply to data with heterogeneity between cell
types, so these recommendations should be sufficient for both PCT
and scRNA-seq studies, in which data have been stratified by cell
type.

THEOREM 1 implies that when the number of cells per subject is large, the

aggregated counts follow a distribution with the same mean and vari-

ance structure as the negative binomial model used in many software

packages for DS analysis of bulk RNA-seq data.

2.3 Implementation via aggregateBioVar
Theorem 1 provides a straightforward approach to estimating re-
gression coefficients bi1; . . . ;biR, testing hypotheses and constructing
confidence intervals that properly account for variation in gene ex-
pression between subjects. As an example, consider a simple design
in which we compare gene expression for control and treated sub-
jects. We set xj1 ¼ 1 for all j and define xj2 as a dummy variable
indicating that subject j belongs to the treated group. Then the re-
gression model from Section 2.1 simplifies to log qijð Þ ¼ bi1 þ bi2xj2.
The null and alternative hypotheses for the i-th gene are H ið Þ

0 : bi2 ¼
0 and H ið Þ

0 : bi2 6¼ 0, respectively.
We have developed the software package aggregateBioVar

(available on Bioconductor) to facilitate broad adoption of pseudo-
bulk-based DE testing; aggregateBioVar includes a detailed vignette,
has low code complexity and minimal dependencies and is highly
interoperable with existing RNA-seq analysis software using
Bioconductor core data structures (Fig. 1). See Supplementary
Material for brief example code demonstrating the usage of
aggregateBioVar.

3 Results

In order to contrast DS analysis with cells as units of analysis versus
subjects as units of analysis, we analysed both simulated and experi-
mental data. In our simulation, the analysis focused on transcrip-
tome-wide data simulated from the proposed model for scRNA-seq
counts under different numbers of differentially expressed genes and
different signal-to-noise ratios. To illustrate scalability and perform-
ance of various methods in real-world conditions, we show results
in a porcine model of cystic fibrosis and analyses of skin, trachea
and lung tissues in human sample datasets.

3.1 Simulation
We designed a simulation study to examine characteristics of using
subjects or cells as units of analysis for DS testing under data simu-
lated from the proposed model. Gene counts were simulated from
the model in Section 2.1. To consider characteristics of a real data-
set, we matched fixed quantities and parameters of the model to em-
pirical values from a small airway secretory cell subset from the
newborn pig data we present again in Section 3.2. Specifically, we
considered a setting in which there were two groups of subjects to
compare, containing four and three subjects, respectively with 21
731 genes. For each subject, the number of cells and numbers of
UMIs per cell were matched to the pig data. The number of UMIs
for cell c was taken to be the size factor sjc in stage 3 of the proposed
model.
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Further, the cell-level variance and subject-level variance param-
eters were matched to the pig data. Specifically, if Kijc is the count of
gene i in cell c from pig j, we defined Eijc ¼ Kijc=

P
i0Ki0 jc to be the

normalized expression for cell c from subject j and Eij ¼P
c Kijc=

P
i0
P

cKi0 jc to be the normalized expression for subject j.
Next, we matched the empirical moments of the distributions of

Eijc

� 	
and Eij

� 	
to the population moments. If mi is the sample

mean of fEijg over j, vi is the sample variance of fEijg over j, mij is
the sample mean of fEijcg over c, and vij is the sample variance of
fEijcg over c, we fixed the subject-level and cell-level variance
parameters to be ~a i ¼ vi=m

2
i and ~r2

ij ¼ vij=m
2
ij, respectively.

The regression component of the model took the form
log qijð Þ ¼ bi1 þ xj2bi2, where xj2 is an indicator that subject j is in
group 2. The expression level of gene i for group 1, ~bi1, was matched
to the pig data by setting e

~b i1 ¼
P

j

P
c Kijc=

P
i0
P

j

P
c Ki0 jc. The ex-

pression parameter for the difference between groups 1 and 2, bi2,
was varied in order to evaluate the properties of DS analysis under a
number of different scenarios.

Nine simulation settings were considered. First, a random pro-
portion of genes, pDE, were flagged as differentially expressed. If a
gene was not differentially expressed, the value of bi2 was set to 0. If
a gene was differentially expressed, bi2 was simulated from a normal
distribution with mean 0 and standard deviation (SD) s. The value
of pDE describes the relative number of differentially expressed genes
in a simulated dataset, and the value of s controls the signal-to-noise
ratio. As s increases, the width of the distribution of effect
sizes increases, so that the signal-to-noise ratio for differentially
expressed genes is larger. We considered three values for
pDE 2 f0:01;0:3;0:6g, giving 1%, 30% and 60% of genes as differ-
entially expressed, respectively, and we considered three values for
s 2 f0:5;1:0;1:5g, representing low, medium and high signal-to-
noise ratios, respectively. Comparisons of characteristics of the
simulated and real data are shown in Supplementary Figures S1–S6.

For each setting, 100 datasets were simulated, and we compared
seven different DS methods. The method subject treated subjects as
the units of analysis, and statistical tests were performed according
to the procedure outlined in Sections 2.2 and 2.3. The other six
methods involved DS testing with cells as the units of analysis. Four
of the methods were applications of the FindMarkers function in the
R package Seurat (Butler et al., 2018; Satija et al., 2015; Stuart
et al., 2019) with different options for the type of test performed:
for the method wilcox, cell counts were normalized, log-trans-
formed and a Wilcoxon rank sum test was performed for each gene;
for the method NB, cell counts were modeled using a negative bino-
mial generalized linear model; for the method MAST, cell counts
were modeled using a hurdle model based on the MAST software
(Finak et al., 2015) and for the method DESeq2, cell counts were
modeled using the DESeq2 software (Love et al., 2014). The other
two methods were Monocle, which utilized a negative binomial gen-
eralized additive model to test for differences in gene expression
using the R package Monocle (Qiu et al., 2017a, b; Trapnell et al.,
2014) and mixed, which modeled counts using a negative binomial
generalized linear mixed model with a random effect to account for
differences in gene expression between subjects and DS testing was

performed using a Wald test. For each method, the computed
P-values for all genes were adjusted to control the FDR using the
Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995).

Figure 2 shows precision-recall (PR) curves averaged over 100
simulated datasets for each simulation setting and method. For a se-
quence of cutoff values between 0 and 1, precision, also known as
positive predictive value (PPV), is the fraction of genes with adjusted
P-values less than a cutoff (detected genes) that are differentially
expressed. The recall, also known as the true positive rate (TPR), is
the fraction of differentially expressed genes that are detected.
According to this criterion, the subject method had the best perform-
ance, and the degree to which subject outperformed the other
methods improved with larger values of the signal-to-noise ratio
parameter s.

Figure 3a shows the area under the PR curve (AUPR) for each
method and simulation setting. As we observed in Figure 2, the sub-
ject method had a larger area under the curve than the other six
methods in all simulation settings, with larger differences for higher
signal-to-noise ratios. When only 1% of genes were differentially
expressed, the mixed method had a larger area under the curve than
the other five methods.

In practice, often only one cutoff value for the adjusted P-value
will be chosen to detect genes. Figure 3(b and c) show the PPV and
negative predictive value (NPV) for each method and simulation set-
ting under an adjusted P-value cutoff of 0.05. NPV is the fraction of
undetected genes that were not differentially expressed.

The subject method had the highest PPV, and the NB method
had the lowest PPV in all nine simulation settings. Among the other
five methods, when the number of differentially expressed genes was
small (pDE ¼ 0.01), the mixed method had the highest PPV values,
whereas for higher numbers of differentially expressed genes (pDE >
0.01), the DESeq2 method had the highest PPV values. The wilcox,
MAST and Monocle methods had intermediate performance in these
nine settings.

Generally, the NPV values were more similar across methods.
When only 1% of genes were differentially expressed (pDE ¼ 0.01),
all methods had NPV values near 1. For higher numbers of differen-
tially expressed genes (pDE > 0.01), the subject method had lower
NPV values when s ¼ 0.5 and similar or higher NPV values when
s > 0.5.

Results for alternative performance measures, including receiver
operating characteristic (ROC) curves, TPRs and false positive rates
(FPRs) can be found in Supplementary Figures S7 and S8. In general,
the method subject had lower area under the ROC curve and lower
TPR but with lower FPR.

The computations for each method were performed on the high-
performance computing cluster at the University of Iowa. The clus-
ter contains hundreds of computation nodes with varying numbers
of processor cores and memory, but all jobs were submitted to the
same job queue, ensuring that the relative computation times for
these jobs were comparable. Supplementary Figure S9 contains com-
putation times for each method and simulation setting for the 100
simulated datasets. The subject method had the shortest average
computation times, typically <1 min. Four of the cell-level methods
had somewhat longer average computation times, with MAST run-
ning for 7 min, wilcox and Monocle running for 9 min and NB run-
ning for 18 min. Two of the methods had much longer computation
times with DESeq2 running for 186 min and mixed running for
334 min.

3.2 DS analysis of airway epithelial secretory cells in a

porcine model of cystic fibrosis
In addition to simulated data, we analysed an animal model dataset
containing large and small airway epithelia from CF and non-CF
pigs (Rogers et al., 2008). Standard normalization, scaling, cluster-
ing and dimension reduction were performed using the R package
Seurat version 3.1.1 (Butler et al., 2018; Satija et al., 2015; Stuart
et al., 2019). We identified cell types, and our DS analyses focused
on comparing expression profiles between large and small airways
and CF and non-CF pigs. Here, we present the DS results comparing

Fig. 1. Aggregation technique accounting for subject-level variation in DS analysis.

For each subject, gene counts are summed for all cells. The resulting matrix contains

counts of each genefor each subject and can be analyzed using software for bulk

RNA-seq data
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CF and non-CF pigs only in secretory cells from the small airways.
We performed DS analysis using the same seven methods as Section
3.1.

Figure 4a shows volcano plots summarizing the DS results for
the seven methods. The volcano plot for the subject method shows
three genes with adjusted P-value <0.05 (–log10(FDR) > 1.3),
whereas the other six methods detected a much larger number of
genes. The number of genes detected by wilcox, NB, MAST,
DESeq2, Monocle and mixed were 6928, 7943, 7368, 4512, 5982
and 821, respectively. Among the three genes detected by subject,
the genes CFTR and CD36 were detected by all methods, whereas
only subject, wilcox, MAST and Monocle detected APOB.
Importantly, although these results specifically target differences in
small airway secretory cells and are not directly comparable with
other transcriptome studies, previous bulk RNA-seq (Bartlett et al.,
2016) and microarray (Stoltz et al., 2010) studies have suggested
few gene expression differences in airway epithelial tissues between
CF and non-CF pigs; true differential gene expression between geno-
types at birth is therefore likely to be small, as detected by the sub-
ject method.

Supplementary Figure S10 shows concordance between adjusted
P-values for each method. These methods appear to form two clus-
ters: the cell-level methods (wilcox, NB, MAST, DESeq2 and
Monocle) and the subject-level method (subject), with mixed sharing
modest concordance with both clusters.

Figure 4b shows the top 50 genes for each method, defined by the
smallest 50 adjusted P-values. The subject and mixed methods are
composed of genes that have high inter-group (CF versus non-CF)
and low intra-group (between subject) variability, whereas the wil-
cox, NB, MAST, DESeq2 and Monocle methods tend to be sensitive
to a highly variable gene expression pattern from the third CF pig.

In order to determine the reliability of the unadjusted P-values
computed by each method, we compared them to the unadjusted P-
values obtained from a permutation test. First, the CF and non-CF
labels were permuted between subjects. For this study, there were 35
distinct permutations of CF and non-CF labels between the 7 pigs.
Then, for each method, we defined the permutation test statistic to
be the unadjusted P-value generated by the method. To obtain per-
mutation P-values, we measured the proportion of permutation test
statistics less than or equal to the observed test statistic, which is the
permutation test statistic under the observed labels. For each method,
we compared the permutation P-values to the P-values directly com-
puted by each method, which we define as the method P-values.

Supplementary Figure S11 shows cumulative distribution func-
tions (CDFs) of permutation P-values and method P-values. Because
the permutation test is calibrated so that the permuted data repre-
sent sampling under the null distribution of no gene expression dif-
ference between CF and non-CF, agreement between the
distributions of the permutation P-values and method P-values indi-
cate appropriate calibration of type I error control for each method.
Overall, the subject and mixed methods had the highest concord-
ance between permutation and method P-values. Specifically, the
CDFs are in high agreement for the subject method in the range of
P-values from 0 to 0.2, whereas the mixed method has a slight infla-
tion of small P-values in the same range compared to the permuta-
tion test. All of the other methods compute P-values that are much
smaller than those computed by the permutation tests. These results
suggest that only the subject method will exhibit appropriate type I
error rate control. The lists of genes detected by the other six meth-
ods likely contain many false discoveries.

3.3 DS analysis of large and small airway ciliated cells

in healthy pigs
Our analysis of CF and non-CF pigs showed that the subject method
better controlled the FPR of DS analysis when the expected rate of
true positives is small; here, using the same animal model, we com-
pare large and small airway ciliated cells which are expected to vary
largely.

Fig. 2. PR curves for DS analysis methods. Each panel shows results for 100 simu-

lated datasets in one simulation setting. Rows correspond to different proportions

of differentially expressed genes, pDE and columns correspond to different SDs of

(natural) log fold change, s. In each panel, PR curves are plotted for each of seven

DS analysis methods: subject (red), wilcox (blue), NB (green), MAST (purple),

DESeq2 (orange), Monocle (gold) and mixed (brown). The vertical axis gives the

precision (PPV) and the horizontal axis gives recall (TPR)

Fig. 3. Performance measures for DS analysis of simulated data. (a) AUPR, (b) PPV

with adjusted P-value cutoff 0.05 and (c) NPV with adjusted P-value cutoff 0.05 for

7 DS analysis methods. Each panel shows results for 100 simulated datasets in 1

simulation setting. Rows correspond to different proportions of differentially

expressed genes, pDE and columns correspond to different SDs of (natural) log fold

change, s. The implemented methods are subject (red), wilcox (blue), NB (green),

MAST (purple), DESeq2 (orange), monocle (gold) and mixed (brown). The vertical

axes give the performance measures, and the horizontal axes label each method
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Supplementary Figure S12a shows volcano plots for the results
of the seven DS methods described. In this comparison, many genes
were detected by all seven methods. We detected 6435, 13733,
12772, 13607, 13105, 14288 and 8318 genes by subject, wilcox,
NB, MAST, DESeq2, Monocle and mixed, respectively. The volcano
plots for subject and mixed show a stronger association between ef-
fect size (absolute log2-transformed fold change) and statistical sig-
nificance (negative log10-transformed adjusted P-value).

Supplementary Figure S13 shows concordance between adjusted
P-values for each method. If we omit DESeq2, which seems to be an
outlier, the other six methods form two distinct clusters, with cluster
1 composed of wilcox, NB, MAST and Monocle, and cluster 2 com-
posed of subject and mixed. The intra-cluster correlations are be-
tween 0.9 and 1, whereas the inter-cluster correlations are between
0.51 and 0.62. This figure suggests that the methods that account

for between subject differences in gene expression (subject and
mixed) will detect different sets of genes than the methods that treat
cells as the units of analysis.

Supplementary Figure S12b shows the top 50 genes for each
method, defined as the genes with the 50 smallest adjusted P-values.
All seven methods identify two distinct groups of genes: those with
higher average expression in large airways and those with higher
average expression in small airways. The subject and mixed methods
show the highest ratios of inter-group to intra-group variation in
gene expression, whereas the other five methods have substantial
intra-group variation. This suggests that methods that fail to ac-
count for between subject differences in gene expression are more
sensitive to biological variation between subjects, leading to more
false discoveries.

3.4 Marker detection for T cells and macrophages from

human skin
Next, we applied our approach for marker detection and DS ana-
lysis to published human datasets. Given the similar performances
of wilcox, NB, MAST, DESeq2 and Monocle, in the simulations
and animal model analysis, we only show the results for subject, wil-
cox and mixed. We performed marker detection analysis of cells
obtained from a study of five human skin punch biopsies (Sole-
Boldo et al., 2020). Because we are comparing different cells from
the same subjects, the subject and mixed methods can also account
for the matching of cells by subject in the regression models.

Supplementary Figure S14 shows the results of marker detection
for T cells and macrophages. For each of these two cell types, the ex-
pression profiles are compared to all other cells as in traditional
marker detection analysis. Supplementary Figure S14(c–d) show
that generally the shapes of the volcano plots are more similar be-
tween the subject and mixed methods than the wilcox method.

In Supplementary Figure S14(e–f), we quantify the ability of
each method to correctly identify markers of T cells and macro-
phages from a database of known cell type markers (Franzen et al.,
2019). First, the adjusted P-values for each method are sorted from
smallest to largest. Then, we consider the top g genes for each
method, which are the g genes with the smallest adjusted P-values,
and find what percentage of these top genes are known markers. For
the T cells, (Supplementary Fig. S14e), we find that the subject and
wilcox methods produce ranked gene lists with higher frequencies of
marker genes than the mixed method, with subject having a slightly
higher detection of known markers than wilcox. For macrophages
(Supplementary Fig. S14f), wilcox produces better ranked gene lists
of known markers than both subject and wilcox and again, the
mixed method has the worst performance. Overall, these results sug-
gest that the current marker detection analysis tools used in common
practice, such as wilcox, will produce a reliable set of markers.

3.5 Marker detection for CD661 and CD66- basal cells

from human trachea
In order to objectively measure the performance of our tested
approaches in scRNA-seq DS analysis, we compared them to a gold
standard consistent of bulk RNA-seq analysis of purified/sorted cell
types. In a scRNA-seq study of human tracheal epithelial cells from
healthy subjects and subjects with idiopathic pulmonary fibrosis
(IPF), the authors found that the basal cell population contained spe-
cialized subtypes (Carraro et al., 2020). One such subtype, defined
by expression of CD66, was further processed by sorting basal cells
according to detection of CD66 and profiling by bulk RNA-seq.
Here, we compare the performance of subject, wilcox and mixed to
detect cell subtype markers of CD66þ and CD66- basal cells with
bulk RNA-seq data from corresponding PCTs. To avoid confound-
ing the results by disease, this analysis is confined to data from six
healthy subjects in the dataset.

Figure 5 shows the results of the marker detection analysis.
Compared to the T cell and macrophage marker detection analysis
in Section 3.4, we note that the CD66þ and CD66-basal cells are
not as transcriptionally distinct (Fig. 5a). The volcano plots for the
three scRNA-seq methods have similar shapes, but the wilcox and

Fig. 4. Results for analysis of CF and non-CF pig small airway secretory cells. (a)

Volcano plots and (b) heatmaps of top 50 genes for 7 different DS analysis methods.

In (a), vertical axes are negative log10-transformed adjusted P-values, and horizontal

axes are log2-transformed fold changes. In (b), rows correspond to different genes,

and columns correspond to different pigs. The top 50 genes for each method were

defined to be the 50 genes with smallest adjusted P-values. Subject-level gene expres-

sion scores were computed as the average counts per million for all cells from each

subject. NCF ¼ non-CF
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mixed methods have inflated adjusted P-values relative to subject
(Fig. 5c).

Figure 5d shows ROC and PR curves for the three scRNA-seq
methods using the bulk RNA-seq as a gold standard. In the bulk
RNA-seq, genes with adjusted P-values less than 0.05 and at least a
2-fold difference in gene expression between CD66þ and CD66-
basal cells are considered true positives and all others are considered
true negatives. Supplementary Table S1 shows performance meas-
ures derived from these curves. In terms of identifying the true posi-
tives, wilcox and mixed had better performance (TPR ¼ 0.62 and
0.56, respectively) than subject (TPR ¼ 0.34). On the other hand,
subject had the smallest FPR (0.03) compared to wilcox and mixed
(0.26 and 0.08, respectively) and had a higher PPV (0.38 compared
to 0.10 and 0.23). Overall, mixed seems to have the best perform-
ance, with a good tradeoff between false positive and TPRs.

3.6 DS analysis of healthy and fibrotic alveolar type II

cells and alveolar macrophages from human lung
We evaluated the performance of our tested approaches for human
multi-subject DS analysis in health and disease. Reyfman et al.
(2019) used scRNA-seq to profile cells from the lungs of healthy
subjects and those with pulmonary fibrosis disease subtypes, includ-
ing hypersensitivity pneumonitis, systemic sclerosis-associated and
myositis-associated interstitial lung diseases and IPF (Reyfman et al.,
2019). Further, they used flow cytometry to isolate alveolar type II
(AT2) cell and alveolar macrophage (AM) fractions from the lung
samples and profiled these PCTs using bulk RNA-seq. We compared
the performances of subject, wilcox and mixed for DS analysis of
the scRNA-seq from healthy and IPF subjects within AT2 and AM
cells using bulk RNA-seq of purified AT2 and AM cell type fractions
as a gold standard, similar to the method used in Section 3.5.

The results of our comparisons are shown in Figure 6. First, we
identified the AT2 and AM cells via clustering (Fig. 6a) and plotting
well-known markers of these two cell types (Fig. 6b). Next, we used
subject, wilcox and mixed to test for differences in expression be-
tween healthy and IPF subjects within the AT2 and AM cell popula-
tions. Overall, the volcano plots for subject and mixed look similar
with a higher number of genes upregulated in the IPF group, while
the wilcox method exhibits a much different shape with more genes
highly downregulated in the IPF group. Figure 6(e and f) shows
ROC and PR curves for the three scRNA-seq methods using the
bulk RNA-seq as a gold standard. As in Section 3.5, in the bulk

RNA-seq, genes with adjusted P-values less than 0.05 and at least a
2-fold difference in gene expression between healthy and IPF are
considered true positives and all others are considered true nega-
tives. Supplementary Table S2 contains performance measures
derived from the ROC and PR curves. For the AT2 cells (Fig. 6e),
subject and mixed have the same area under the ROC curve (0.82)
while the wilcox method has slightly smaller area (0.78). Further,
subject has the highest AUPR (0.21) followed by mixed (0.14) and
wilcox (0.08). For the AM cells (Fig. 6f), the results are similar to
AT2 cells with subject having the highest areas under the ROC and
PR curves (0.88 and 0.15, respectively), followed by mixed (0.86
and 0.05, respectively) and wilcox (0.83 and 0.01, respectively). The
subject method has the strongest type I error rate control and highest
PPVs, wilcox has the highest TPRs and mixed has intermediate per-
formance with better TPRs than subject yet lower FPRs than wilcox
(Supplementary Table S2).

4 Discussion

In summary, here we (i) suggested a modeling framework for
scRNA-seq data from multiple biological sources, (ii) showed how
failing to account for biological variation could inflate the FDR of
DS analysis and (iii) provided a formal justification for the validity
of ‘pseudobulking’ to allow DS analysis to be performed on scRNA-
seq data using software designed for DS analysis of bulk RNA-seq
data (Crowell et al., 2020; Lun et al., 2016; McCarthy et al., 2017).
Pseudobulking has been tested in real scRNA-seq studies (Kang
et al., 2018) and benchmarked extensively via simulation (Crowell
et al., 2020). Because pseudobulk methods operate on gene-by-cell
count matrices, they are broadly applicable to various single-cell
technologies. It is important to emphasize that the aggregation of
counts occurs within cell types or cell states, so that the advantages
of single-cell sequencing are retained.

As scRNA-seq studies grow in scope, due to technological
advances making these studies both less labor-intensive and less ex-
pensive, biological replication will become the norm. Further, apply-
ing computational methods that account for all sources of variation
will be necessary to gain better insights into biological systems,
operating at the granular level of cells all the way up to the level of
populations of subjects. The analyses presented here have illustrated
how different results could be obtained when data were analysed
using different units of analysis.

Fig. 5. Comparison of methods for detection of CD66þ and CD66- basal cell markers from human trachea. (a) t-SNE plot shows CD66þ (turquoise) and CD66- (salmon)

basal cells from single-cell RNA-seq profiling of human trachea. (b) CD66þ basal cells were identified via detection of CEACAM5 or CEACAM6. (c) Volcano plots show

results of three methods (subject, wilcox and mixed) used to identify CD66þ and CD66- basal cell marker genes. As a gold standard, results from bulk RNA-seq comparing

CD66þ and CD66- basal cells (bulk). (d) ROC and PR curves for subject, wilcox and mixed methods using bulk RNA-seq as a gold standard. True positives were identified as

those genes in the bulk RNA-seq analysis with FDR<0.05 and jlog2(CD66þ/CD66–)j>1
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Whereas the pseudobulk method is a simple approach to DS ana-
lysis, it has limitations. First, it is assumed that prerequisite steps in
the bioinformatic pipeline produced cells that conform to the
assumptions of the proposed model. As a counterexample, suppose
cells were misclassified, such that cells classified as type A are in
reality, composed of a mixture of cells of types A and B. If subjects
are composed of different proportions of types A and B, DS results
could be due to different cell compositions rather than different
mean expression levels.

Second, there may be imbalances in the numbers of cells col-
lected from different subjects. In a study in which a treatment has
the effect of altering the composition of cells, subjects in the treat-
ment and control groups may have different numbers of cells of each
cell type. Under normal circumstances, the DS analysis should re-
main valid because the pseudobulk method accounts for this imbal-
ance via different size factors for each subject. In extreme cases,
where only a few cells have been collected for some subjects, inter-
pretation of gene expression differences should be handled with cau-
tion. This issue is most likely to arise with rare cell types, in which
few or no cells are profiled for any subject. In practice, we have
omitted comparisons of gene expression in rare cell types because
the gene expression profiles had high variation, and the reliability of
the comparisons was questionable.

Third, the proposed model also ignores many aspects of the gene
expression distribution in favor of simplicity. For example, consider
a hypothetical gene having heterogeneous expression in CF pigs,
where cells were either ‘low expressors’ or ‘high expressors’ versus
homogeneous expression in non-CF pigs, where cells were ‘moder-
ate expressors’. In that case, the number of modes in the expression
distribution in the CF group (bimodal) and the non-CF group (uni-
modal) would be different, but the pseudobulk method may not de-
tect a difference, because it is only able to detect differences in mean
expression. A richer model might assume cell-level expression is
drawn from a non-parametric family of distributions in the second
stage of the proposed model rather than a gamma family.

Improvements in type I and type II error rate control of the DS
test could be considered by modeling cell-level gene expression
adjusted for potential differences in gene expression between

subjects, similar to the mixed method in Section 3. The study by
Zimmerman et al. provides an argument for using mixed models
over pseudobulk methods because pseudobulk methods discovered
fewer differentially expressed genes. In our simulation study, we
also found that the pseudobulk method was conservative, but in
some settings, mixed models had inflated FDR. A more powerful
statistical test that yields well-controlled FDR could be constructed
by considering techniques that estimate all parameters of the hier-
archical model. More conventional statistical techniques for hier-
archical models, such as maximum likelihood or Bayesian
maximum a posteriori estimation, could produce less noisy param-
eter estimates and hence, lead to a more powerful DS test (Gelman
and Hill, 2007). These approaches will likely yield better type I and
type II error rate control, but as we saw for the mixed method in our
simulation, the computation times can be substantially longer and
the computational burden of these methods scale with the number
of cells, whereas the pseudobulk method scales with the number of
subjects. Future work with mixed models for scRNA-seq data
should focus on maintaining scalable and computationally efficient
implementation in software.

Our study highlights user-friendly approaches for analysis of
scRNA-seq data from multiple biological replicates. These
analyses provide guidance on strengths and weaknesses of
different methods in practice. Generally, tests for marker detection,
such as the wilcox method, are sufficient if type I error rate control
is less of a concern than type II error rate and in circumstances
where type I error rate is most important, methods like subject and
mixed can be used. Until computationally efficient methods exist to
fit hierarchical models incorporating all sources of biological vari-
ation inherent to scRNA-seq, we believe that pseudobulk methods
are useful tools for obtaining time-efficient DS results with well-con-
trolled FDR.

Data availability

The data from pig airway epithelia underlying this article are avail-
able in GEO and can be accessed with GEO accession GSE150211.

Fig. 6. Analysis of AT2 cells and AMs from healthy and IPF lungs. (a) t-SNE plot shows AT2 cells (red) and AM (green) from single-cell RNA-seq profiling of human lung

from healthy subjects and subjects with IPF. (b) AT2 cells and AM express SFTPC and MARCO, respectively. (c and d) Volcano plots show results of three methods (subject,

wilcox and mixed) used to find differentially expressed genes between IPF and healthy lungs in (c) AT2 cells and (d) AM. As a gold standard, results from bulk RNA-seq of iso-

lated AT2 cells and AM comparing IPF and healthy lungs (bulk). (e and f) ROC and PR curves for subject, wilcox and mixed methods using bulk RNA-seq as a gold standard

for (e) AT2 cells and (f) AM. True positives were identified as those genes in the bulk RNA-seq analysis with FDR<0.05 and jlog2(IPF/healthy)j>1
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Data for the analysis of human skin biopsies were obtained from
GEO accession GSE130973. Data for the analysis of human trachea
were obtained from GEO accessions GSE143705 (bulk RNA-seq)
and GSE143706 (scRNA-seq). The scRNA-seq data for the analysis
of human lung tissue were obtained from GEO accession
GSE122960, and the bulk RNA-seq of purified AT2 and AM frac-
tions were shared by the authors immediately upon request.
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