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Abstract

The normal probability density function (PDF) is widely used in parameter estimation in the 

modeling of dynamic systems, assuming that the random variables are distributed at infinite 

intervals. However, in practice, these random variables are usually distributed in a finite region 

confined by the physical process and engineering practice. In this study, we address this issue 

through the application of truncated normal PDF. This method avoids a non-differentiable problem 

inherited in the truncated normal PDF at the truncation points, a limitation that can limit the 

use of analytical methods (e.g., Gaussian approximation). A data assimilation method with the 

derived formula is proposed to describe the probability of parameter and measurement noise in 

the truncated space. In application to a water distribution system (WDS), the proposed method 

leads to estimating nodal water demand and hydraulic pressure key to hydraulic and water 

quality model simulations. Application results to a hypothetical and a large field WDS clearly 

show the superiority of the proposed method in parameter estimation for WDS simulations. This 

improvement is essential for developing real-time hydraulic and water quality simulation and 

process control in field applications when the parameter and measurement noise are distributed in 

the finite region.
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1. INTRODUCTION

Parameter estimation and calibration play a crucial role in the modeling and management 

of water resources systems, as emphasized in several studies (Savic et al. 2009; Beckers 

et al. 2020; Scott et al. 2022; Yoon et al. 2022). The main objective is to minimize 

discrepancies between model outputs and measured values by adjusting network parameters, 

including nodal water demand and pipe roughness. However, this task can be challenging 

due to the large number of parameters involved and the limited availability of measured 

data. Consequently, parameter estimation often faces ill-conditioning issues, where the 

insufficient number of measurements leads to non-unique solutions within the search 

domain (Shao et al. 2019). In addition, uncertainties in both the measurement and model 

itself can significantly impact the parameter estimation accuracy. Often time parameter 

estimation from such a noisy environment is a major challenge for the modeling of water 

resources systems (Chu et al. 2021a, 2021b). Data assimilation with consideration of various 

uncertainties has been used for parameter estimation in model simulations (Vrugt et al. 

2005; Hutton et al. 2014; Zhou et al. 2020).

Data assimilation estimates the state of a process based on time-series measurements. The 

state estimator relies on the knowledge of the posterior probability distribution function 

(PDF) of the state given the real-time measurements (Bar-shalom et al. 2001). Generally, 

the posterior PDF is approximated in a recursion, which involves two stages: the prediction 

stage and the update stage (Garcia-Fernandez et al. 2012; Hutton et al. 2014). In the 

prediction stage, the PDF of the state at the current time step is predicted from the 

historical data, referred to as the prior PDF. In the update stage, the likelihood describes 

the probabilistic relationship between the state and measurement. The likelihood and prior 

PDF are combined based on the Bayesian rule to approximate the posterior PDF (Garcia-

Fernandez et al. 2012).

Numerous data assimilation methods have been proposed to solve the state estimation 

problem through the sample-based and analytical methods (e.g., Gaussian approximation). 

The sampling-based, such as particle filter, Markov Chain Monte Carlo, stipulates that one 

or more samples (particles) are sampled from the prior PDF, and then the likelihood or 

posterior PDF evaluates the sampled value. If the sampled value agrees with the likelihood 

or posterior PDF, it is retained, and the algorithm proceeds to the next variable in turn 

(Bishop 2006). However, sampling-based methods may be time-consuming for large-scale 

non-linear systems because they require frequent evaluation of the samples’ probability 

density. For this reason, there is considerable interest in computationally efficient analytical 

methods (e.g., Gaussian approximations) (Garcia-Fernandez et al. 2012). Kalman filter is the 

most well-known analytical method for state estimation in the linear system. For the non-

linear system, the extended Kalman filter (Singh et al. 2022) and the iterative Kalman filter 

(Huang et al. 2022) have been developed, in which a linearized approximation of the system 

function is required (Garcia-Fernandez et al. 2012; Shao et al. 2019). In the linearization 

of the system, the first-order gradient (Jacobian matrix) or second-order gradient (Hessian 

matrix) information is utilized to search for the optimal solution. This analytical method is 

more computationally efficient.
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One common assumption in the analytical method is that the prior PDF of the state variable 

conforms to a normal PDF over the full range (−∞, ∞) (Law et al. 2015; Yang et al. 2018; 

Shao et al. 2019). In practice, however, the state variable is usually distributed in the finite 

region. Besides, no sensors can provide an infinitely large measurement (Garcia-Fernandez 

et al. 2012), for which the measurement noise should be bounded in the reasonable region. 

This practice is not consistent with the unbounded likelihood assumed in most models 

(Garcia-Fernandez et al. 2012). Therefore, the state variable or measurement constraints to 

confine them in the feasible domain must be considered in the data assimilation process 

(Lauvernet et al. 2009), a difficult requirement that calls for developing efficient algorithms 

to handle the constraints.

A popular method to address the problem is by incorporating constraints in data assimilation 

(Ko & Bitmead 2007; Lauvernet et al. 2009; Garcia-Fernandez et al. 2012; Xu et al. 

2013). Ko & Bitmead (2007) proposed a constrained Kalman filter based on the projected 

system method. The method’s superiority was demonstrated by comparing the magnitude 

of the estimation error covariance matrix with those of the unconstrained Kalman filters. 

Garcia-Fernandez et al. (2012) developed a method to solve the state estimation problem 

under bounded measurement noise. The boundary information of the measurement noise is 

used to modify the prior PDF of the state variable based on the Bayesian rule, while the 

Kalman filter is used to fuse the modified prior PDF with the likelihood. Simon & Simon 

(2010) described a PDF truncation method by incorporating constraints into the Kalman 

filter and applied this method to an aircraft turbofan engine health estimation problem. 

Andersson et al. (2019) developed a linear state estimation method with linear equality 

constraints for time-variant systems. Xu et al. (2013) constructed a linear equality constraint 

dynamic model by incorporating the constraints as the prior information about the states 

into the dynamics modeling. Overall, the above methods address the constraint problem by 

introducing equality or inequality constraints to data assimilation.

Another approach to address the problem is to modify the normal PDF, referred to as 

truncated normal PDF, to restrict the value range of state variables. The truncated normal 

PDF has many application scenarios in Bayesian inference for truncated parameter space 

problems. Robert (1995) proposed an efficient algorithm for unidimensional truncated 

normal variables and a multidimensional extension. Generally, the theoretical truncated 

normal PDF is equal to the normal distribution PDF in the feasible region, and is directly 

equal to 0 outside the feasible region (Burkardt 2014).

The theoretical truncated normal PDF has been widely used in sample-based state estimation 

problems (Zhou et al. 2018). However, it is rarely used in the analytical method since the 

non-differentiable truncation points lead to intricate numerical integration (Robert 1995). 

For the analytical method, due to the requirement of the linearization of the system, 

the function should be differentiable, and the first-order gradient (Jacobian matrix) or 

second-order gradient (Hessian matrix) information is utilized. The difficulty in applying 

the truncated normal PDF to the analytical method is the non-differentiability of a truncated 

normal PDF at the truncation points.
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In a water distribution system (WDS) simulation, the hydraulic modeling faces the same 

difficulty in the state estimation using the truncated normal PDF. The hydraulic models 

have been widely implemented to address the system analysis, design, and operation of 

a WDS (Zeng et al. 2016; Oikonomou et al. 2018; Harmouche & Narasimhan 2020). 

For real-time control purposes, the model parameter such as the nodal water demand is 

a time-dependent state variable that should be estimated given real-time measurements, 

for which the analytical method is suggested for its superiority in terms of computational 

efficiency. When the PDF of nodal water demand is assumed as a standard normal PDF, the 

variable ranges from negative infinity to positive infinity (Shao et al. 2019). The probability 

of negative or excessive values is not equal to zero. Therefore, the search space ranges from 

negative infinity to positive infinity. In addition, when the measured values of some pressure 

sensors are inaccurate or have large uncertainty, the nodal water demands may adjust 

to negative or excessive values, which is an infeasible condition in practice. A possible 

solution to this problem is to introduce a truncated normal PDF. However, the PDF used in 

analytical methods must be differentiable, whereas the truncated normal PDF cannot meet 

this condition. As shown in Figure 1, the PDF value drops sharply to 0 on the truncation 

points, at which the PDF is non-differentiable. Currently, one strategy to solve this problem 

is to set all negative values to 0 when finishing all the nodal water demand estimations. 

Another strategy is reassigning the PDF in the infeasible region to the feasible region 

(Shimada et al. 1998; Simon & Simon 2010). Nevertheless, both strategies mentioned above 

are too inefficient and do not solve the fundamental problem of the non-differentiability of 

the truncation points.

The primary aim of this study is to propose a truncated normal PDF to overcome the 

difficulty of non-differentiable at truncated points. Then, the truncated normal PDF is used 

to describe the prior PDF and likelihood based on the probability modeling of state variable 

and measurement noise in the truncated space. The prior PDF and likelihood are fused in 

the data assimilation framework, and analytical solutions for state estimation in a non-linear 

system are developed. Furthermore, we have applied the developed method to estimate the 

nodal water demand in a hypothetical WDS and indirectly through nodal pressure estimate 

in a field WDS. The results show that the method can deal with the state estimation problem 

under the condition that the state variable and measurement noise are distributed in the finite 

region. Moreover, the developed method can be effectively applied to estimate a wide range 

of parameters in WDS models, such as pipe roughness.

2. METHODS

2.1. Modeling of truncated normal PDF

2.1.1. Two-side truncated normal PDF—The proposed normal PDF truncated to 

some interval a, b  has the following form:

P (x ∣ μ, σ, a, b) = C ⋅ exp − (x − μ)2

2σ2 − λ 1
x − a + 1

b − x

(1)
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where x ∈ ℝ1 is the random variable; μ and σ are the mean and standard deviation of the 

normal PDF; λ is a constant and λ > 0; C is the normalization constant, which ensures that 

Equation (1) yields a valid probability density and integrates to a unit one.

The shapes of the developed truncated normal PDF for different λ are shown in Figure 

1, when μ = 1, σ = 1, a = 0, b = 3. The PDF for the theoretical truncated normal PDF 

(black line) drops sharply to 0 at the truncation points (Figure 1), at which the PDF is 

non-differentiable. For a fully developed PDF, the probability density values transition to 

0 continuously in close approximation to the theoretical truncated distribution (Figure 1). 

These properties are important for the analytical method in the state variable estimation:

lim
x a+

P (x ∣ μ, σ, a, b) = 0 and lim
x b−

P (x ∣ μ, σ, a, b) = 0

(2)

The proposed PDF (red line in Figure 1) has modeling errors in approximation compared to 

the theoretical truncated normal PDF (black line in Figure 1). Importantly, the magnitude of 

the modeling error is mainly controlled by the parameter λ. With a decreasing λ value, the 

proposed PDF better replicate the theoretical PDF. The smaller the λ, the smaller the error 

of the truncated normal PDF. Also notable is that the parameter λ affects the convergence of 

results in the state estimation for non-linear systems, for which the recommended range is 

0 < λ ≤ 1.

2.1.2. One-side truncated normal PDF—Equation (1) can be easily applied to the 

one-side truncated normal PDF (a = − ∞ or b = + ∞):

P (x ∣ μ, σ, − ∞, b) = lim
a − ∞

P (x ∣ μ, σ, a, b)

= C ⋅ exp − (x − μ)2

2σ2 − λ
b − x

(3)

P (x ∣ μ, σ, a, + ∞) = lim
b + ∞

P (x ∣ μ, σ, a, b)

= C ⋅ exp − (x − μ)2

2σ2 − λ
x − a

(4)

The shapes of the developed one-side truncated normal PDF are shown in Figure 2.

2.2. Data assimilation via truncated normal PDF

2.2.1. Probability formulation for data assimilation—Consider a non-linear 

dynamic system given by Equations (5) and (6):
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xt = Axt − 1 + ωt

(5)

yt = ℎ xt + ηt

(6)

where t is the time index; xt ∈ ℝn is the state variable to be estimated; A ∈ ℝn × n is the 

prediction matrix and ω ∈ ℝn is the prediction error; yt ∈ ℝm is the measurement; ℎ() ∈ ℝm

is the non-linear function mapping xt to yt; ηt is the measurement noise; m and n are the 

dimensions of yt and xt. In the classical data assimilation algorithm, ωt and ηt are uncorrelated 

zero mean normal noise input sequences:

p ωt = N ωt ∣ 0, P and p ηt = N ηt ∣ 0, R

(7)

where N() is the normal PDF; P ∈ ℝn × n and R ∈ ℝm × m are the covariance matrix for ωt and 

ηt, respectively.

Based on Equations (5)–(7), we can write that

p xt = N xt ∣ xt ∣ t − 1, P t ∣ t − 1

(8)

p yt ∣ xt = N yt ∣ ℎ xt , R

(9)

where xt ∣ t − 1 = Axt − 1 and P t ∣ t − 1 = AP t − 1AT + P

Equation (8) is the prior PDF for the state variable xt and Equation (9) is the likelihood. The 

data assimilation method aims to estimate xt by assimilating the prior and likelihood. Based 

on Bayesian theory, the posterior PDF for xt can be written as

p xt ∣ yt ∝ p yt ∣ xt p xt

(10)

Then, the state variable xt is estimated by maximizing the posterior PDF:

maxp xt ∣ yt

(11)
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Equation (11) can be solved by a sampling-based method (Do et al. 2017; Zhou et al. 2018) 

or an analytical method (Shao et al. 2019; Singh et al. 2022). This paper focuses on the use 

of analytical methods to estimate the state variable xt.

Here we assume that: (1) the elements in xt are independent of each other, thus 

cov xt(i), xt(j) = 0, i ≠ j; (2) the measurement noise from different sensors is independent of 

each other, thus cov ηt(i), ηt(j) = 0, i ≠ j. In this situation, P t ∣ t − 1 and R are diagonal matrices. 

The prior PDF and likelihood can be written as Equations (12) and (14), respectively:

p xt = ∏
i = 1

n
p xt(i)

(12)

p xt(i) = N xt(i) ∣ xt ∣ t − 1(i), P t ∣ t − 1(i)

(13)

p yt ∣ xt = ∏
i = 1

m
p yt(i) ∣ xt

(14)

p yt(i) ∣ xt = N yt(i) ∣ ℎ xt, i , R(i)

(15)

where xt(i), xt ∣ t − 1(i), yt(i), and ℎ xt, i  are the ith element of xt, xt ∣ t − 1, yt, and ℎ xt , respectively; 

P t ∣ t − 1(i) and R(i) are the ith diagonal value of P t ∣ t − 1 and R, respectively.

By substituting Equations (12) and (14) into Equation (10), the posterior PDF has the 

following form:

p xt ∣ yt ∝ ∏
i = 1

n
p xt(i) ∏

i = 1

m
p yt(i) ∣ xt

(16)

Equations (13) and (15) are normal PDFs, given the dynamic system described by Equations 

(5) and (6). In normal PDF, the theoretical values of random variables are distributed at 

infinite intervals (Tokmachev 2018). However, in the realistic problem, xt(i) and ηt(i) are 

usually distributed in the finite region. This issue is addressed by the use of the proposed 

truncated normal PDF.
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2.2.2. Truncated prior PDF and likelihood—Assuming that xt(i) ∈ ax(i), bx(i) , the 

truncated normal prior PDF has the following form:

p xt(i) = Cx(i) ⋅ exp − xt(i) − xt ∣ t − 1(i) 2
2P t ∣ t − 1(i) − λ 1

xt(i) − ax(i) + 1
bx(i) − xt(i)

(17)

Assuming that ηt(i) ∈ aη(i), bη(i) , we can conclude that yt(i) ∈ ℎ xt, i + aη, ℎ xt, i + bη . The 

likelihood has the following form:

p yt(i) ∣ xt = Cy(i) ⋅ exp − yt(i) − ℎ xt, i 2
2R(i) − λ 1

ℎ(i) − aℎ(i) + 1
bℎ(i) − ℎ(i)

(18)

where aℎ(i) = y xt, i − bη(i) and bℎ(i) = y xt, i − aη(i).

Substituting Equations (17) and (18) into Equation (16) yields the truncated posterior PDF. 

In the following section, an analytical method is adopted to estimate the state variable xt by 

maximizing the truncated posterior PDF refer to Equation (16).

2.3. Analytical solutions for non-linear system

2.3.1. The objective function—Maximizing the truncated posterior PDF p xt ∣ yt , as 

shown in Equation (16), is equivalent to maximizing the logarithm of p xt ∣ yt :

maxp xt ∣ yt ∝ maxln p xt ∣ yt = max ∑
i = 1

n
ln p xt(i) + ∑

i = 1

m
ln p yt(i) ∣ xt

(19)

Considering that

ln p xt(i) = − xt(i) − xt ∣ t − 1(i) 2
2P t ∣ t − 1(i) − λ 1

xt(i) − ax(i) + 1
bx(i) − xt(i) + lnCx(i)

ln p yt(i) ∣ xt = − yt(i) − ℎ xt, i 2
2R(i) − λ 1

ℎ(i) − aℎ(i) + 1
bℎ(i) − ℎ(i) + Cy(i)

Equation (19) can be written as
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minJ xt = ∑
i = 1

n xt(i) − xt ∣ t − 1(i) 2
2P t ∣ t − 1(i) + λ ∑

i = 1

n 1
xt(i) − ax(i) + 1

bx(i) − xt(i)

+ ∑
i = 1

m yt(i) − ℎ xt, i 2
2R(i) + λ ∑

i = 1

m 1
ℎ(i) − aℎ(i) + 1

bℎ(i) − ℎ(i)

(20)

As shown in Equation (20), when the parameter xt(i) or ℎ(i) approaches the boundary 

from the inner of the feasible domain, e.g., ax(i), bx(i)  for xt(i) and aℎ(i), bℎ(i)  for ℎ(i), the 

optimization objective function will increase sharply. Then the variables can be effectively 

constrained to the feasible domain by minimizing the objective function. This strategy is 

similar to the barrier method to solve non-linearly constrained optimization problems, in 

which λ is the barrier parameter affects the number of iterations and the convergence effect 

(Nocedal & Wright 2006).

2.3.2. Non-linear solution—Considering that ℎ() is a non-linear function, Equation (20) 

is also non-linear, for which Newton’s iteration method is adopted in this study to minimize 

Equation (20). The corrector computed by Newton’s iteration method can be expressed as

Δxt
k = − ∇2J xt

k −1∇J xt
k

(21)

xt
k + 1 = xt

k + Δxt
k

(22)

where Δxt
k ∈ ℝn × 1 is the correction vector of the kth iteration; ∇J xt

k  and ∇2J xt
k  are the 

first-order gradient and the second-order gradient of J xt
k , respectively. ∇2J xt

k  and ∇J xt
k

can be derived as follows:

∇J xt
k = P t ∣ t − 1

−1 xt
k − xt ∣ t − 1 + λT xt

k + ∑
i = 1

m ℎ(i) − yt(i)
R(i) [∇ℎ(i)]T

+ λ ∑
i = 1

m −1
ℎ(i) − aℎ(i) 2 + 1

ℎ(i) − bℎ(i) 2 [∇ℎ(i)]T

(23)
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∇2J xt
k = P t ∣ t − 1

−1 + 2λdiag Q xt
k + ∑

i = 1

m 1
R(i) [∇ℎ(i)]T ∇ℎ(i) + ℎ(i) − yt(i) ∇(∇ℎ(i))T

+ 2λ ∑
i = 1

m 1
ℎ(i) − aℎ(i) 3 − 1

ℎ(i) − bℎ(i) 3 [∇ℎ(i)]T ∇ℎ(i)

+ λ ∑
i = 1

m −1
ℎ(i) − aℎ(i) 2 + 1

ℎ(i) − bℎ(i) 2 ∇(∇ℎ(i))T

(24)

where T xt
k ∈ ℝn × 1 and Q xt

k ∈ ℝn × 1, and ∇ℎ(i) ∈ ℝ1 × n. These vectors can be computed 

by

T xt
k =

−1
xt

k(1) − ax(1) 2 + 1
xt

k(1) − bx(1) 2

⋯
−1

xt
k(i) − ax(i) 2 + 1

xt
k(i) − bx(i) 2

⋯
−1

xt
k(n) − ax(n) 2 + 1

xt
k(n) − bx(n) 2

(25)

Q xt
k =

1
xt

k(1) − ax(1) 3 − 1
xt

k(1) − bx(1) 3

⋯
1

xt
k(i) − ax(i) 3 − 1

xt
k(i) − bx(i) 3

⋯
1

xt
k(n) − ax(n) 3 − 1

xt
k(n) − bx(n) 3

(26)

∇ℎ(i) = ∂ℎ xt, i
∂xt

k

(27)

Considering that ∇(∇ℎ(i))T ≈ 0, Equation (24) can be written as

∇2J xt
k = P t ∣ t − 1

−1 + 2λdiag Q xt
k + ∑

i = 1

m 1
R(i) [∇ℎ(i)]T ∇ℎ(i)

+ 2λ ∑
i = 1

m 1
ℎ(i) − aℎ(i) 3 − 1

ℎ(i) − bℎ(i) 3 [∇ℎ(i)]T ∇ℎ(i)
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(28)

The state variable xt can be estimated iteratively by substituting Equations (23) and (28) to 

Equations (21) and (22). The covariance of the state variable, xt, can be computed by

P t = ∇2J xt
−1

(29)

Equation (29) can be solved based on Woodbury-Matrix-Identity Formula. The steps of the 

iteration are shown in Figure 3 and in a flow chart in the Supplementary Material.

3. APPLICATION TO NODAL WATER DEMAND ESTIMATION

The proposed method is applied to the nodal water demand estimation in two water 

distribution networks. The first one is a hypothetical simple network, and the other is 

a large-scale field network located in eastern China. Case study 1 is used to verify the 

proposed method with a hypothetical simple network. In Case study 2, the performance of 

the proposed method is evaluated when used to solve a real large-scale state estimation.

3.1. Case study 1: Simple hypothetical network

The simple hypothetical network consists of 8 nodes, 11 pipes, and 1 reservoir, with two 

pressure sensors and three flow sensors (Figure 4). We use two methods to estimate the 

nodal water demand. One is the method proposed in this study, and another is proposed by 

Shao et al. (2019). The main difference between the two methods is whether the truncated 

normal distribution is used. A 3 days simulation with a time step of 20 min is carried out.

Random noise is added to the theoretical value to obtain the observed value yt and the 

noise is normally distributed with a variance of R. The variance (R) for the pressure 

and flow sensors are 1 m2 and 1 (L=s)2, respectively. The prior nodal water demand 

is generally predicted from historical data (Chu et al. 2021a). In this case study, we 

assume that the mean value of prior nodal water demand is equal to the estimated 

nodal water demand in the previous time step xt ∣ t − 1 = xt − 1 . In the first time-step, 

the total water demand is equally allocated to each node as the prior node water 

demand, with x0 = [8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5]T . The covariance P t ∣ t − 1  is assumed to 

be a constant, with P t ∣ t − 1 = diag(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0). The truncation point for 

the prior PDF is computed as ax(i), bx(i) = 0.5xr(i), 2xr(i) , where xr(i) is the theoretical 

value of the ith nodal water demand. For the pressure sensor, the truncation points for 

the likelihood are determined by aℎ(i), bℎ(i) = [y(i) − 1.5, y(i) + 1.5]; for the flow sensor, 

aℎ(i), bℎ(i) = [ − y(i), 2y(i)], where y(i) is the observed value of the ith sensor. The constant 

parameter λ = 1 and the maximum number of allowed iterations K = 20.

3.1.1. Nodal water demand estimation

Step 1: Set Estimation Parameters: The pressure at nodes 3 and 7 and the pipe flow 

at pipes [8], [10], and [11] are selected as the measured values. The observed value and 
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their variance are yt = 1 = [35.1, 28.4, 3.8, 16.2, 69.4]T  and R = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]T . 

The truncation points for the likelihood are aℎ bℎ = 33.6 26.9 −3.8 −16.2 −69.4
36.6 29.9 7.6 32.4 138.8 ; For 

the prior PDF of nodal water demand xt = 1 ∣ t = 0 = xt = 0 = [8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5]T , 

P t = 1 ∣ t = 0 = diag(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0). The truncation points for the prior PDF are 

ax bx = 2.1 2.8 7.7 0.7 4.9 4.2 4.9 7.7
8.4 11.2 30.8 2.8 19.6 16.8 19.6 30.8

T
. λ = 1. In each time step, the nodal water 

demand is estimated after serval iterations. The prior value of the nodal water demand is set 

as the value at the first iteration (k = 0):xt = 1
k = 0 = xt = 1 ∣ t = 0 = [8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5]T .

Step 2: Compute the Model Outputs: The nodal water demand (xt = 1
k = 0) at current iteration 

(k = 0) is as the model input, then the model output is calculated as

ℎ xt = 1
k = 0 = [37.76, 33.15, 4.60, 10.92, 68.00]T

Step 3: Calculate the Jacobian Matrix: By substituting the WDS hydraulic model input, 

∇ℎ xt = 1
k = 0  can be calculated as

∇ℎ xt = 1
k = 0 =

−0.11 −0.39 −0.50 −0.22 −0.37 −0.43 −0.31 −0.35
−0.11 −0.30 −0.31 −0.39 −0.40 −0.36 −1.16 −0.65

−7.28 × 10−18 −0.01 −0.05 0.02 0.04 0.47 0.03 0.04
0 −0.05 −0.05 0.09 −0.07 −0.06 0.59 0.82
1 1 1 1 1 1 1 1

Step 4: Calculate ∇J xt = 1
k = 0

 and Hessian Matrix ∇2J xt = 1
k = 0

∇J xt = 1
k = 0 = 108, 108, 0.56, − 108, 3.98, 108, − 11.20, − 8.40 T

∇2J xt = 1
k = 0 =

−2004.09 0.70 0.60 0.85 0.73 0.67 0.86 0.77
0.70 1.06 −0.39 0.45 0.04 −0.17 0.39 0.12
0.60 −0.39 4.07 0.26 −0.29 −0.57 0.12 −0.19
0.85 0.45 0.26 1.77 0.52 0.41 0.95 0.72
0.73 0.04 −0.29 0.52 1.17 −0.05 0.50 0.22
0.67 −0.17 −0.57 0.41 −0.05 0.97 0.35 0.05
0.86 0.39 0.12 0.95 0.52 0.35 2.89 1.36
0.77 0.12 −0.19 0.72 0.22 0.05 1.36 6.05

Step 5: Calculate Δxt = 1
k = 0

Δxt = 1
k = 0 = − ∇2J xt = 1

k = 0 −1∇J xt = 1
k = 0 = [0.06, 11.26, 5.92, − 7.99, 8.69, 13.66, 0.58, 2.37]T
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Step 6: Update the Nodal Water Demand for the Next Iteration

xt = 1
k = 1 = xt = 1

k = 0 + Δxt = 1
k = 0

If xt = 1
k = 1 < ax ∣ t = 1, then xt = 1

k = 1 = ax ∣ t = 1. If xt = 1
k = 1 > bx ∣ t = 1, then xt = 1

k = 1 = bx ∣ t = 1.

xt = 1
k = 1 = [8.40, 11.20, 14.42, 0.70, 17.19, 16.80, 9.08, 10.87]T

k = k + 1

Step 7: Reach Termination Conditions: The next step is to repeat Steps 2–6 until k = K. 

The comparison of the nodal water demands and nodal pressure between theoretical values 

and estimated results are discussed.

3.1.2. Case study 1: Discussion—The estimated nodal water demands are illustrated 

in Figure 5. It is evident that the error in nodal water demand estimated by Shao et al. (2019) 

is significantly higher as compared to the method proposed in this study. For example, Shao 

et al. (2019) estimated the nodal water demand at N4 with an error of 2.30 L/s, whereas 

the approach presented in this study achieved an error of only 0.24 L/s. The accuracy of 

the two algorithms is evaluated by calculating the average deviation (error) between the 

estimated values and the theoretical values. Similar observations can be found in N1, N2, 

and N5. It is apparent that the proposed method can effectively avoid unrealistic estimates 

of excessively large or small nodal water demands. This is primarily due to the use of the 

truncated normal PDF, which restricts the parameters to a reasonable range. As shown in 

Figure 5, the estimated nodal water demand is confined within the domain defined by the 

truncation points (gray dashed line). In contrast, Shao et al. (2019) used a normal PDF, 

which allows the nodal water demand to be estimated over the full range (−∞, +∞). This 

assumption is not consistent with the actual situation, leading to an excessive value of the 

nodal water demand at N1, N2, N4, and N5. More importantly, these unrealistic nodal 

demands without the use of the proposed truncated normal PDF cannot be easily uncovered 

by the use of limited pressure and flow measurements.

As shown in Figure 6, the two models yield pressure and flow rates close to the measured 

values by the two pressure sensors and three flow meters. This disparity in results suggests 

that demand estimation with a limited number of field measurements is an ill-conditioning 

problem. The insufficient number of measurements leads to non-unique solutions in the 

search domain, thereby resulting in errors in the nodal water demand. For the most 

agreement with the observed value, the search space of the nodal water demand depends 

on the truncation of the PDF, which serves as a constraint in the modeling process. The 

utilization of a truncated normal PDF can significantly narrow down the search space 

for nodal water demand, thereby ensuring that they lie within a reasonable domain. By 

employing a truncated PDF, it is possible to transform the ill-conditioned problem into a 
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solution with modeling constraints. The potential of this approach is analyzed in Case study 

2.

3.2. Case study 2: Large-scale city network

Case 2 involves a large-scale WDS located in a city in eastern China, as shown in Figure 

7. The network contains three reservoirs, 4,242 nodes, 4,841 pipes, and 77 pressure sensors 

installed in the network. Among the 77 pressure sensors, 61 of them are used to estimate the 

nodal demand, while the remaining 16 sensors are compared with the model output value to 

validate the estimation accuracy. The pressure values of the sensors are field measurements, 

and the variance of sensor errors is assumed to be 1 m2 R(i) = 1 m2 . The truncation points 

for the observed pressure are set as aℎ, bℎ = [y − 1.5, y + 1.5], where y denotes the field 

measurements. The total water demand is equally allocated to each node as the prior node 

water demand xt ∣ t − 1 . The prior variance is assumed to be 1 (L=s)2. The truncation points 

for the prior PDF are set as ax, bx = [0, 5]. In this case study, only one time-step simulation is 

performed.

The deviation between the measured pressure values and model output values is used 

to evaluate the estimation accuracy for the realistic problem. Figure 8(a) shows the 

comparisons of the measured pressure values and model simulation values for the 61 

estimation sensors. For the proposed method, the deviations for 59 estimation sensors are 

within 1 m, and deviations for 2 estimation sensors are between 1 and 1.5 m. This indicates 

successful state estimation as the pressure residuals are lower than 2 m for all sensors, which 

is the criteria specified by the Water Research Centre (1989). The estimation accuracy is 

further validated by the 16 validation pressure sensors. As shown in Figure 8(b), the majority 

of the pressure residuals of the 16 validation sensors are within 1 m, with the largest residual 

being 1.53 m.

In contrast, for the method proposed by Shao et al. (2019), the deviations for 54 estimation 

sensors are within 1 m, while the deviations for 7 sensors are above 1 m and the deviations 

for 3 sensors are above 2 m, with the largest residual being 3.68 m. In the validation data 

set, the deviations for 6 sensors are above 1 m, and the deviations for 3 sensors are above 

2 m with the largest residual being 3.05 m. Moreover, Shao et al. (2019) estimated 191 

negative nodal water demands, while the proposed method does not estimate any negative 

nodal water demand.

The results of Shao et al. (2019) show that three estimation sensors have deviations greater 

than 2.5 m, and three validation sensors also have deviations greater than 2 m, indicating 

excessive estimation errors (Figure 8). As shown in Figure 7, the distribution of sensor 

locations is highly uneven, with a high density of sensors in urban areas and a low density 

in rural areas. The sensors with excessive deviations are all located in rural areas with 

low sensor density. As mentioned earlier, demand estimation with a limited number of 

field measurements is an ill-conditioned problem. The problem is even more severe in 

locations with sparse sensor density, which leads to greater estimation errors for these 

sensors. Additionally, in the Bayesian estimation process, there is a competitive relationship 

between the sensors, and the estimated demand is a compromise between them. Sensors that 
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are closer together tend to adjust the nodal water demand in a similar direction, making them 

more competitive. Thus, in areas with a higher sensor density, competitiveness increases, 

while in areas with a lower sensor density, competitiveness decreases, exacerbating the 

severity of the ill-conditioning problem in areas with sparse sensors and leading to excessive 

deviations. The use of truncated likelihood constrains the simulated value to a set range 

([y − 1.5, y + 1.5]) around the observed value (y), solving the ill-conditioning problem by 

incorporating constraints implied in the truncated likelihood.

4. CONCLUSIONS

The accurate estimate of the nodal water demand is crucial for modeling and managing 

water distribution networks. Recent advances have made it possible to estimate all 

nodal water demand in real-time using ubiquitous pressure sensors and limited flow rate 

measurements (Shao et al. 2019). The nodal demand estimation is often based on the 

assumed normal PDF for probability modeling in Bayesian inference, allowing the values 

of random variables to be distributed at infinite intervals. However, engineering practice and 

field operations commonly confine the state variables and measurement noises in a limited 

range. This imprecise mathematical representation can lead to an unrealistic estimation of 

nodal pressure and water demands.

This paper proposed a new nodal water demand estimation approach using truncated normal 

PDF methods. According to the application results and analysis, the main conclusions can be 

summarized as follows:

a. Existing truncated normal PDF in simulation suffers from the difficulty at 

the non-differentiable truncated point, a problem that seriously limits the use 

of analytical methods (e.g., Gaussian approximation). The proposed analytical 

solutions for truncated normal PDFs method avoid this non-differentiable 

problem by mathematical approximation in truncated points.

b. When using a limited number of sensors to estimate or calibrate network 

parameters, an ill-conditioning problem arises, making it susceptible to 

overfitting the noise in the data. However, the proposed method offers a 

solution to this issue by effectively constraining the fitting range of the noise. 

This limitation helps to prevent overfitting and ensures that the estimated 

parameters are more robust and reliable. By effectively managing the noise 

during the estimation or calibration process, the proposed method mitigates the 

ill-conditioning problem and improves the accuracy of the parameter estimates.

c. When the measurements are biased, the estimated parameters, such as nodal 

water demand, can exhibit undesirable characteristics, such as negative values 

or excessively large values. However, the proposed truncated normal PDFs in 

this paper effectively mitigate this issue. By utilizing truncated normal PDFs, the 

parameter estimation process is constrained within a specific range, preventing 

the estimation of unrealistic or extreme values. This approach ensures that the 

estimated parameters remain within reasonable bounds and avoids the occurrence 
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of negative or excessively large values, enhancing the accuracy and reliability of 

the estimation results.

d. In data assimilation, the truncated normal PDF from the theoretical truncated 

normal PDF is primarily controlled by the parameters λ. As a result, the 

parameter λ affects the number of iterations and the convergence effect in data 

assimilation. A fixed value of λ is used in this study, which may in some 

cases increase the number of iterations and reduce the computational efficiency. 

Considering that the objective function (refer to Equation (20)) is similar to 

the barrier method when dealing with non-linearly constrained optimization 

problems, updating the parameter λ in the presence of non-linearities (Nocedal 

& Wright 2006), can be adopted to improve the algorithm performance in future 

research.

The proposed method using the truncated normal PDF in the finite region has been applied 

to simulate nodal pressure and estimate corresponding water demand in a hypothetical 

simple and a field WDS in eastern China. The results clearly show the advantage of the 

proposed method in avoiding the artificial negative nodal water demand and unseasonable 

errors between the estimated and measured values. This improvement is constructive toward 

WDS simulation and control using real-time network monitoring data. Furthermore, the 

proposed method can also be utilized to estimate other hydraulic parameters in WDS 

models. This includes parameters like pipe roughness, which can be accurately represented 

by a truncated normal PDF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• The truncated normal probability density functions (PDFs) are developed.

• A new data assimilation method utilizing truncated normal PDF is proposed.

• The method is used for demand estimation in water distribution systems.
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Figure 1 |. 
The truncated normal PDF with different λ for conditions (μ = 1, σ = 1, a = 0, b = 3).). 

Please refer to the online version of this paper to see this figure in colour: https://dx.doi.org/

10.2166/hydro.2023.250.
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Figure 2 |. 
One-side truncated normal PDF: μ = 1, σ = 1, λ = 0.001.
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Figure 3 |. 
Computational procedure for parameter estimation using the truncated normal PDF.
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Figure 4 |. 
Schematic diagram of the hypothetical network.
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Figure 5 |. 
Estimated nodal water demand.

Shao et al. Page 24

J Hydroinform. Author manuscript; available in PMC 2024 February 14.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 6 |. 
Measured and estimated values of the extended period simulation.
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Figure 7 |. 
Schematic diagram of Case 2.
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Figure 8 |. 
Comparisons of measured pressure values and model simulated pressure values: (a) 61 

estimation sensors and (b) 16 validation sensors.
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