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Abstract: Chronic Granulomatous Disease (CGD) is an inborn error of immunity characterized by
impaired phagocyte function, recurrent fungal and bacterial infections and granuloma formation
in multiple organs. Pediatric myelodysplastic Syndrome (MDS) is a rare hematological stem cell
disease that leads to an ineffective hematopoiesis with variable risk of evolution to acute leukemias.
Both disorders are rare and have distinct pathophysiologic mechanisms, with no known association.
A 7-month-old boy presenting with recurrent infections and anemia at age 2 months underwent
immunological, hematological and genetic investigation that culminated in the diagnosis of both
CGD and MDS. Next generation sequencing was performed and identified a silent variant predicted
as of Uncertain Significance, located in the splicing site at the end of exon 5 in CYBB. CYBB variants
account for at least two thirds of CGD cases, but no previous descriptions of this variant were
found in ClinVar or The Human Gene Mutation Database (HGMD) databases. We were able to
demonstrate an exon 5 skipping on the proband’s cDNA, which strongly suggests the disruption of
the NADPH oxidase complex, abrogating the formation of reactive oxygen species from neutrophils.
Moreover, erythroid cell lineage could be also affected by NADPH oxidase complex damages. Further
investigation is needed to evaluate the potential effect of CYBB gene alterations in hematopoiesis, as
well as in MDS and CGD association.

Keywords: chronic granulomatous disease; pediatric myelodysplastic syndrome; rare diseases

1. Introduction

Chronic Granulomatous Disease (CGD) and Myelodysplastic Syndrome (MDS) are
both rare disorders with no known pathophysiologic link so far. CGD is an inborn error of
immunity (IEI) caused by a defect in any of the five subunits of the NADPH oxidase enzyme
complex (gp91phox, p22phox, p47phox, p67phox, p40phox), responsible for the phagocyte
respiratory burst [1]. The disease’s prevalence is estimated in 1:120–250,000 [2] and in two
thirds of patients it displays an X-linked pattern of inheritance, as a consequence of CYBB
gene variants, which encodes the gp91phox protein. CGD patients are at increased risk of
serious infections by bacteria and fungi, in addition to inflammatory complications. Clinical
manifestations vary from skin infections to granulomas in internal organs and autoimmune
diseases [3]. Treatment options include antibiotic and antifungal prophylaxis, interferon-
gamma (IFN-γ), hematopoietic stem cell transplantation (HSCT) and gene therapy.
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MDS is responsible for less than 5% of all hematological neoplasms of childhood [4].
Monosomy 7 due to a somatic loss is the commonest cytogenetic abnormality associated
with childhood MDS. HSCT is the only curative treatment available and it is the therapy of
choice in these cases and other complex cytogenetic abnormalities [5].

Here, we report a male patient that spontaneously developed both rare diseases in
the first months of his life, describing the genetic evaluation and the strategies used for
his diagnosis. To our knowledge there are no reports of other individuals presenting
both diseases spontaneously; instead, all reported cases developed MDS with chromo-
some 7 monosomy only after gene therapy for CGD [6–8]. There are also many reports
associating gene therapy with other haematological complications (e.g., lymphoma). Thus,
it is the first description of MDS with chromosome 7 monosomy and CGD association in
an untreated child.

2. Materials and Methods
2.1. Study Design

Case report of clinical features and next generation sequencing of a patient that
presented with recurrent infections and anemia at age 2 months. The patient’s mother and
sister were also evaluated in order to confirm the findings.

2.2. Clinical Evaluation

At age 2 months, the patient started presenting with anemia and monthly bacte-
rial/fungal infections (candidiasis, pneumonia and urinary tract infections). By the age of
6 months, he was transferred to a tertiary hospital’s ICU presenting with sepsis and anemia.
At this point, he was evaluated by hematology, immunology and genetics specialists, being
diagnosed with CGD and MDS with chromosome 7 monosomy.

2.3. Genomic DNA Preparation

Peripheral blood samples from the patient and his mother and sister were collected
in EDTA tubes. The patient’s genomic DNA was extracted from peripheral blood leu-
cocytes using PureLink® Genomic DNA Mini Kit Thermo Fisher (Thermo Fisher Scien-
tific, Waltham, MA, USA), according to the manufacturer’s protocol. DNA concentra-
tion in samples were determined by fluorometry using Invitrogen Qubit® 4 Fluorometer
(Thermo Fisher Scientific, Waltham, MA, USA). To assess DNA purity, Spectrophotometer
NanoDrop® 2000 (Thermo Fisher Scientific, Waltham, MA, USA). was used to evaluate the
ratio of the absorbance at 260/280 nm (average of 1.90 for all samples) and at 260/230 nm
(average of 1.91 for all samples). DNA samples were stored at 4 ◦C prior to use.

2.4. Library Preparation and Clinical Exome Sequencing

DNA libraries from both parents and children were prepared with 50 ng of DNA
using Illumina TruSeq® Exome according to the manufacturer’s recommendations (Illu-
mina, San Diego, CA, USA). Sequencing was performed using NextSeq® 500/550 system
(Illumina, San Diego, CA, USA) using a multiplex system with 16 samples per run, with
NextSeq® kit. During library preparation, DNA fragments of 400 bp long on average were
evaluated by Bioanalyzer by Agilent.

2.5. Bioinformatics Analysis

Sequencing data was processed and analysed using BaseSpace from Illumina and the
genetic variants calls were performed by comparison with a reference sequence of hg19
from the University of California Santa Cruz (UCSC) Genome Browser. To analyse the
patient’s variants found, the first strategy considered was filtering data using a virtual
gene panel from the International Union of Immunological Societies Expert Committee
(IUIS) early 2020 Human Inborn Errors of Immunity update [9]. During variant interpre-
tation we considered allele frequency using Exome Aggregation Consortium database
(ExAC), 1000 Genomes Project database, gnomAD and ABraOM, an online archive of
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Brazilian mutations (http://abraom.ib.usp.br/, accessed 8 June 2021). Fourteen predic-
tors were considered for pathogenicity: CADD, BayesDel_addAF, DANN, DEOGEN2,
EIGEN, FATHMM-MKL, LIST-S2, M-CAP, MVP, MutationAssessor, MutationTaster, SIFT
and PrimateAI. Clinical significance of variants was evaluated with ClinVar, Polymor-
phism database (dbSNP), Human Gene Mutation Database (HGMD), Human Splicing
Finder v.HSF3.0 [10] and Alamut splicing predictors (SSF, MES, NNSplice, GeneSplicer and
EX-SKIP (Sophia Genetics, Saint Sulpice, Switzerland).

2.6. RNA Extraction and cDNA Synthesis

Total RNA was extracted with TRIzolTM reagent (Life Technologies, Carlsbad, CA,
USA) following the manufacturer’s recommendations. The RNA was quantified and
analyzed for purity later in a spectrophotometer (Nanodrop Technologies, Wilmington,
DE, USA).

With the RNA already extracted, we proceeded with the synthesis of the cDNA
strands, which was carried out using the commercial kit Super Script III Invitrogen™ ®

(Thermo Fisher Scientific, Waltham, MA, USA) using random primers to prepare the first
strand of cDNA, and following the instructions recommended by the manufacturer.

2.7. PCR and Sanger Sequencing

To evaluate the mRNA 5′ broken donor splicing site, the cDNA from the patient and a
control were submitted to a polymerase chain reaction (PCR) using primers targeting the
exon 4 (Forward Primer: 5′-GTTCGAAGACAACTGGACAGGA-3′) and exon 6 (Reverse
Primer: 5′-GACCTCCGGATGGTTTTGGT-3′). The PCR products were visualized on 1.5%
agarose gel after electrophoresis.

To evaluate mRNA decay, the cDNA from the patient and healthy control
were submitted to a quantitative polymerase chain reaction (PCR) using primers
targeting the CYBB exon 2 Forward Primer: 5′-CATTCTGGTTTGGCTGGGGT-3′ and
exon 3 Reverse Primer: 5′-TTTCGACAGACTGGCAAGAGA-3′ and the GADPH
Forward Primer: 5′-AGTGATGGCATGGACTGTGGTCAT-3′ and Reverse Primer:
5′-CAACAGCCTCAAGATCATCAGCAA-3′ with PowerUp™ SYBR® Green Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA). The assay was performed in the Applied
Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA).

To confirm the suspected pathogenicity of the variant found, validation was done with
the polymerase chain reaction (PCR) combined with bidirectional Sanger sequencing. Primers
targeting the mutation site were designed for PCR-amplification (ThermoFisher Cycler,
Waltham, MA, USA) and sequencing (Forward Primer: 5′-GGAATGGTGTGTGAATGCCC-3′

and Reverse Primer: 5′-CAGACTTGTCCCTCTGATGGT-3′). Primers and PCR products
were purified using PureLink® Invitrogen™ (Thermo Fisher Scientific, Waltham, MA,
USA) and on automated sequencer ABI 3730 Genetic analyzer (Thermo Fisher Scientific,
Waltham, MA, USA). The results were interpreted by software BioEdit.

2.8. DHR Assay

The neutrophil oxidative activity by flow cytometry aims to quantify the produc-
tion of oxidative radicals by peripheral blood neutrophils after ex vivo stimulation with
phorbol myristate acetate (PMA). This quantification takes place through a probe called
dihydrorhodamine 123 (DHR) which generates rhodamine 123 as a product of the reaction.
The negative result confirmed the diagnosis of CGD. In this patient, DHR was analyzed
with Attune flow cytometry (Thermo Fisher Scientific, Waltham, MA, USA). Healthy donor
samples stimulated in the presence of DHR were used as control.

2.9. FISH

Fluorescence in situ hybridization test (FISH) was used to detect chromosomal abnor-
malities such as microdeletions, complex rearrangements or absence of chromosomes. In

http://abraom.ib.usp.br/
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this work, probes D7Z1 and D8Z2 were used, which detect chromosomes 7 and 8 respec-
tively, thus rendering possible the identification of the patient’s chromosome 7 monosomy.

2.10. Flow Cytometry

For immunophenotypic analysis, the bone marrow (BM) sample was stained with
an 8-colour combination, following the standard operating procedures proposed by the
EuroFlow consortium [11]. Immediately after staining, cells were acquired in a FACSCant-
oII flow cytometer using the FACSDiva software (BD). INFINICYT™ software (Cytognos,
Salamanca, Spain) was used for data analysis.

2.11. Ethics

The study was approved by the Ethics Committee in Research of Instituto Nacional
de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF/Fiocruz).
Written informed consents were obtained after explanation of the nature of the study. All
procedures were conducted in accordance with the Declaration of Helsinki.

3. Results

The patient was first admitted to the hospital when he was 2 months old with ane-
mia and urinary tract infection. From there on, he presented with anemia and monthly
bacterial/fungal infections (candidiasis, pneumonia and urinary tract infections) receiv-
ing red blood cells transfusions on two occasions (4 and 5 months old). His brother’s
death at 10 months old after pneumonia (Figure 1A), along with the patient’s diagnosis
of fungal sepsis, motivated immunologic investigation. By the age of 6 months, he was
transferred to a tertiary hospital’s ICU with pulmonary sepsis, without spleen or liver en-
largement and with confirmed anemia (hemoglobin—8.6g/dL; WBC 8.1 × 109/L; platelets
count—186× 109/L; neutrophils count 3.6× 109/L; LDH-737 U/L), and being treated with
broad spectrum antibiotics and hemotransfusion. Immunoglobulins and lymphocytes im-
munophenotyping were normal. Bone marrow (BM) aspirate revealed dyserythropoiesis,
dysmegakaryopoiesis, Pelger-huet-like neutrophils and intercellular bridges (Figure 2A).
Further BM immunophenotyping showed maturative blockage in neutrophils (between
III/IV stages), monocytes (between stages II/III stages) and erythroid lineages (between
I-II/III stages) (Table 1 and Figure 2B–D). On the monocytic maturation, there was an
aberrant expression of CD105 in the entire maturation (Table 1). On histopathology, BM
was normocellular with atypical megakaryocytes (Figure 2E). In immunohistochemistry,
CD61 staining showed small clusters of megakaryocytes, and micromegakaryocytes and
glycophorin A staining showed large and irregular erythroblasts grouped (Figure 2F–H).
Cytogenetic analysis suggested a chromosome 7 monosomy, which was confirmed by FISH
and iFISH (25% of all analysed nuclei) (Figure 2I–J). Taken all together, the patient was
diagnosed with primary MDS with chromosome 7 monosomy and refractory cytopenia
without blasts excess, according to World Health Organization (WHO) classification.

Next generation sequencing (NGS) of the whole exome was then performed, ruling
out the presence of mutations in genes related to primary MDS, as well as other hereditary
diseases that affect myelopoiesis (e.g., Fanconi anemia, Blackfan-Diamond anemia etc)
(Table S1). In contrast, NGS revealed a novel synonymous variant c.483G>A/p.(Lys161=)
in CYBB, the main gene involved in X-linked CGD (XL-CGD), that was predicted as
of Uncertain Significance by The American College of Medical Genetics and Genomics
(ACMG). It was observed that the variant was located in a potential 5′ donor splice
site, which raised suspicion that, despite it being a silent variant, it might still affect
gene function and protein formation. In silico analysis was performed using Human
Splicing Finder (HSF v3.0) and Visual Alamut softwares and all predictors suggested a
5′ donor splicing site with a high score (HSF = 97, SSF = 94, MES = 10, NNSplice = 1
and GeneSplicer = 5). All predictors also showed results indicating a broken donor site
alteration, most probably affecting splicing, with the following ratios: HSF = −10.4%,
SSF =−12.9%, MES =−28.5%, NNSplice =−0.9% and GeneSplicer =−88.2%. Additionally,
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Alamut EX-SKIP predictor indicated that mutated alleles (ESS/ESE ratio = 0.62) have a
higher chance of exon skipping than wild type alleles (ESS/ESE ratio = 0.57).
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Figure 1. (A) The proband’s family pedigree of affected patients displaying two generations. White circles with central dots
represent carriers, the proband is represented as a black square. (B) Flow cytometry was used to assess fluorescence intensity
increase after neutrophils stimulation with PMA in presence of DHR123 (grey histogram) and control with DHR only (faint
histogram). In the healthy control, the curve shifts to the right, showing a neutrophil’s response. The proband’s curves
before and after stimulation overlap, showing that there was no phagocyte respiratory burst. The curves of the proband’s
mother and sister partially shift, revealing their carrier state, seeing as, because of their heterozygous variant, part of their
neutrophils responds but the rest does not. SI = stimulation index. (C) Electropherogram from DNA showing homozygous
variant on the proband, heterozygous variant on the proband’s mother, a mutation carrier, and homozygous wild type
allele in a healthy control. (D) cDNA PCR products confirming a small fragment from the proband compatible with
exon 5 skipping in comparison to a healthy control (HC) on agarose gel. Healthy control (HC), proband’s mother and sister
were positive, while the proband was negative, suggesting intronic retention. MW: molecular weight. (E) Electropherogram
from cDNA showing exon 5 skipping on the proband and continuous exon 4 to 6 in a healthy control (HC).
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Pelguer-huet-like neutrophils and mitosis figure); (B–D) immunophenotyping sequentially performed a long of time that
showed maintained maturative blockage in neutrophils (B), monocytes (C) and erythroid lineages (D). BM histopathol-
ogy (E) stained with hematoxylin-eosin (HE) showed normal cellularity with atypical megakaryocytes. CD61 staining
(F) showed small clusters of megakaryocytes and micromegakaryocytes. Glycophorin A (G) marked large and irreg-
ular groups of erythroblasts and CD34 (H) stained progenitor cells (1–2%). FISH (I) and interphase iFISH (J) showed
chromosome 7 monosomy.

Table 1. Bone marrow immunophenotype results.

Bone Marrow Aspirate
(Cell Subtypes)

Percentage
(%)

Differentiation
(%|Stage)

Specific Subtypes
(%)

Neutrophils 65.8

0.2|I
3.3|II

29.4|III
32.9|IV CD10 = 15.40

Eosinophils 3.8

Monocytes 5.0
0.7|I
2.6|II
1.6|III

CD34 = 0.08
CD105 = 5

Erythroblasts 3.0 0.5|I-II
2.6|III

Basophils 0.1
Dendritic cells 0.3

T cells 3.1
B cells 7.8

NK 1 cells 0.2
Lymphoid CD34 2 cells 1.2

Myeloid CD34 2 cells 1.0
CD33 = 0.30
CD7 = 0.10
CD64 = 0.01

1 Natural killer; 2 Cluster Differentiation.

To proceed with immunologic investigation, we performed a dihydrorhodamine
(DHR) test, the gold standard for diagnosing CGD. The test uses flow cytometry to measure
fluorescence before and after neutrophils incubated with dihydrorhodamine 123 (DHR) are
stimulated with phorbol myristate acetate (PMA). Phagocyte’s respiratory burst depends
on NADPH-oxidase proper functioning and produces hydrogen peroxide that oxidizes
DHR into rhodamine 123, which emits fluorescence, as seen in Figure 1C with a healthy
control. Moreover, the test is able to distinguish XL-CGD, autosomal recessive CGD
(AR-CGD), and X-linked carrier status (in females). The proband’s DHR was negative,
suggesting CGD diagnosis. DHR also demonstrated a characteristic dual fluorescence
profile, typical of an XL-CGD carrier, on the patient’s mother and sister (Figure 1B).

To validate the variant, we performed Sanger sequencing with DNA samples from a
healthy control, the proband’s mother and the proband. We were able to demonstrate the
proband’s homozygous variant, the mother’s electropherogram showing heterozygosity,
confirming a healthy carrier, and a healthy control with homozygous wild type allele
(Figure 1C).

In order to demonstrate the exon skipping that would justify the patient’s phenotype,
a polymerase Chain Reaction (PCR) of cDNA was done using samples from the patient and
a healthy control. To compose the reaction, a specific pair of primers were used targeting
the exon 4 (forward primer) and exon 6 (reverse primer) to amplify the surrounding splice
region in the case of exon 5 exclusion together with the proband RNA processing. As
shown in Figure 1D, the amplicon from the proband cDNA displayed a smaller size of
186 bp compatible with exon 5 skipping in comparison to the mother’s with 332 bp and
186 bp, and the healthy control with a single fragment with 332 bp. We further checked the
RNA decay by qPCR targeting the exon 2 to exon 3 and the proband showed a Log2 Fold
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Change of 2.9 in comparison to the healthy control. This result could explain the mother’s
smaller fragment dominance after amplification (Figura 1D). Finally, both amplicon’s
Sanger sequencing demonstrated the exon 4 sequence followed by exon 6 in the proband
sample, contrasting with the healthy control product that showed a continuous exon 4 to
6 electropherogram data (Figure 1E).

After diagnosis and the start of prophylactic antibiotics and antifungals, our patient
had exquisite clinical improvement, remaining well and with no new admissions for the
first four years of his life. Nevertheless, at age 5, the patient’s clinical status started to
deteriorate as he presented, in the months that followed, with failure to thrive, pneumonia,
lymphadenopathy and rib osteomyelitis, being admitted to the hospital and treated with
broad spectrum antibiotics and antifungals on several occasions, as well as being evaluated
for typical and atypical mycobacteriosis. At this point, we started efforts to search for
a compatible bone marrow donor for a stem cell transplant, the only widely available
curative treatment for CGD so far.

4. Discussion

Curiously, our patient presented with CGD, an IEI, and primary MDS with chromo-
some 7 monosomy. Both diseases are rare in children, share no known pathophysiologic
link and presented in the patient’s first few months of life. Despite this, MDS often causes
aberrancies in neutrophil differentiation that can generate neutropenia, neutrophils dys-
morphisms and severe infections [4]. The impaired phagocyte function in neutrophils,
characteristic of CGD, could potentially also occur in MDS, but is not routinely studied in
such patients.

Different genotypes in CGD may present with clinical manifestations in distinct fre-
quencies. Berg et al. [12] described the largest CGD cohort so far, with 429 European
patients. Of those, 82% were male, which reflects the main form of the disease’s inheri-
tance, which is X-linked, involving CYBB variants. AR-CGD appears to display a milder
phenotype, which may explain the significant difference in mean onset age, higher on
AR-CGD than on XL-CGD (Chronic Granulomatous Disease: The European Experience).
As described for XL-CGD, our case had an early onset with severe infections such as
pneumonia, sepsis and urinary tract infections. However, after antibiotic and antifungal
prophylaxis started, our patient remained well until 5 years-old, when his clinical status de-
teriorated, with failure to thrive, lymphadenopathy, pneumonia and osteomielitis. Despite
the fact that our patient presented with some of the most frequent clinical manifestations
of CGD largely described from others (e.g., pneumonia, lymphadenopathia, sepsis and
osteomyelitis) [12–14], he presented also with a chronic anemia that was due to primary
MDS with chromosome 7 monosomy, in absence of mutations in genes related to primary
MDS, as well as other hereditary diseases that affect myelopoiesis, investigated by whole
exome sequencing.

In the present case, MDS affected not only phagocytic lineages (neutrophils and mono-
cytes), but also erythroid and megakaryocytic lineages. Both the presence of monosomy 7
and aberrancies in non phagocytic cells discarded the hypothesis of CGD mimicking MDS
in BM, seeing as CGD alterations are restricted to phagocytes. Another possible hypothesis
was that one genetic aberration could lead to the two conditions. In consonance with
this hypothesis, monosomy 7 could not be the principal alteration responsible for the two
conditions, since it was present in only 25% of hematopoietic cells, while the baby had the
whole hematopoiesis altered. Furthermore, monosomy 7 disappeared three years after,
even though dysplastic alterations remained for two more years. That emphasized the
need for a deep genetic investigation.

By whole exome sequencing, we were able to detect a silent variant in CYBB. This
type of mutation is frequently ignored, since the substitution leads to the same amino acid
and therefore theoretically won’t cause disease. However, because of the variant’s location,
at a potential donor splicing site, we further investigated using in silico and molecular
strategies. Five in silico predictors suggested a broken 5′ donor splice site alteration with



Genes 2021, 12, 1476 9 of 10

high scores ratios and one exon skipping predictor indicated a higher chance of exon
skipping on the mutant allele compared with the wild type sequence. Using the cDNA
from the family members, we were able to demonstrate an exon skipping mechanism in a
specific region surrounding the splicing site only in the proband sample, indicating the
probable exon removal during mRNA processing, which highly suggests an explanation
for the patient’s phenotype. This exon removal generates one premature stop codon with a
truncated protein at the 115 position. Despite the fact that it was a synonymous variant,
intronic removal or exon retention is an essential step during the pre-mRNA processing
for correct protein encoding. Any disruption on this highly controlled cellular process
could impair protein function, as shown here by functional assays performed with proband
neutrophils. This is not the first time that a splice-site variant was found to cause a patient to
present with clinical and laboratory evidence of CGD. Rawat et al. reported 15.8% patients
diagnosed with CGD that presented with splice-site variants in CYBB [14], showing that
splice variants are even less frequent in this context. This patient prevalence is also true of
Clinvar genetic variant frequency, where, in a total of 105 pathogenic or likely pathogenic
variants described in the CYBB gene, 28 (26.6%) were missense, 26 (24.7%) were nonsense,
15 (14.2%) were splice-site (like ours) and only 1 (0.95%) was an indel related variant.

Interestingly, Stein et al. [6] reported in 2010 two adult male patients with X-linked
CGD treated with gene therapy in Frankfurt. During follow-up, both subjects presented
with peripheral blood abnormalities that later led to the diagnosis of MDS with chromo-
some 7 monosomy, the exact same cytogenetic defect as our patient. Stein et al.’s findings
suggested that, in at least one progenitor cell (probably myeloid), the MDS1-EVI1 gene
locus was transcriptionally activated by gammaretroviral insertion leading to chromo-
some 7 monosomy and MDS [6]. Their data showed that forced over-expression of EVI1 in
human cells disrupts normal centrosome duplication with consequent genomic instability,
chromosome 7 monosomy and clonal progression toward MDS [15]. The MDS1-EVI1 gene
locus is also a common target for tumorigenesis produced by a wild-type retrovirus or
retrovirus vector-induced insertional mutagenesis [7]. Those findings suggest that there
might still be an unknown correlation between CGD and MDS, perhaps through insertional
activation of certain genes by a wild or vector-induced retrovirus.

5. Conclusions

Our data clearly demonstrated an exon 5 skipping mechanism occurring on the CYBB
gene of a XL-CGD patient with neutrophil NADPH oxidase complex functional loss and
MDS displaying a chromosome 7 monosomy due to a somatic loss and affecting phagocytic,
erythroid and megakaryocytic lineages. From our knowledge, this is a unique case of MDS
and CGD spontaneous association, and more studies are needed to evaluate the potential
effect of CYBB gene alterations in hematopoiesis.
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