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Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-an-
tigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating 
and inhibitory receptors that serve to regulate the function and activity of the cells. In 
the context of targeting cells, NK cells can be “specifically activated” through certain Fc 
receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/
or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating 
signals within NK cells. Once activated through Fc receptors by antibodies bound to 
target cells, NK cells are able to lyse target cells without priming, and secrete cyto-
kines like interferon gamma to recruit adaptive immune cells. This antibody-dependent 
cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various 
cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell 
lymphoma, and others. NK cells also express a family of receptors called killer immu-
noglobulin-like receptors (KIRs), which regulate the function and response of NK cells 
toward target cells through their interaction with their cognate ligands that are expressed 
on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may 
influence NK cell responsiveness in conjunction with mAb immunotherapies. This review 
focuses on current therapeutic mAbs, different strategies to augment the anti-tumor 
efficacy of ADCC, and genotypic factors that may influence patient responses to anti-
body-dependent immunotherapies.

Keywords: natural killer cell, therapeutic monoclonal antibody, antibody-dependent cellular cytotoxicity, cancer, 
immunotherapy

introduction

Natural killer (NK) cells have been described throughout the literature for their ability to kill virally 
infected and malignant cells without priming. Unlike B and T cells, NK cells do not require somatic 
gene rearrangements to produce highly specific receptors that recognize target cells (1, 2). Instead, 
mature NK cells reserve large amounts of cytotoxic granules containing perforin and granzymes, as 
well as the mRNA of IFNγ that is ready for translation if stimulated. As soon as the balance between 
inhibitory and activating signals within NK cells are skewed toward activation, NK cells are capable 
of forming synapses with target cells, allowing the release of the perforin and granzyme to lyse the 
target cells, as well as for IFNγ production (3). In addition, NK cells can initiate the transduction 
of death signals within target cells through death receptor/ligand ligation (4). Their capabilities of 
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tumor cytotoxicity and inflammatory cytokine production enable 
NK cells to play an important role in different settings of cancer 
immunotherapy.

NK Cell Recognition and “Missing-Self” 
Hypothesis
Mature NK cells express a series of transmembrane receptors. 
The activating receptors allow them to recognize stress-induced 
ligands, while their inhibitory receptors prevent them from 
attacking normal cells. Activating receptors are often associ-
ated with adaptor proteins that have activation motifs in their 
cytoplasmic domains. Upon ligand binding, followed by phos-
phorylation, these activating receptors can activate down-stream 
kinases, leading to NK cell degranulation and cytokine secretion 
(5). Inhibitory receptors, on the other hand, have one or more 
inhibitory motifs in their cytoplasmic tails. Once phosphoryl-
ated, they recruit phosphatases and deactivate signaling kinases, 
resulting in NK cell inhibition (6). NK cell activity is tightly 
regulated through the balance between inhibitory and activating 
signals transduced by these receptors.

One family of receptors on human NK cells is that of the 
killer immunoglobulin-like receptors (KIR), which recognize 
HLA as their ligands (7). Some inhibitory and activating KIRs 
share the same ligand (8); however, most inhibitory KIRs have 
stronger binding affinity to their shared ligand (9, 10). One 
way to shift the activating-inhibitory balance toward NK cell 
activation is by decreasing the inhibitory KIR signaling. When 
cells are under stress or virally infected, the HLA expression 
on their surface is often downregulated in order to escape from 
T cell recognition. When an NK cell encounters these “target” 
cells, an immune mediated synapse can occur. If the target cell 
is missing the expression of the HLA ligand for the inhibitory 
receptors on that NK cell, and expresses ligands for the activat-
ing receptors, the interaction could lead to NK cell activation 
due to lack of inhibitory signals (“missing-self ” hypothesis) 
(11, 12).

However, within an individual, not all NK cells have the same 
receptor expression profile, and each individual has a different 
KIR expression profile. As a result, not all NK cells express inhibi-
tory KIR receptors (13, 14). The NK cells without any inhibitory 
KIR receptors have been shown to be hyporesponsive to HLA-null 
targets compared to NK cells expressing inhibitory KIR receptors 
that can recognize self-HLA molecules (15). NK cells that express 
no inhibitory KIR receptors, or KIR receptors that only recognize 
allogeneic HLA (i.e., which do not recognize or bind self-HLA) 
do not go through a “licensing” process during NK cell differen-
tiation. Licensing plays a role in enabling the licensed NK cells to 
be more capable of killing targets that do not express inhibitory 
HLA ligands (such as HLA-null targets). Unlicensed NK cells are 
less potent in their activation by, or killing of, HLA-null targets, 
than are licensed NK cells (16). Interestingly, in mouse models, 
such unlicensed (hyporesponsive) NK cells, which express Ly49 
receptors (the inhibitory receptors found on mouse NK cells 
that are the functional counterparts of human inhibitory KIRs) 
but have not seen “self-ligand,” can be made to be functional by 
transferring these NK cells to an environment where cognate 
ligand is expressed (17, 18).

Besides the expression of HLA ligands for the inhibitory 
receptors on NK cells, there are other mechanisms by which 
self-normal cells are protected from being attacked by NK cells. 
Studies in both mice (19–23) and humans (24, 25) have shown 
that after continuous exposure to the ligand for NK-activating 
KIR receptors, NK cells expressing these activating receptors can 
become hyporesponsive to target cells that express the ligand. 
This is evidence that the NK cells can be desensitized through 
their continual receptor contact with activating ligands.

ADCC Mechanism
In the setting of tumor-targeting monoclonal antibody (mAb) 
therapies, the anti-tumor efficacy of many mAb are shown to 
be NK cell-dependent (26). Human NK cells can express both 
FcγRIIC/CD32c (27) and FcγRIIIA/CD16a (28), which bind 
to the Fc portion of human immunoglobulins. FcγRIIIA often 
associates with FcϵRI-γ chains or CD3-ζ chains within the 
cell membrane, or with a heterodimer of these two chains (5). 
Both FcϵRI-γ and CD3-ζ chains have immune tyrosine-based 
activating motifs (ITAM) in their cytoplasmic tails. Unlike most 
activating receptors on NK cells, FcγRIIC has an ITAM in its own 
cytoplasmic tail. Upon FcγR binding, these ITAMs are phospho-
rylated, and through signal transduction mechanisms (binding to 
tyrosine kinases ZAP-70 and Syk and activation of PI3K, NF-κb 
and ERK pathways) NK cell degranulation, cytokine secretion, 
and finally tumor cell lysis occur (29).

Antibody-dependent NK-mediated tumor killing occurs 
through several different pathways, including: (1) exocytosis of 
cytotoxic granules; (2) TNF family death receptors signaling; 
(3) pro-inflammatory cytokine release, such as IFNγ. Both 
the uptake of perforin and granzymes by target cells and TNF 
family death receptor signaling cause target cell apoptosis (29), 
while IFNγ released by NK cells activate nearby immune cells 
to promote antigen presentation and adaptive immune responses 
(30). IFNγ production and cytotoxicity have been considered 
two distinctive functions of different NK subsets (31, 32), but 
growing evidence shows that the main cytotoxic NK subset, 
CD56dimCD16+ NK cells, that are responsible for mAb-mediated 
tumor killing, are also able to produce IFNγ following activation 
(33, 34). In addition to inhibiting cell proliferation, angiogenesis, 
and increasing MHC surface expression (35), IFNγ was also 
shown to contribute to upregulation of TRAIL expression on NK 
cells (36), which suggests that one mechanism may interact with 
another to synergistically enhance tumor killing. A recent study 
indicates that NK-insensitive targets can become NK-sensitive 
via treatment with IFNγ, which induces lysis through ICAM-1 
upregulation and increasing conjugate formation with NK cells 
(37). These mechanisms might work together to eliminate tumor 
targets through engagement of both innate and adaptive immu-
nity; whether one is predominant over the others in tumor killing 
is still unknown (29–37).

NK Cell FcγRs in ADCC
Genotypic variations (polymorphisms) exist in humans in 
both FcγRIIIA and FcγRIIC that influence FcR function. Thus, 
FcγRIIIA and FcγRIIC genotype can influence the interaction of 
these receptors with immunoglobulin, resulting in differential 
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effectiveness of mAb therapy depending on an individual’s geno-
type. In addition, immunoglobulin isotypes (IgG1, IgG2, IgG3, 
and IgG4), as well as fucosylation and glucosylation patterns, 
have varying influence on the affinities of these IgG molecules for 
both FcγRIIIA and FcγRIIC (38–41). Such factors (patient FcγR 
genotype and antibody Fc backbone) create the opportunity for 
considering therapeutic treatment options that may optimize the 
degree to which a patient will respond when administering mAb 
therapy. Selection of an optimized regimen may lead to a more 
effective trigger of the proper immune response.

A number of studies have shown that anti-tumor activity of 
certain tumor-specific mAbs is associated with higher affinity 
FcRs, based on the FcR genotype. These results suggest that these 
mAbs are acting through antibody-dependent cell-mediated 
cytotoxicity (ADCC) by the cells that express those FcRs. In 
particular, FcγRIIIA expressed on NK cells has a single nucleo-
tide polymorphism (SNP) that results in FcγRIIIA polymorphic 
variants [FcγRIIIA with phenylalanine (F) at amino acid position 
158, or FcγRIIIA with valine (V) at amino acid 158], which vary 
in their strength of binding to immunoglobulins. Several stud-
ies have shown that those individuals that are homozygous for 
V (FcγRIIIA-158-V/V) have improved clinical outcome (after 
treatment with ADCC-inducing tumor-reactive mAb) over those 
that are either heterozygous (FcγRIIIA-158-V/F) or homozygous 
(FcγRIIIA-158-F/F) for the lower affinity FcγRIIIA isoform 
(42–46). While not all such studies confirm these findings, 
several clinical analyses are consistent with this result. These are 
presented in the section below regarding a few of the mAbs that 
appear to be acting, at least in part, via ADCC.

Therapeutic Monoclonal Antibodies for 
Cancer Treatment

Tumor-specific mAbs that recognize tumor-selective antigens on 
the surface of tumor cells are being used as cancer therapy. These 
therapeutic mAbs target and attack tumor cells through various 
mechanisms, including directing toxic molecules to target cells, 
inhibiting target cell proliferation, blocking inhibitory signals for 
immune cells, and directing immune cells to kill targets through 
ADCC (47). Some newer antibodies, such as bi-specific antibodies 
(bsAbs), work through promoting conjugate formation between 
target cells and NK or T cells (48). A more comprehensive list of 
anti-cancer mAbs has been summarized in other reviews (47, 49, 
50). This review focuses on NK cell-mediated anti-tumor activity, 
via ADCC, and thus includes discussion of representative tumor-
specific mAbs that have been shown in pre-clinical or clinical 
models to function, at least in part, via ADCC (Table 1).

Anti-GD2 mAb for Melanoma and 
Neuroblastoma Treatment
GD2 is a disialoganglioside expressed on human melanoma and 
neuroblastoma cells with restricted expression on normal tis-
sues, which makes it a suitable target for mAb immunotherapy 
(Table 1). The first anti-GD2 antibody, 3F8, is a murine IgG3 mAb 
that was produced in 1985 from a mouse hybridoma (62). 3F8 is 
able to elicit complement activation and ADCC against human 

neuroblastoma cells. However, most patients in early clinical 
trials that received 3F8 developed human anti-mouse antibody 
(HAMA) response (63). HAMA may compete for the binding 
site of the therapeutic antibodies resulting in decreased binding 
to GD2, therefore dampening the anti-tumor efficacy and lead-
ing to acceleration of clearance of the therapeutic antibody from 
circulation (64).

Another murine anti-GD2 mAb, 14.18, which is also an 
IgG3, was generated separately by Mujoo et  al. in 1987 (65). 
This antibody also displayed the capability to induce efficient 
in vitro ADCC and in vivo anti-tumor effects. An isotype vari-
ant of this murine anti-human GD2 antibody, 14.G2a (66), was 
tested clinically and showed some anti-tumor activity (67, 68), 
but HAMA response was still present in a significant portion 
of patients. While effective in targeting tumor and reducing 
tumor size in occasional patients, it became evident that it 
was necessary to improve the backbone of these initial mAb 
to increase efficacy and decrease the immunogenicity of this 
immunotherapeutic option.

In order to reduce the HAMA response and lengthen the 
antibody half-life in patients, efforts were made to create chimeric 
anti-GD2 antibodies, containing human constant regions with 
murine variable regions. Since a chimeric antibody has a majority 
of human epitopes, these epitopes should not be recognized by 
the immune system as foreign, and thus be less immunogenic 
than the fully murine antibodies. Dinituximab (formerly known 
as ch14.18) is a chimeric mAb comprising a fusion protein of the 
human constant portion of IgG1 and the GD2-reactive variable 
portion of the murine 14.18 mAb (69). Dinituximab has been 
shown to induce stronger ADCC than 14.G2a in  vitro against 
GD2-positive neuroblastoma cells (70), and have anti-tumor 
activity against GD2-positive melanoma cells in vivo (71). In the 
initial published phase I clinical study of dinituximab treatment 
for pediatric neuroblastoma (72), no human anti-chimeric anti-
body (HACA) response was detected. Four out of nine children 
had anti-tumor response and one had a minor response. Thus, 
by modifying the backbone of the antibody, improved clinical 
outcome was observed.

To further improve antibodies, a fully human antibody was 
“grafted” with murine complementarity determining regions 
(CDRs), which confer antigen specificity. These humanized anti-
bodies are considered less immunogenic than chimeric antibod-
ies (73). However, even with humanized antibodies specific for 
GD2, pain and capillary leak were seen as significant toxicities. 
These toxicities limit the dose that can be administered, which 
restrains the possible anti-tumor effect that one would expect if 
a higher dose could be given. The toxicities are mainly attributed 
to complement activation (74), which is elicited by the CH2 
domain on antibodies (75). Therefore, by reducing complement 
activation via a point mutation at amino acid position 322 in the 
CH2 domain of humanized antibody, complement activation is 
greatly reduced. Such reduction in complement activation, and 
thus reduced toxicities (76), allowed for higher treatment-dose to 
be administered to patients, while at the same time maintaining 
the anti-tumor ADCC effect (77). Both humanized 14.18K322A 
and humanized 3F8 are under clinical investigation (Table  1) 
(73, 78).
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Herceptin/Trastuzumab
Trastuzumab is a humanized anti-HER2 mAb used to treat 
HER2-positive breast carcinoma (Table  1), as well as many 
other types of cancers that overexpress HER2, a member of the 
human epidermal growth factor receptor (EGFR) family. HER2 
is a transmembrane tyrosine kinase with no known ligand. 
Dimerization of HER2 with certain EGFR family members leads 
to activation of signaling pathways that promote cell proliferation 
and survival (79). HER2 is overexpressed on a variety of tumors 
with limited expression on normal tissues, thus it is an ideal target 
for treatment of HER2-positive cancers.

Trastuzumab was first approved by the FDA in 1998 to treat 
HER2-positive metastatic breast cancer. Besides preventing 
HER2 from dimerization, trastuzumab was also shown to medi-
ate ADCC against HER2-positive tumor cells in  vitro, and the 
major effector cells were NK cells expressing FcγRIIIA (80, 81). 
A mutant trastuzumab that lost the ability to bind to FcγR lost 
anti-tumor activity in  vivo in a xenograft breast tumor model, 
suggesting that ADCC is involved in the anti-tumor effect of 
anti-HER2 mAb therapy in vivo (54). In addition, Clynes et al. 
showed that the anti-tumor response to trastuzumab in a breast 
carcinoma xenograft mouse model was decreased in mice lacking 
the activating receptor FcγRIIIA, but enhanced in mice lacking 

TABLe 1 | Representative tumor-antigen targeting monoclonal antibodies and immunocytokines functioning through ADCC.

Target Status Reference or clinical trial#

MAb

Rituximab CD20 FDA approved for non-Hodgkin’s lymphoma Cartron et al. (42)

Phase I relapsed indolent B-cell non-Hodgkin NCT02384954

Lymphoma, combined with ALT-803a

Combination with matrix metalloproteases inhibitor in pre-clinical models Romee et al. (51)

Obinutuzumab CD20 FDA approved for chronic lymphocytic leukemia Goede et al. (52)

Hul4.18K322A GD2 Phase I neuroblastoma, melanoma, NCT01576692

Osteosarcoma, ewing sarcoma NCT00743496

Phase II neuroblastoma NCT01857934

Hu3F8 GD2 Phase I GD2+ tumors NCT01419834

Phase I high-risk neuroblastoma and GD2+ solid NCT01662804

Tumors, combined with IL2

Phase I refractory high-risk neuroblastoma, combined with GM-CSF NCT01757626

Dinituximab GD2 FDA approved for high-risk neuroblastoma, combined with IL2 and 
GM-CSF

Yu et al. (53)

Trastuzumab HER2 FDA approved for HER2+ breast cancer and HER2+ metastatic gastric 
adenocarcinoma

Junttila et al. (54)

Cetuximab EGFR FDA approved for metastatic colorectal cancer and head and neck cancer Messersmith and Ahnen (55)

iMMUNOCYTOKiNe

Rituximab-RLIb CD20 Tested for human B lymphoma in SCID mouse Vincent et al. (56)

c.60C3-RLIc GD2 Tested in mouse GD2+ cell lines EL4
(subcutaneous) and NXS2 (metastatic)-grafted mouse models

Vincent et al. (57)

Hul4.18-IL2 GD2 Completed phase II refractory neuroblastoma Delgado et al. (58), 
Shusterman et al. (59)  

KM2812 PSMA Tested in human prostate cancer cell LNCaP-xenografted mouse model Sugimoto et al. (60)

Bi-SPeCiFiC ANTiBODY AND SiNGLe CHAiN vARiABLe FRAGMeNT

AFM13 CD30/CD16 Phase II relapsed Hodgkin lymphoma NCT02321592

(CD20)2xCD16 CD20/CD16 Tested in humanized mouse grafted with autologous human B cells Glorius et al. (61)

aALT-803 is a fusion protein consisting of mutated IL15 and IL15Rα/Fc complex.
bRLI (IL15Rα-linker-IL15) is a fusion protein linking the NH2-terminal domains of IL15Rα to IL15 through a 20-amino acid linker.
cc.60C3 is a chimeric anti-GD2 mAb.
This table is a selected (not complete) list of therapeutic mAbs that are capable of inducing antibody-dependent cellular cytotoxicity.

the inhibitory receptor FcγRIIB (82). These experimental data 
demonstrate that Fc receptor recognition is responsible for at 
least part of anti-tumor efficacy of trastuzumab.

Cetuximab
Cetuximab is an FDA-approved chimeric mAb for treatment 
of EGFR-expressing metastatic colorectal cancer (mCRC) (55), 
metastatic non-small cell lung cancer, and head and neck cancer. 
It reacts against the human EGFR, and can interfere with tumor 
growth via receptor blockade from growth factor activation. In vitro 
studies indicate that some of the anti-tumor activity of cetuximab 
is mediated via ADCC (83, 84), and cetuximab-mediated in vitro 
ADCC is correlated with NK cell FcγR polymorphisms of the 
effector donors (46, 85). In addition, in mCRC patients treated 
with cetuximab and irinotecan, those who have higher affinity 
FcγR polymorphisms had longer progression-free survival (45, 
86). In other studies of mCRC patients, the opposite association 
has been found, namely low affinity FcγR polymorphism was 
associated with better clinical outcomes (87–89). However, the 
patients in these studies either had different percentage of KRAS 
mutation or received other antibody concurrently with cetuxi-
mab, which indicates patient mutation profile as well as treatment 
regimen could also influence the impact of FcγR on cetuximab 
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response (90). Nevertheless, both in vitro and some clinical data 
suggest that cetuximab-mediated ADCC through NK cells may 
contribute to its anti-tumor activity.

Rituximab and Obinutuzumab
Rituximab is a chimeric IgG1 mAb targeting CD20, a B cell 
differentiation antigen (Table  1). There are various mecha-
nisms that may account for the anti-tumor effect of rituximab: 
complement-dependent cytotoxicity (CDC), direct target cell 
apoptosis, antibody-dependent phagocytosis and ADCC (91). 
In xenograft mouse models of B-cell lymphoma, the anti-tumor 
effect of rituximab was greatly reduced in FcRγ−/− nude mice (82), 
or in mice treated with FcγR block (92). Interestingly, clinical 
evidence gathered by Cartron et al. suggested that FcγRIIIA on 
NK cells plays an important role in anti-tumor effect of rituximab. 
Cartron et  al. evaluated FcγRIIIA polymorphisms in follicular 
lymphoma patients treated with rituximab, and this was the first 
time that better response to rituximab was associated with higher 
affinity FcγRIIIA genotype (42). However, there have been mixed 
results as to the influence of FcR genotype on clinical response to 
rituximab. Some groups have found in B cell lymphoma patients 
with no association between FcγR polymorphism and outcome 
(93–95). There are various factors that could contribute to the 
differences in these findings, including patient population, geno-
typing methodology, rituximab treatment strategy, and whether 
or not patients received concurrent chemotherapy (96–99).

Modifications have been made to improve the binding affin-
ity of therapeutic anti-CD20 mAb to activating Fc receptors, in 
hopes of maximizing the ADCC function of this mAb therapy. 
One such effort consists of using glycoengineered antibodies, 
which are produced in CHO cells that overexpress β-1,4-N-
acetyl-glucosaminyltransferase III and Golgi α-mannosidase II, 
and will increase the binding affinity to both the higher affinity 
and to the lower affinity isoforms of FcγRIIIA (39, 41, 100). The 
first Fc-glycoengineered anti-CD20 humanized mAb, obinutu-
zumab, was shown to induce stronger ADCC and direct target 
cell death in vitro, and it also elicited better anti-tumor activity 
in a lymphoma xenograft mouse model compared to rituximab 
(101, 102). In a phase III clinical trial comparing obinutuzumab 
vs. rituximab, combined with chemotherapy, for treating chronic 
lymphocytic leukemia (CLL) patients (52), obinutuzumab plus 
chlorambucil significantly prolonged progression-free survival 
compared to rituximab plus chlorambucil. Obinutuzumab alone, 
or in combination with chemotherapy, is currently under clinical 
investigations for other B-cell malignancies as well (103–106).

How to Augment Anti-Tumor  
effects of ADCC

Since ADCC is an important contributor to the anti-tumor activ-
ity of many mAb therapies, enhanced immune activation of the 
effector cells may be an ideal adjuvant therapy to augment ADCC 
activity of mAb. In addition to the ADCC capabilities of NK cells, 
they can also stimulate the activity of other immune processes 
through their release of cytokines (such as IFNγ), and thus can 
provide a link to initiate additional immune responses to attack 
target tumors.

mAb + Radiation Therapy
Approximately 60% of oncology patients receive radiation therapy 
as part of their cancer treatment. Radiation elicits an anti-tumor 
effect through the induction of DNA damage but may also increase 
tumor susceptibility to immune response (107). Consequently, 
the effect of radiation may be modulated by immune response 
(108, 109) and radiation may augment the efficacy of immuno-
therapies (110). The mechanisms by which radiation may interact 
with the immune system include radiation-induced production 
of inflammatory cytokines, release of tumor-specific antigens, 
phenotypic changes in tumor cell expression of immune suscep-
tibility markers, and effects on vascular architecture that enhance 
immune surveillance (107, 110). Included among the phenotypic 
changes induced by radiation are the upregulation of MHC class 
I, NKG2D ligand, and the Fas death receptor; all of which may 
potentiate the ADCC response (111–114). In addition, radiation 
may impact the expression of antigens targeted by tumor-specific 
antibodies and this has been show to enhanced ADCC response 
in  vitro (115, 116). The potential interaction of radiation and 
ADCC has not yet been clarified in vivo. Interestingly, however, 
a number of tumor-specific antibodies that are known to elicit 
ADCC (including cetuximab, trastuzumab, and dinituximab) are 
commonly administered to patients that also receive radiation 
therapy. The role of ADCC and NK cells in the clinical response to 
such combined modality treatment has not been defined. Further 
pre-clinical investigation is needed to evaluate whether the effects 
of radiation on tumor immune susceptibility may be leveraged to 
enhance ADCC response in the clinical setting.

mAb + Matrix Metalloproteases inhibitor
Upon activation, NK cells have been shown to shed FcγRIIIA 
(also known as CD16) from their cell membrane, a process that 
is mediated by matrix metalloproteases (MMPs) activation (117, 
118). In  vitro treatment of NK cells with the MMP inhibitor, 
GM6001, rescues FcγRIIIA loss stimulated by K562 tumor cells, 
but does not interfere with NK cell degranulation (118), which 
indicates that FcγRIIIA shedding and degranulation of NK cells 
are dependent upon separate pathways. It is plausible, therefore, 
that maintaining FcγRIIIA expression on NK cell surface via an 
MMP inhibitor could enhance the ADCC function of NK cells 
without interrupting NK cell degranulation (119). Recently, one 
specific MMP, ADAM17, was identified by Romee et al. as the 
key MMP responsible for FcγRIIIA expression loss after NK cell 
activation (51). According to their report, an ADAM17-specific 
inhibitor not only rescues FcγRIIIA shedding stimulated by tumor 
targets but also improves NK cell degranulation as well as IFNγ 
production in the presence of tumor-specific mAb (51). These 
in vitro studies suggest that limiting the loss of FcγRIIIA on the 
cell surface is important for enhanced NK cell-mediated ADCC, 
and opens new possibilities for combination of both MMP and 
mAb therapies to further promote ADCC.

Anti-GD2 mAb + iL2 + GM-CSF
While anti-GD2 mAb alone produced some anti-tumor activity 
in neuroblastoma patients, combining the mAb with GM-CSF 
and interleukin 2 (IL2) to further activate immune effector cells 
enabled potent clinical anti-tumor efficacy of anti-GD2 mAb. 
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Our lab previously showed that peripheral blood mononuclear 
cells (PBMCs) obtained from cancer patients pre-IL2 treatment 
had low levels of ADCC against a neuroblastoma cell line, even 
in the presence of both anti-GD2 mAb and IL2. However, PBMCs 
obtained from the same patient following 4 weeks of IL2 infusions 
mediated much higher ADCC of neuroblastoma cells, and the 
addition of IL2 in vitro dramatically boosted the anti-GD2 mAb-
mediated ADCC (120, 121). Moreover, depletion of FcγRIIIA-
positive cells eliminated ADCC completely (120). These data 
suggest that in vivo infusion of IL2 could overcome the immune 
suppression seen in some cancer patients; when using NK cells 
obtained from patients following therapy with IL2, the in vitro 
combination of IL2 and anti-GD2 mAb greatly boosted ADCC 
of neuroblastoma cells.

Besides IL2, GM-CSF also acts as an immune stimulator, 
especially following immune suppressive chemotherapy, to 
rescue bone marrow myeloid function (122–125). The combina-
tion of GM-CSF and the murine anti-GD2 mAb, 3F8, resulted in 
complete responses of GD2-positive cancer patients, particularly 
in patients with minimal residual disease (MRD) (126). In a 
phase III clinical trial for high-risk neuroblastoma patients fol-
lowing induction therapy and autologous transplant, patients 
were randomized into standard therapy (isotretinoin) or into 
a group that received the combined immunotherapy regimen 
of dinituximab  +  IL2  +  GM-CSF in addition to isotretinoin. 
Patients in the immunotherapy treatment group had significantly 
improved event-free survival and overall survival as compared to 
the patients that received the standard of care alone (53). Other 
mAb therapies, such as rituximab and trastuzumab (81), are also 
being combined with IL2 in clinical trials to evaluate the anti-
tumor efficacy (127–129).

mAb + iL15
IL15 is another cytokine that can activate immune cells, such as 
NK and T cells. IL15 receptors (IL15R) share the same β chain 
and common γ chain as IL2 receptors, but IL15R have a unique 
α chain that is specific for IL15, which is used for IL15 presenta-
tion to β/γ receptors on immune cells. Soluble IL15 has been 
shown to activate NK cells, enhance NK-mediated cytotoxicity, 
and cytokine production in vitro (130), and administration of 
recombinant human IL15 (rhIL15) to cancer patients resulted 
in in vivo NK cell proliferation and activation (131). While IL2 
has the potential for T regulatory cell (Treg) maintenance, which 
could dampen activating immune response, IL15 does not stim-
ulate Tregs (132). Moreover, IL15 does not trigger T cell death 
after activation, or lead to vascular leak syndrome (VLS), both of 
which are significant toxicities seen in pre-clinical models using 
IL2 (133–135). Therefore, in addition to IL2, IL15 is a potential 
candidate that can be used clinically combined with mAb, to 
improve NK cell-mediated ADCC without severe toxicity.

Indeed, the Caligiuri group reported enhanced NK-mediated 
ADCC by IL15 in 1994 (130). More recently, Moga et al. showed 
that in vitro activation of PBMCs by IL15 significantly improved 
rituximab-mediated ADCC against B lymphoma cells, and the 
major effector cells were NK cells (136). They also showed this 
enhancement of rituximab-mediated ADCC using PMBCs from 
CLL patients against a CLL cell line (137). In addition, they showed 

that IL15 treatment resulted in similar ADCC levels between 
individuals with the lower affinity FcγRIIIA and individuals that 
have the higher affinity FcγRIIIA (137). These findings suggested 
that the difference between the capabilities of the high and low 
affinity FcγRIIIA to mediate ADCC might be overcome by IL15 
treatment. Such findings suggest that IL15 administration may 
compensate for mAb-affinity differences that are dependent upon 
FcγRIIIA polymorphisms.

Different from IL2, the activation of NK and T cells by IL15 
is through trans-presentation by the IL15Rα chain, which is 
expressed independent of the β/γ chains. With efforts to increase 
the stimulation activity of soluble IL15, several different IL15 
agonists have been generated and tested in pre-clinical models 
in order to boost NK-mediated ADCC efficacy. A fusion protein 
linking IL15Rα chain sushi domain and human IL15 (RLI) 
has been generated and shown superior stimulation potential 
in vitro and better anti-tumor effects in vivo than soluble IL15 
(138, 139). In addition, an IL15 mutant has been identified as a 
better surrogate for soluble IL15 due to its enhanced activity to 
stimulate proliferation of cells expressing IL15R (140). Later on, 
the same group generated a fusion protein consisting of the IL15 
mutant and an IL15Rα/Fc complex (141). This IL15 superagonist, 
ALT-803, could improve rituximab-mediated ADCC against B 
cell lymphoma both in  vitro and in  vivo [Maximillian (142)]. 
Thus, IL15 combined with tumor-specific mAb appears to merit 
clinical testing as a potential immunotherapy, which is currently 
underway (NCT02384954) (Table 1).

immunocytokines
Anti-GD2 Immunocytokines
Immunocytokines (IC) are fusion proteins made by linking 
immune-activating cytokine to a tumor-specific mAb. The ini-
tially described IC (ch14.18-IL2) linked IL2 to the C-terminus of 
the ch14.18 chimeric anti-GD2 mAb (143). The IL2 component 
on these IC has the same ability as soluble IL2 in terms of stimu-
lating cell proliferation via IL2 receptors (IL2R) (144), and have 
been shown to mediate the conjugation between IL2R-positive 
cells and tumor target cells (145). IC also preserve FcR binding 
ability, and thus are capable of mediating in vitro ADCC (144). 
By targeting IL2 to the tumor microenvironment, IC might be 
superior at activating tumor infiltrating immune cells resulting 
in improved ADCC while causing less toxicity than soluble IL2. 
Lode et  al. showed that ch14.18-IL2 had improved anti-tumor 
efficacy than the combination of ch14.18 and soluble IL2 in a 
spontaneous neuroblastoma metastases mouse model (146). 
They also showed that the mechanism behind this anti-tumor 
effect strongly depended on NK cells, since NK cell depletion 
completely abrogated the anti-tumor effect in this model (147).

A separate humanized IC was created by linking human IL2 
to the humanized 14.18 mAb (hu14.18-IL2; Table  1). This IC 
was assessed for anti-tumor activity in a phase II clinical trial 
of refractory neuroblastoma patients divided into two strata 
of patients depending on disease burden. Stratum 1 included 
patients with disease measurable by computed tomography and/
or magnetic resonance imaging using standard radiographic 
criteria, while stratum 2 included patients with disease evalu-
able only by 123I-MIBG scintigraphy and/or BM histology. Of 36 
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patients evaluable for response, no responses were seen in the 
13 patients in stratum 1 while 5 complete responses were noted 
in the 23 patients in stratum II (59). In another phase II clinical 
trial of hu14.18-IL2 in 14 patients with measurable metastatic 
melanoma, 1 patient had a partial response to the immunotherapy 
(148). Both of these trials suggest that hu14.18-IL2 works better in 
clinical cases where MRD is present than in individuals that have 
bulky disease. Furthermore, in the phase II neuroblastoma study 
of hu14.18-IL2 noted above where 21.7% of stratum II patients 
with MRD responded, all of the responders had a favorable KIR/
KIR-ligand genotype (i.e., KIR-ligand missing) (58). This study 
indicates that NK cells play an important role in response to the 
hu14.18-IL2 treatment in neuroblastoma patients.

Anti-PSMA Immunocytokine
Prostate-specific membrane antigen (PSMA) is a surface antigen 
highly expressed by poorly differentiated prostate cancers, which 
makes it a suitable target for mAb therapies. Several anti-PSMA 
mAb and antibody-drug conjugates have been tested clinically, 
and a small fraction of patients showed anti-tumor response, 
which in part was due to ADCC (149). To improve ADCC func-
tion of anti-PSMA mAb, an anti-PSMA IC was generated by 
fusing IL2 to a mouse/human chimeric anti-PSMA mAb (60). 
This IC showed enhanced in vitro ADCC, and superior in vivo 
anti-tumor activity compared to a naked anti-PMSA mAb (60). 
Continued research is underway in both pre-clinical models and 
clinical testing to determine if superior anti-tumor efficacy is 
noted with this novel IC.

IL15-Linked Immunocytokine
One limitation of IL2-linked ICs is IL2-mediated toxicity that 
restricts the maximum-tolerated dose (MTD) that can be 
administered. In contrast to IL2, IL15 does not appear to elicit as 
severe adverse side effects. In addition, IL15 may have improved 
anti-tumor efficacy (133). Since IL15 is most active in a trans-
presentation form, a fusion protein of human IL15Rα and human 
IL15, called RLI, was generated. This fusion protein showed supe-
rior activation function than soluble IL15 both in vitro and in vivo 
(138, 150). Vincent et al. linked RLI to the end of chimeric anti-
GD2 antibody (c.60C3) and generated an RLI-linked anti-GD2 
IC (57). This IC had similar IL15-induced proliferative activity as 
RLI, and similar ADCC-inducing ability as anti-GD2 antibody 
in  vitro. Moreover, anti-GD2-RLI exhibited better anti-tumor 
activity than either RLI or anti-GD2, alone or in combination, in 
an NXS2 mouse neuroblastoma model (57). The same group also 
showed that RLI-linked rituximab significantly prolonged survival 
as compared to administration of RLI and rituximab at the same 
time in a residual lymphoma mouse model (56). These pre-clinical 
data suggest that IL15-linked IC merit clinical investigation to 
evaluate both efficacy and toxicity relative to IL2-linked IC.

Novel Bi-Specific Antibodies or Single Chain 
variable Fragment Targeting NK Cells
With evolving genetic engineering technologies, non-conventional 
antibodies that have dual or tri specificity have been constructed. 
They either target two different antigens on tumor cells, or facili-
tate conjugate formation between immune cells and tumor targets 

(151). There are two classes of bsAbs: Fc-containing bsAbs that 
are of similar size as conventional mAbs and those bsAbs without 
an Fc domain, which are of much smaller size. They are further 
divided according to their structures, specificities, or how they are 
constructed (152). In efforts to bring NK cells and tumor cells in 
proximity, several bsAbs or single chain variable fragment (scFv) 
have been constructed to bind both tumor antigen and FcγRIIIA 
(CD16). AFM13 is a bi-specific tetravalent antibody construct 
that targets both CD30 and CD16 (153), which is currently in a 
phase II clinical trial for relapsed Hodgkin lymphoma patients 
(NCT02321592) (Table 1). It has been shown to exhibit superior 
cytotoxicity than other CD30-targeting antibodies in vitro and its 
ADCC activity is independent of the FcγRIIIA allotypes (154). 
A CD20/CD16 bsAb also showed improved clearance of B cell 
malignancy compared to rituximab both in  vitro and in  vivo. 
Again, the efficacy of this antibody construct is not influenced by 
FcγRIIIA polymorphism (61). Two different CD33/CD16 bsAbs 
have been shown to efficiently kill acute myeloid leukemia (AML) 
cells or stem cells from myelodysplastic syndrome, a precursor 
of AML (155–157). A few CD19/CD16 bsAb or derivatives have 
also been generated to target leukemia and lymphoma cells and 
showed promising ADCC activity in vitro (158–161).

For solid tumors, a bsAb-targeting HER2/CD16 has been tested 
in mouse model against HER2-positive tumor cells and showed 
enhanced anti-tumor efficacy than trastuzumab against HER2-
low expressing tumor. Interestingly, the efficacy of this bsAb is 
also FcγRIIIA polymorphism independent (162). In addition, 
an EpCAM/CD16 bi-specific scFv antibody fragment showed 
enhanced in vitro killing of human carcinomas with a broad range 
of origins, as well as efficient killing of NK-resistant carcinoma 
targets (163). The fact that a lot of these bsAbs discussed above 
have proficient anti-tumor effect regardless of FcγRIIIA affinity 
on NK cells enlarges the patient population that will potentially 
benefit from such type of immunotherapy.

Adoptive Transfer of Ex Vivo-Activated NK Cells
A separate approach to augment NK cell function and ADCC is 
to infuse NK cells that have been activated and expanded in cell 
number ex vivo. During the ex vivo expansion of NK cells, these 
activated effectors are primed to kill tumors more effectively, 
and they can then be infused into cancer patients. Autologous 
NK cells may be relatively tolerant to self-tumors and, in certain 
settings, may have less anti-tumor potential than allogeneic NK 
cells (164). There are several approaches being pursued in order 
to expand and activate NK cells ex vivo. In the presence of IL2 
and irradiated feeder cells, such as EBV-LCL cells or geneti-
cally modified K562 cells, NK cells are preferentially expanded 
to 200- to 400-fold within a 21-day period (165, 166). NK cells 
can be potently expanded and activated by culturing them with 
K562 cells that have been modified to be far more stimulatory 
by expressing membrane-bound IL15 and 41BBL. NK cells that 
have been ex vivo expanded using these modified K562 cells have 
better anti-tumor activity in vitro and in vivo in mouse models 
(166). In addition, ex vivo-expanded NK cells have also been 
shown to be able to mediate ADCC, and in combination with 
tumor antigen-specific antibodies, they exerted better anti-tumor 
efficacy (167, 168). Different protocols using expanded NK cells 
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are currently under clinical testing, either alone or in combination 
with tumor-specific mAb (169–171). These ongoing clinical trials 
may answer the questions of how long these NK cells may survive 
in vivo, their homing capacity, and tumor-targeting specificity.

Genotypic Factors that Affect Antibody/
NK Cell Based immunotherapy

Despite the success noted in some immunotherapies involving 
NK cells, some patients do not benefit from these immuno-
therapies. Therefore, it would be advantageous to be able to 
identify those patients who would likely respond, and those 
who would be less likely to benefit from immunotherapies that 
require NK cell response. There are many different genotypic 
factors that could potentially affect the efficacy of different 
immunotherapies in various cancer types. Here, we focus 
mainly on those genotypes that could affect NK cell function 
and ADCC efficacy.

Killer-immunoglobulin Receptors  
on NK Cells and Their Ligands
Killer-immunoglobulin receptors are expressed on a subset of NK 
cells and on some T cell subsets. KIRs are a family of receptors 
with high polymorphisms inherited on chromosome 19 (172). 
There are 15 functional KIR genes and 2 KIR pseudogenes in the 
human genome. Of the functional KIR genes, some function as 
inhibitory receptors and others are activating receptors (173). For 
some KIR genes, the ligands are well defined (7). KIRs with defined 
ligands generally recognize distinct HLA class I molecules, but do 
so with less specificity than T cell receptors. Furthermore, and 
again in distinction to T cell receptors, KIRs appear to recognize 
class I HLA molecules without regard to peptides that may be 
presented in the cleft (pocket) of the HLA structure. Some inhibi-
tory and activating KIRs with high homology in extra cellular 
domains share the same HLA ligand, with the inhibitory KIR/
KIR-ligand interaction being a much stronger binding pair. The 
interaction between KIRs and KIR-ligands influence NK cell 
education and function (15, 174). Since KIR haplotype, as well 
as KIR expression, is highly diverse among the population, and 
since KIR-ligands are inherited independently from KIRs, an 
individual’s KIR/KIR-ligand genotype can affect NK cell function 
and ADCC in different settings. These differences in genotypes 
for KIR/KIR-L between different individuals have been associ-
ated with the individual’s outcome in response to certain forms 
of immunotherapy, particularly those immunotherapies that 
involve NK cells.

The KIR haplotype of NK cell donors (175–177) as well as 
the relationship between the donor’s inhibitory KIR and the 
recipient’s KIR-ligand genotypes can predict clinical outcomes in 
allogeneic hematopoietic transplantation for AML patients; the 
impact of KIR and KIR-L genotypes may also play a role in some, 
but not all, settings of hematopoietic transplantation for acute 
lymphoid leukemia (ALL) patients (178–180). Recipients that 
are missing the KIR-ligands for the KIR genes that are present 
on the donor NK cells are predicted to have longer progression-
free survival post-transplantation than those who have the 

KIR-ligand genes present for the donor KIR genes (178–180). In 
an autologous hematopoietic transplantation setting for high-risk 
neuroblastoma patients, Venstrom et  al. showed that patients 
who were missing any self-inhibitory KIR-ligand had improved 
progression-free survival and improved overall survival (181). 
Even though direct ADCC was not involved in these transplants 
for cancer patients, these data involving KIR/KIR-L relationships 
indicate that NK cells likely contribute to the anti-tumor response 
post-transplantation.

In some immunotherapies where ADCC is involved, patients 
missing their self-inhibitory KIR-ligand also had better clinical 
outcome. In neuroblastoma patients treated with anti-GD2 mAb 
or IC, and in lymphoma patients treated with rituximab, inhibi-
tory KIR-ligand missing was associated with improved clinical 
outcome (58, 181–183). These findings suggest that self KIR/
KIR-ligand genotypes not only affect NK cell function but also 
affect NK-mediated ADCC effects in the clinical setting.

The effects of inhibitory KIR/KIR-ligand interactions on NK 
cell function have been investigated for over a decade, but the role 
of activating KIR/KIR-ligand interactions in immunotherapies 
involving NK cells has only recently been reported. In 2011, 
Scquizzato et  al. evaluated the impact of recipient KIR-ligand 
missing for both inhibitory and activating donor KIR genes, in 
a group of patients with various hematopoietic malignancies 
who received allogeneic hematopoietic stem cell transplantation 
(184). They found that the cohort of recipient patients missing 
the KIR-ligand for donor KIR genes had better disease-free 
survival, but only when patients who had KIR-ligands missing 
for their activating KIR were excluded from the analysis (184). 
This finding suggests that activating KIR/KIR-ligand interactions 
may have differential impact on patient outcome than inhibitory 
KIR/KIR-ligand interactions, thus the KIR-ligand missing model 
to predict patient outcome appears to be applicable only to inhibi-
tory KIRs, with exclusion of activating KIRs.

In 2012, Venstrom et al. reported that in a large group of AML 
patients, those who received allografts from donors that had the 
activating KIR gene, KIR2DS1, and two copies of the ligand for 
KIR2DS1, HLA-C2, exhibited a higher relapse rate than patients 
who received grafts from KIR2DS1-positive donors and either 
one or no copies of HLA-C2 (24). Consistent with this clinical 
observation, Pittari et  al. showed that KIR2DS1-positive NK 
cells from healthy donors that have two copies of HLA-C2 were 
hyporesponsive to tumor targets as compared to KIR2DS1-
positive NK cells from donors with one or no copy of HLA-C2 
(25). Both clinical and in  vitro data suggest that NK cells that 
express activating KIR2DS1 are subjected to hyporesponsiveness 
via long-term contact of the activating KIR with its cognate ligand 
when two copies of the ligand are present. Whether or not NK 
cell hyporesponsiveness affects patient response in the context of 
ADCC, where mAb is administered to trigger NK cell activation 
through FcγRs, is still under investigation. As the interactions 
of activating KIRs and their ligands have not been studied as 
extensively as the interactions of the inhibitory KIRs and their 
ligands, much more characterization is required. Inhibitory KIR/
KIR-ligand genotypes and activating KIR/KIR-ligand interac-
tions may also serve as potential predictors of clinical outcome 
in the future.
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NK Cell Fc Receptor Genetic variations
FcγRs function as receptors for the Fc portion of IgG immuno-
globulins, and in doing so serve as a link of the innate immune 
system to the humoral system. In humans, there are three classes 
of FcγR, including variations of FcγRI, FcγRII, and FcγRIII. 
These three receptor classes are characteristically expressed 
on various immune cells. NK cells express both FcγRIIC and 
FcγRIIIA, which have low to intermediate affinity for IgGs 
(depending on FcR polymorphisms and IgG subclasses). As 
noted above, individuals with intact immune systems all express 
FcγRIIIA on most of their NK cells, less than half the population 
expresses FcγRIIC on their NK cells. Genetic variability exists 
within both FcγRIIC and FcγRIIIA, and this genotypic varia-
tion can vary the expression and avidity of these FcγRs for IgG 
molecules (185, 186).

As was mentioned above, several groups have found associa-
tions between SNP genotype of FcγRIII3A-158-V/F and patient 
response; those with the higher affinity V/V genotype respond 
better to some antibody therapies than those with V/F or F/F 
(42–46). In fact, FcγRIIIA-158-V has improved binding affinity 
for IgG1 subclasses as compared to FcγRIIIA-158-F, which is 
the most common IgG subclass used in mAb cancer immuno-
therapeutics. Interestingly, FcγRIIIA-158-V and FcγRIIIA-158-F 
have increased binding strength for IgG3 over IgG1 (187). This 
suggests that antibody IgG subclass variations may improve their 
interaction with NK cells, via improved engagement of FcγRIIIA, 
and thus improve tumor destruction. However, other FcRs (such 
as Fcwever) are expressed on other immune cells, such as neutro-
phils and monocytes/macrophages, that also play an important 
role in tumor killing, and have improved binding to IgG1 isotypes 
over IgG3 (188).

Another FcγR that is expressed on NK cells, that also has 
improved binding to IgG3 over IgG1, is FcγRIIC. FcγRIIC is 
the result of the unequal crossover of FcγRIIA (an activating 
FcR expressed on myeloid immune cell lineages) and FcγRIIB 
(an inhibitory FcR expressed on B cells, monocytes, and mac-
rophages) (185). FcγRIIC also has SNPs within its nucleotide 
sequence that governs its expression (or non-expression) on the 
cell surface. SNP sites within exon 3 of FcγRIIC result in either 
an open reading frame, hence protein expression on the cell 
surface (FcγRIIC-ORF), or a stop codon, thus non-expression of 
FcγRIIC on the cell surface (FcγRIIC-STOP). As such, FcγRIIC 
is expressed in ~20–40% of the population, and co-expression of 
FcγRIIC with FcγRIIIA may result in enhanced ADCC capabili-
ties of the NK cells (186).

Some of the FcγRs have been shown to be subject to copy 
number variability (CNV), and this CNV can result in variable 
expression of these FcRs on the cell surface. Both FcγRIIC and 
FcγRIIIA can be CNV, and CNV in these receptors correlates 
with differences in protein expression levels (189, 190), as well as 
increased ADCC function through enhanced NK cell activation 
(186, 190).

Given that the isotypes of FcγRIIIA have been shown to 
have differential binding affinity to IgG subclasses, that FcγRIIC 
expression on NK cells is variable within the population, and that 
these FcγRs can be CNV, using genotypic measures to pre-select 

patients based on their FcγR genotype for therapeutics that 
require NK cell may be of critical importance for future clinical 
investigations. Detailed simultaneous testing of polymorphisms 
and CNV in all three of these genes (FcγRIIA, FcγRIIC, and 
FcγRIIIA) has yet to be evaluated for associations with clinical 
outcome in clinical trials of ADCC-inducing tumor-reactive 
mAbs. However, it is likely that these factors, which should influ-
ence in vivo ADCC function, will be found to play a role in the 
clinical activity of ADCC-inducing mAb therapies.

Concluding Remarks

Monoclonal antibodies utilize different mechanisms to destroy 
cancer cells, one of which is ADCC. As these treatments have 
continued to evolve from original mouse antibodies to chimeric 
antibodies to humanized and fully human antibodies, thera-
peutic mAbs for cancer treatment are still being engineered to 
achieve improved anti-tumor efficacy. Besides optimizing the 
characteristics of the mAb itself, there are other ways to improve 
anti-tumor effect, one of which is to improve ADCC by combin-
ing immune stimulatory therapies with the mAb. Since NK cells 
are considered a major player in mAb-mediated ADCC against 
tumor cells, reagents that can enhance NK cell activation, such 
as IL2, may be combined with mAb to improve the ADCC effect. 
However, due to IL2-associated toxicity in patients (191), novel IC 
therapeutics are being generated in an attempt to reduce toxicity 
and to allow for an increased MTD. Another cytokine that helps 
NK cell activation is IL15, and it is currently being tested clini-
cally in various types of cancer. Besides cytokines or IC, newly 
discovered mechanisms that could potentially improve ADCC 
include MMP inhibitors to prevent FcR shedding, and ionizing 
radiation to make tumors more immunogenic and vulnerable to 
immune-mediated destruction. These approaches combined with 
tumor-specific mAb are still being explored in pre-clinical models 
to determine efficacy and optimize dosing regimens. Finally, 
genotypic profiles of NK cells also may contribute to our under-
standing of the magnitude of ADCC responses of NK cells in any 
given patient. Specifically, KIRs and FcR genotypes may help 
to predict clinical outcome to ADCC-inducing mAb therapy, 
allowing for more personalized treatment. More detailed analy-
ses of associations of clinical outcome with NK cell genotype 
profiles are needed in order to determine the predictive value 
of this form of genotyping for distinct types of cancer and for 
different immunotherapies that involve NK cells.
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