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Abstract

Integration of the retroviral genome into host DNA is a critical step in the life cycle of a retrovirus. Although assays for
in vitro integration have been developed, the actual DNA sequences targeted by murine leukemia retrovirus (MLV) during
in vitro reproduction are unknown. While previous studies used artificial target sequences, we developed an assay using
target DNA sequences from common MLV integration sites in Stat5a and c-myc in the genome of murine lymphomas and
successfully integrated MLV into the target DNA in vitro. We calculated the free energy change during folding of the target
sequence DNA and found a close correlation between the calculated free energy change and the number of integrations.
Indeed, the integrations closely correlated with fluctuation of the structure of the target DNA segment. These data suggest
that the fluctuation may generate a DNA structure favorable for in vitro integration into the target DNA. The approach
described here can provide data on the biochemical properties of the integration reaction to which the target DNA
structure may contribute.
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Introduction

Retroviruses are powerful tools for integrating foreign genes into

a host genome. For example, murine leukemia retrovirus (MLV)

vectors have been used in the development of induced pluripotent

stem cells [1]. However, accidental integration into a host

oncogene can induce unexpected transformation due to upregula-

tion of the gene, an effect that is clearly problematic for patients

who received gene therapy using an MLV-based vector [2], as well

as for gene function analysis. Although integration events have

long been considered to occur randomly within the host genome,

several recent findings have shown that integration of MLV and

HIV-1 occurs more frequently in actively transcribed genes [3], or

in promoter regions [4].

There are several reports of in vitro integration assays using the

terminal cDNA of a long terminal repeat (LTR) in the proviral

genome and nonspecific substrate DNA, such as plasmids [5–10].

Katz et al. and Kitamura et al. reported on the relative frequency

of the use of specific bases as targets for the avian leukosis virus in

an in vitro integration system [6,7]. They found that there is a

distinct and reproducible pattern of frequently targeted integration

sites. The observed specificity is conferred by interaction between

integrase and the targets, although the specificity of target

integration may be modified by other viral and/or cellular

components. In assessing in vitro integration, cell extracts have been

used to identify the integration sites within the DNA of plasmids

such as pUC119, pCG8, pCG14, and pCG28 [5–10]. The

integration sites were identified using a primer in a proviral

genome and plasmid DNAs. Bor et al demonstrated that joining

reaction steps promotes bending of the substrate DNA [8]. The

preferred sites are adjacent to the loops in the cruciform and are

strand-specific. They suggested that the observed preference is due

to the end-like character of the stem loop structure, which allows

for DNA unpairing. Indeed, previous statistical studies have also

demonstrated that weak palindromic sequences are common

features of the sites targeted by retroviruses for integration [5], and

these palindromic sequences may be associated with the

generation of hairpin structures [6]. Despite the attention given

to in vitro integration systems, their biological significance has not

been sufficiently elucidated because existing reports lack compar-

isons of in vitro and in vivo integration sites.

In contrast to previous reports, we identified the actual DNA

sequence of genes into which MLV commonly integrates.

The sequence of Stat5 has been registered as the target DNA for

MLV integration (GENE BANK, DD323316.1) [11–14]. In

addition, c-myc promoter sequence DNA is known to be one of

the common integration sites [15–19]. In the present study,

we report the discovery of unique motifs in the Stat5 and the

c-myc promoter sequences which allow for the generation of

cruciform structure.

In the present study, only recombinant MLV retroviral

integrase, a buffer containing only MgCl2, inorganic low-

molecular-weight molecules, and host DNA were used in the in

vitro integration assay. An in vitro integration reaction system as

simple as that reported here has never been described before, and

as such it provides a tool that will yield novel and significant

insights into the biochemistry of integration.
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Results

In vitro integration reaction using the Stat5a-origin
sequence

We devised an in vitro integration assay using a tandem repeat of

a long terminal repeat sequence DNA and reaction buffer

consisting of 60 mM MgCl2 without any other provirus elements.

Sites of integration into target sequence DNAs were identified by

sequencing the plasmid containing the inserted MLV proviral

DNA (Figure 1A). The host DNA originated from the Stat5a gene

(M0) (No. 922-1322). We modified the target DNA sequence by

removing the ATT oligonucleotide (M1) or by replacing the most

frequent integration site, cytosine 1130 (M2-4) [12,14] (Figure 1A).

As controls, we used random sequences of 400 bp in length,

R1-R5.

Identification of integration sites
In vitro integration sites were identified within the target

sequence DNA. The number of integrations into each individual

position over approximately 2,000 integrations is shown in

Figures 2A and 2B. The number of integrations at cytosine

No. 1130 in the M0 and M1 sequences was significantly greater

than the number in the M2-M4 sequences and the random

sequences R1-R5. These data indicate that integration at cytosine

1130 is affected by replacing the nucleotide but not by removal of

the flanking ATT oligonucleotide in the M1 sequence. Signifi-

cantly, in the region encompassing nucleotides 1124–1140, the

frequent locus of MLV integration in spontaneous lymphoma in

SL/Kh mice [12,14], was also found to be a hot spot for in vitro

integration (L, Figure 2A). A summary of the lymphoma profiles is

shown in Table 1. In these lymphomas, expression of Stat5a was

commonly upregulated.

A secondary DNA structure model for the enhancement
of integration

We hypothesized that the generation of a secondary structure

within the target sequence DNA could explain the observed

integration into the segment encompassing nucleotides Stat5a

1124–1140. In our proposed model, the free energy change DG) in

folding resulting when the target DNA focally generates a

secondary structure following rewinding after breakage of the

complementary binding between dsDNA can be calculated using

the M-fold program (http://mfold.rna.albany.edu/?q = mfold/

DNA-Folding-Form) [20]. The presumed top strand within the

cruciform structure is shown in Figure 3A. Such a cruciform

structure for integration was first predicted by Katz [6].

Nucleotides 1124–1140 are located at the top of the secondary

structure. Indeed, we calculated the free energy change in the

Figure 1. In vitro integration using retroviral LTRs. (A) The 59 and 39 LTR of MLV proviral DNA (red line) was used after removal of other
elements encoding gag, pol, pro and env. The sequence shown displays the MLV LTR in the form integrated into the host DNA. The target DNA (grey
line) was ligated into the pCR2.1 TOPO plasmid vector (black line). Arrowheads next to the proviral DNA sequence represent the processed ends.
After incubation of retroviral and target DNA with integrase, proviral DNA was integrated into the target sequence or plasmid. The integration site
was then sequenced. (B) The MLV integration site hot spot in the lymphoma genome of SL/Kh mice is represented by the red square. The utilized
target sequences M0-M4 are shown below. M0 is identical to the native Stat5a sequence. Red letters in the sequence indicate the most frequent sites
of integration in hematopoietic tumors as previously reported by us [14].
doi:10.1371/journal.pone.0031533.g001
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folding target DNA in a stepwise fashion involving 2-base

shortenings of the nucleotide 1061–1207 target segment’s 59-

and 39-termini (Figure 3B). As the results demonstrate, when the

absolute value of the free energy change decreases to 80 kJ/mol

and 60 kJ/mol, the number of integrations into the cytosine

position (i.e., near the top of the cruciform structure) decreases

significantly. In addition, a close correlation was found between

this free energy change and the number of integrations (Figure 3C).

These data suggest that the integration process depends on the

target DNA structure.

Structure fluctuation and integration model
We subsequently evaluated the possibility of target DNA

folding. Because no macromolecular components other than

DNA and recombinant integrase are utilized in our assay,

generation of the secondary structure is probably induced by

structure fluctuation. We evaluated the potential for structural

fluctuation by comparing plasmids with and without the target

DNA using electrophoresis. During incubation of the target DNA

in the reaction buffer for 0 to 60 minutes, we electrophoresed the

plasmid. The supercoiled plasmid was observed near the level of

the 2.5 kb molecular marker (Figure 4A). The signal associated

with the supercoiled plasmid DNA was measured by determining

the area of the electropherogram peaks (Figure 4B), and this

analysis indicated that there is a threshold MgCl2 concentration

with a respect to fluctuation near 60 mM (Figure 4C). This

fluctuation was evident in the electrophoretic migration of the

plasmid including the target sequence but not in that of the empty

control plasmid. No such threshold concentration of MgCl2 was

detected in analyses involving linear DNA strands (data not

shown). The fluctuation was therefore attributed to the supercoiled

or secondary structure of the plasmid. In parallel with this, we

found that the number of integrations at the nucleotide 1130

position increased significantly when the MgCl2 exceeded 60 mM.

Figure 2. In vitro MLV-LTR integration into Stat5a. The vertical axis to the left represents the number of integrations into each nucleotide in M0
(native Stat5a), modified sequences M1-M4, and control same length random sequences R1-R5. These sequences are 400-bp in length, portions of
which are shown in Figure 1. The horizontal axis represents the bases 1105–1153 in the Stat5a gene. The sequences shown are the junction of the
target sequence and 59- MLV LTR when the MLV is inserted at nucleotide 1130. (A) Integration sites identified with the in vitro assay using sequences
M0-M4. Black circles (L) represent the number of mice suffering from lymphomas resulting from MLV integration into the individual nucleotides
shown. The number of integrations into nucleotide 1130 per 2000 integrations was significantly greater with sequences M0 and M1 than with
sequences M2-M5 (*P,0.05). (B) Integration sites identified with the in vitro assay using the 5 random sequences (R1-R5) inserted into the plasmid
DNA.
doi:10.1371/journal.pone.0031533.g002
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Indeed, the number of integrations at this position is closely

correlated with fluctuation of the supercoiled DNA structure

(Figure 4D). By using an atomic force microscopy, we observed

supercoiled plasmid DNA including target DNA in buffer

containing 30 mM and 60 mM of MgCl2 (Figure 4E). The ratio

of supercoiled DNA was significantly higher in the buffer

containing 30 mM of MgCl2 (82.3% in 30 mM vs. 5.6% in

60 mM, p,0.001); in contrast, the ratio of intersected globule

DNA was significantly higher in the buffer containing 60 mM of

MgCl2 (17.7% vs. 94.4%, p,0.001). Therefore, we assumed that

the structure of the target DNA affects integration at nucleotide

1130.

In vitro MLV assay using c-myc promoter origin sequence
In addition, we performed an in vitro insertion assay using the c-

myc promoter sequence (GENEBAKN M12345, 711–980)

(Fig. 5A). Remarkably, in in vitro integration in a buffer containing

60 mM of MgCl2, the in vitro insertion sites were converged within

the top of a presumed branch of cruciform structure. We named

the structure hot spot of in vitro integration (Fig. 5A).

To study whether Mg2+ intensity influences the integrase

activity itself, we incubated host c-myc DNA The electrophoretic

DNA signal area of the supercoiled plasmid was measured by

electropherogram peaks as aforementioned, and there was a

threshold concentration with a respect to fluctuation near 50 mM

(Figure 5B).

Table 1. Profiles of lymphomas consequent to MLV
integration into the genome of pre-B cells in the bone
marrow.

Integration site
(nucleotide) No. of mice Stat5a IgM Lambda5 VpreB

1105 1 + + + +

1106 1 + + + +

1113 1 + + + +

1115 1 + + + +

1124 2 ++ + + +

1126 2 ++ + + +

1130 4 ++ + + +

1134 2 ++ + + +

1138 2 + + + +

1140 1 + + + +

1142 1 + + + +

1144 1 + + + +

Total 19

+, ++: Five- and ten-fold increase in expression level, respectively, relative to
normal control pre-B cells in the bone marrow, according to a quantitative RT-
PCR assay for Stat5a and flow cytometry for IgM, Lambda5, and Vpreb.
doi:10.1371/journal.pone.0031533.t001

Figure 3. Target sequence length and integration. (A) Presumed secondary structure of the top strand generating a cruciform in the presence
of 60 mM of MgCl2, as predicted using the M-fold program [20]. (B) Absolute value of the Gibbs’ free energy change during DNA folding and
generation of a cruciform by the top strand. Arrows represent the marginal points in which the lengths are threshold values of the free energy
change. (C) Number of integrations into nucleotide 1130 in the top strand cruciform. Arrows represent the marginal points in which the lengths are
the threshold value. Arrows correspond well to the positions of those in (B) (n = 6; mean 6 s.d.). The square of the correlation coefficient for the
absolute energy value shown in (B) and the number of integrations shown in (C) was 0.838.
doi:10.1371/journal.pone.0031533.g003
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Next, the numbers of the integration hot pots at which

integration occurred more than one time in this current assay

were plotted under variable concentrations of MgCl2. The result

demonstrated that the number of times of integration into the hot

spot was significantly increased when MgCl2 was beyond 50 mM

(Fig. 5C). These data and analyses indicated that there was a

critical concentration in in vitro integration in using c-myc promoter

sequence DNA.

Discussion

The present cell-free assay system allowed for a detailed

examination of retroviral integration. We utilized the Stat5a and

c-myc sequences as representative sequences that may generate

presumed cruciform structures. Integration bias was observed in in

vitro integration assays using these sequences. Notably, the

integration sites were frequently observed near the top of the

loop in the cruciform structure. To explain the integration bias,

the thermodynamic approach for anticipation of the secondary

structure in target DNA was introduced, as we did in the analysis

of HIV-1 in vitro integration [21]. In the present article, we

analyzed the Stat5a target sequence because of its simple structure.

Figure 3B&C demonstrate a close correlation between the number

of in vitro integrations into cytosine at the hot spot and the absolute

value of free energy change, indicating that the more stable

cruciform structure was more favorable for in vitro integration into

the No. 1130. In addition, the number of integrations into the

cytosine discontinuously changed along the length of the target

DNA that determined the free energy change in folding. Thus, we

supposed that the integration bias was considerably sensitive to the

stability of the DNA structure, and there may be a threshold value

of free energy change with respect to the bias.

To enhance fluctuation of the DNA structure, the in vitro

assessment was performed using variable concentrations of MgCl2.

Indeed, electrophoresis mobility of the target DNA showed that

there was a threshold concentration of MgCl2 in the reaction

buffer. Beyond 50–60 mM of MgCl2, the DNA signal was

significantly diffused, suggesting that this concentration was the

marginal concentration for DNA structure transition in this

system. In parallel, the number of integrations significantly

increased. For this reason, the 50–60 mM concentration was

evaluated for integration efficiency and integration bias by the

number of integrations into the frequent integration sites. Our idea

was that several DNA structures favorable for integration,

Figure 4. In vitro integration in buffers of varying MgCl2 concentration. (A) Electrophoresis of plasmid DNA with (upper) or without (lower)
the target sequence DNA. Supercoiled DNA was electrophoresed at 0 min, at 30 min, and at 60 min after incubation. Arrows and arrowheads indicate
fragments corresponding to peaks shown in (B). (B) Electropherogram of the plasmid with the target sequence and the plasmid alone at incubation
for 0 min and 30 min. (C) Graph showing the relative area of the electrophoretic signal of supercoiled plasmid DNA with (red) or without (blue) target
Stat5a DNA at 60 min after incubation in buffer containing various concentrations of MgCl2 (unit mM, n = 6; mean 6 s.d.). (D) Graph showing the total
number of integration sites within the target Stat5a DNA (red) and the number of integrations at nucleotide 1130 (blue) at 60 min after incubation in
buffer containing various concentrations of MgCl2 (unit mM, n = 6; mean 6 s.d.). (E) Sample photo of a secondary structure when using a buffer
containing 60 mM and 30 mM of manganese dichloride (mM). Supercoiled DNA (in the upper photo) and globular DNA (in the lower photo) are
displayed.
doi:10.1371/journal.pone.0031533.g004
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including the cruciform structure, were yielded during the

fluctuation. Once generated by fluctuation, such secondary

structure is relatively stable, because the contained Mg2+

neutralized the negative charge on the DNA strand and stabilized

the secondary structure as displayed in Figure 4E [22,23]. The

interactions of Mg2+ and the DNA fragment gave rise to a large

structural deformation at the base pair region. We therefore

suppose that fluctuation and stability of target DNA structure

influences in vitro integration.

Our assay system has advantages relative to previously reported

cell-free system assays for in vitro integration because of the use of

actual gene sequences. The high reproducibility of MLV

integration into Stat5a by in vitro integration suggests integration

biochemistry in a secondary structure in a target DNA dependent

manner.

Methods

Mice and lymphoma clones
All mice used in this study were handled in strict accordance

with guidelines for proper animal practice defined by the relevant

national and local animal welfare bodies. All animal work was

preapproved by the Kyoto University Ethics Committee for

Animal Experiments. The approval ID for this study is Med Kyo

09082. The SL/Kh mice were obtained from the RIKEN

Bioresource Center, Tokyo, Japan [12,14]. Flow cytometry

analysis of lymphoma tissue was carried out as previously

described [12,14].

FACS analysis and RT-PCR for lymphoma profiling
The detailed protocol was described previously [12,14,24].

Preparation of MLV integrase
Full-length murine integrase cDNA was obtained from an AKR

inbred mouse (Shimizu, Tokyo, Japan) and subcloned into cloning

sites I (EcoRI) and II (XhoI) of the transfer vector, pSYNGCH

(Katakura Industries, Saitama, Japan). The procedures for

constructing recombinant virus and viral infection of Bombyx mori

larvae have been reported elsewhere [25]. To construct the

recombinant baculovirus, a monolayer of BmN cells (26106 cells/

ml) was cotransfected using 0.5 mg of Abv baculovirus DNA (a

linearized AcNPV-BmNPV hybrid-type baculovirus DNA (Kata-

kura, Maebashi, Japan)) and 1.0 mg of psYNGCH-Th integrase in

the presence of Insectin liposomes (Invitrogen, Carlsbad, CA,

USA). The cotransfected BmN cells were cultured at 27uC for 5

days, after which silkworm pupae were infected with the culture

supernatant and then harvested after 6 days. Pupae were

suspended in 30 ml of ice-cold homogenizing buffer A (20 mM

Figure 5. In vitro integration using the c-myc promoter sequence and buffers containing variable concentrations of MgCl2. (A)
Thermodynamic analysis of the presumed cruciform structure from the c-myc promoter sequence DNA (GENEBANK M12345, No. 711-980) in the
presence of 60 mM MgCl2. Black arrows indicate the previously reported integration sites [15–19]. Red arrows indicate representative in vitro
integration sites. A box indicates the hot spot segment. (B) Graph showing the relative area of supercoiled plasmid DNA with (target +) or without
target c-myc DNA (target 2) at 60 min after incubation in buffer containing various concentrations of MgCl2 (unit mM, n = 6; mean 6 s.d.). (C) Graph
showing the total number of integration sites within the target c-myc DNA and the number of integration into the hot spot at 60 min after
incubation in buffer containing various concentrations of MgCl2 (unit mM, n = 6; mean 6 s.d.).
doi:10.1371/journal.pone.0031533.g005
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Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM

DTT, 0.05% phenylthiourea, pH 8.0) containing a protease

inhibitor mixture (1 mM phenylmethanesulfonyl fluoride,

10 mM benzamidine), and were disrupted for 5 min in a

homogenizer set at 3,000 rpm. The homogenate was centrifuged

at 5006g for 1 h at 4uC. After removal of the supernatant, the

pellet was suspended in 30 ml of homogenizing buffer B (20 mM

Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM

DTT, 0.05% phenylthiourea, pH 8.0) containing protease inhib-

itor mixture, then mixed in a Dounce Teflon homogenizer on ice

at 1,000 rpm for 10 strokes. The pellet was resuspended in buffer

containing EDTA and DTT (final concentration of 10 mM each),

then solubilized with the sulfobetaine detergent Zwittergent 3–12

(Calbiochem, San Diego, CA, USA). The final concentration of

detergent was 2% (w/v). The sample was stirred gently for 1 h at

4uC, then centrifuged at 5006g in a Hitachi RP50-2 rotor for 1 h

at 4uC. The supernatant was collected, and integrase was purified

by column chromatography using the His-tag expressed on the

integrase. The integrase-containing fractions were pooled and

dialyzed against 20 mM HEPES (pH 7.6), 1 M NaCl, 1 mM

EDTA, and DTT-20% (w/v) glycerol. The integrase was purified

further by dialysis against 20 mM HEPES (pH 7.6), 0.4 M

potassium glutamate, 0.1 mM EDTA, 1 mM DTT-0.1% (v/v)

Nonie P-40, 20% (w/v) glycerol, which precipitated the integrase.

The resulting suspension was centrifuged at 12,5006g for 25 min

and the pellet was resuspended in 20 mM HEPES (pH 7.6), 1 M

NaCl, 1 mM EDTA, 1 mM DTT-10% (w/v) glycerol. This

mixture was incubated at 4uC for 30 min and then centrifuged at

12,5006g for 25 min. The resulting pellet was resuspended in

20 mM HEPES (pH 7.6), 1 M NaCl, 1 mM EDTA, 1 mM DTT-

10% (w/v) glycerol. This mixture was incubated for 30 min at 4uC
and then centrifuged at 12,5006g for 25 min. The supernatant,

which contained the soluble integrase, was collected after

centrifugation.

In vitro integration
Target sequence DNA ligated to pCR2.1 plasmid DNA

(Invitrogen, Carlsberg, CA) was utilized as the substrate DNA.

Briefly, the reaction buffer contained varying concentrations of

MgCl2 (10 mM to 100 mM), 80 mM potassium glutamate,

10 mM mercaptoethanol, 10% DMSO, and 35 mM MOPS

(pH 7.2). First, 150 ng of tandem repeat from MLV LTR cDNA

and 200 ng of substrate DNA were incubated with 50 ng of

recombinant MLV integrase in 10 ml of binding buffer for 1 h at

30uC. After the reaction, plasmids including a target sequence

segment or a random sequence segment were independently

transfected into E. coli (Invitrogen), after which the plasmid DNAs

were extracted. Plasmids with the MLV LTR insertion were

sequenced using an Applied Biosystem 3500 DNA sequencer to

identify the integration sites.

Electropherogram analysis
The intensity of electrophoresed DNA bands was stained by

ethylene bromide and was measured using a BAS-2000 (Fuji film,

Tokyo, Japan). Multi-gauge software was used to integrate the

signals from 0 to 400 pixels.

Atomic force microscopy
DNA containing 10 mM spermidine was then placed on a

freshly cleaved piece of mica (30–50 mm). Spermidine was used to

aid in the adsorption of DNA molecules onto the mica surface.

After 5 min, the sample droplet on the mica was washed with

water and dried with N2 gas. The DNA molecules were analyzed

under the tapping mode on an atomic force microscope (NVB100,

Olympus Optical Co., Ltd., Tokyo, Japan; AFM controller and

software: Nanoscope IIIa, Digital Instruments, Veeco, Camerillo,

CA) in air at room temperature.

Statistical analysis
Unpaired t-tests were performed using SPSS software (SPSS,

Chicago, IL, USA), and P values,0.01 were considered to

indicate statistical significance.
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