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Abstract: Achieving both accurate and real-time monitoring heartbeat signals by non-
invasive sensing techniques is challenging due to various noise interferences. In this paper,
we propose an enhanced discrete wavelet transform (DWT) method that incorporates
objective denoising quality assessment metrics to determine accurate thresholds and adap-
tive threshold functions. Our approach begins by denoising ECG signals from various
databases, introducing several types of typical noise, including additive white Gaussian
(AWG) noise, baseline wandering noise, electrode motion noise, and muscle artifacts. The
results show that for Gaussian white noise denoising, the enhanced DWT can achieve
1–5 dB SNR improvement compared to the traditional DWT method, while for real noise
denoising, our proposed method improves the SNR tens or even hundreds of times that of
the state-of-the-art denoising techniques. Furthermore, we validate the effectiveness of the
enhanced DWT method by visualizing and comparing the denoising results of heartbeat
signals monitored by fiber-optic micro-vibration sensors against those obtained using other
denoising methods. The improved DWT enhances the quality of heartbeat signals from
non-invasive sensors, thereby increasing the accuracy of cardiovascular disease diagnosis.

Keywords: heart impact signal; ACF; enhanced threshold function; fiber optic microvibration;
de-noising

1. Introduction
Non-invasive real-time monitoring of respiration and heart rate, such as optical heart

rate monitoring of blood flow on the skin surface, heart rate accelerometers, millimeter
wave radar, or camera-based heart rate monitoring, plays a crucial role in the early detection
of hidden cardiovascular diseases and in providing effective health management [1–8].
However, the signals obtained from these techniques are often subject to various noises
and artifacts [9–13]. Therefore, it is essential to perform noise reduction before analyzing
and diagnosing cardiovascular conditions [14–16]. Various methods have been devel-
oped to suppress noise in cardiac signal processing, broadly categorized into classical
signal processing frameworks and artificial intelligence (AI) methods. While conventional
algorithms have computational efficiency suitable for real-time applications, their perfor-
mance in removing noise is often limited by noise estimation mechanisms. On the other
hand, while AI-based approaches can achieve excellent noise suppression with sufficient
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training data, they also face significant challenges. Deep learning models rely heavily
on extensive annotated datasets; however, acquiring and annotating such data is both
labor-intensive and time-consuming, especially for specialized or rare signals. In addition,
training deep neural networks requires significant computational power, often requiring
high-performance GPUs or even distributed computing resources, leading to increased
resource consumption. At the same time, AI methods are less adaptive to environmental
changes and usually need to be retrained or tuned when signal sources or noise condi-
tions change, increasing application complexity. Hence, enhancing traditional denoising
methods or their combinations, such as Empirical Mode Decomposition (EMD), Singular
Spectrum Analysis (SSA), Variable Mode Decomposition (VMD) and Non-Localized Mean
Filtering (NLM), presents a practical solution [17–20]. However, each of these traditional
denoising techniques has its own advantages and disadvantages. For example, EMD is an
adaptive technique that decomposes signals without predefined basis functions, making
it effective for nonlinear and non-smooth signals. However, it is susceptible to mode
aliasing, where signal components of different time scales are misclassified into the same
intrinsic mode function (IMF), compromising decomposition accuracy. Moreover, its itera-
tive process and dependence on local extrema detection incur high computational costs,
posing challenges for real-time ECG processing and limiting its practicality in real-time
monitoring systems [21]. EEMD enhances EMD by mitigating mode aliasing through the
addition of white noise. By decomposing the signal multiple times with different noise
sequences and averaging the results, EEMD improves decomposition stability. However,
this approach significantly increases computational complexity, making it less suitable for
real-time applications with limited resources. Additionally, the injected noise, while aiding
decomposition, may introduce errors, potentially affecting the accuracy of the results [22].
Complementary EEMD (CEEMD) enhances EMD by improving decomposition robustness
and reducing pseudo-modal effects. However, it remains sensitive to endpoint effects and
requires the careful selection of noise amplitude and ensemble averages, which impact
denoising performance [23]. VMD decomposes signals into bandwidth-limited modes
through variational optimization, making it effective for non-smooth signals. However,
its performance depends on parameter selection, and its high computational cost limits
real-time applicability [24]. In contrast, Wavelet Transform (WT) is effective for multi-scale
analysis and denoising non-stationary heartbeat signals due to its sparsity and efficiency. It
is commonly applied in fields such as image processing, audio analysis, video processing,
and mechanical systems [25]. Various types of WTs, such as Spcshrink’s Discrete WT
(SDWT), Stationary WT (SWT), Stationary Wavelet Packet Transform (SWPT), and Dual
Tree Complex Wavelet Transform ( DTCWT), have been developed to cater to different
needs [26–29]. Despite the versatility of WT methods, effectively removing noise from
signals remains challenging due to the difficulty in accurately determining thresholds with
suitable threshold functions. Typically, thresholds and threshold functions rely on noise
levels or signal characteristics [30–37]. Current threshold functions struggle to eliminate
pseudo Gibbs phenomena and constant biases effectively [38–43], regardless of whether
they utilize specific functions or combinations of soft and hard thresholds [44–52]. More-
over, insufficient attention has been given to optimizing the wavelet decomposition level
in recent studies [53,54]. In summary, WT-based methods encounter challenges in thresh-
old selection, threshold functions, decomposition levels, and wavelet bases, which limit
their effectiveness and influence the denoising performance of wavelet-based and hybrid
filtering approaches [55–58].

The aim of this paper is to improve the wavelet denoising quality of heartbeat signals
monitored in real time by non-invasive devices. First, an objective evaluation metric [36] is
introduced to assess the denoising quality so as to realize the exact threshold and adaptive
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threshold function. Second, in order to quantitatively evaluate the denoising quality, a
relatively clean ECG signal with added AWG noise is selected to verify the proposed exact
threshold and adaptive threshold since the SNR and RMSE can be accurately calculated.
The proposed method is validated by comparing it with existing wavelet methods to verify
its effectiveness. Next, the method is applied to denoise six heartbeat signals from three
different datasets, each contaminated with three common types of noise: baseline wander,
electrode motion, and muscle artifacts. The denoising results are then compared with
those of state-of-the-art methods. Additionally, since no clean reference signal is available,
the effectiveness of the proposed method is verified through visual comparison of its
denoising results with those of other techniques on measured heartbeat signals. Finally, the
advantages and disadvantages of enhanced DWT are analyzed and summarized.

2. Principle
2.1. ACF Evaluation Indicator

Our proposed metric, the nonzero-order periodic peak (NZOPP) of the normalized
autocorrelation function (ACF) [36,59], has been successfully used to evaluate the quality
of denoised signals and to obtain optimal filter parameters. It is defined as

rxx(m) =
∑

N−1−|m|
n=0 (x(n)− x)(x(n + m)− x)

∑N−1
n=0 (x(n)− x)2

, (1)

where x(n) is the clean signal, x represents the mean value of signal x(n), N denotes the
signal sequence length, n is the signal sequence number, and m is the delay. This metric
leverages the fundamental principle that signals exhibit autocorrelation while AWG noise
does not, as illustrated in Figure 1.
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Figure 1. Normalized ACF of noisy ECG signals change with input SNR.

Adding 5 dB AWG noise (Figure 1b) to a clean ECG signal (Figure 1a) creates a noisy
signal whose NZOPP is shown by the red asterisk in Figure 1d. As the AWG noise varies
from −30 to 30 dB, the NZOPP increases monotonically with the SNR, as shown in Figure 1d.
This demonstrates that the NZOPP can serve as an alternative to SNR for evaluating the
quality of denoised signals without requiring knowledge of the clean signals [37].

SNR = 10log
10

{
N

∑
n=1

x(n)2

[x(n)− y(n)]2

}
, (2)

RMSE =

√√√√ 1
N

(
N

∑
n=1

[x(n)− y(n)]2
)

, (3)
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In addition, there is a measure of the difference between the clean and denoised signals,
i.e., the root mean square difference percentage (PRD) [60].

PRD =

√√√√ N

∑
n=1

[x(n)− y(n)]2

x(n)2 × 100% (4)

The metric to analyze the distortion level of the signal before and after denoising,
Signal-to-Noise and Distortion Ratio (SINAD), can be expressed as

SINAD = 10 × log10

(
S

N + D

)
(5)

where S stands for the signal power, N for the noise power, and D for the nonlinear
distortion power. Thus, the larger the SINAD, the smaller the distortion degree.

2.2. Improved Threshold and Threshold Function

The wavelet transform is a time-frequency analysis tool that can be used for signal
processing and denoising. The principle of wavelet transform is shown in Figure 2. Specific
mathematical background and implementation details can be found in reference [61].

Wavelet

decomposition

Wavelet

shrinkage

Wavelet

reconstruction
nx

icD


icD nx


Figure 2. Wavelet-Based denoising process.

Wavelet denoising primarily involves four key parameters: the wavelet basis, decom-
position level, threshold, and threshold function. The choice of mother wavelet, which
serves as the basis waveform for generating wavelet functions, is critical to the performance
of the denoising process. Commonly used mother wavelets include Haar, Daubechies (db),
Symlets, and Coiflets. Among these, Daubechies wavelets are particularly well-suited for
noise reduction in ECG signals [62,63]. Their excellent time-frequency localization capa-
bilities enable the effective capture of rapid changes and subtle features inherent in ECG
signals. Additionally, higher-order Daubechies wavelets preserve signal details through an
increased number of vanishing moments, making them highly effective for suppressing
low-frequency noise. Like other wavelet families (e.g., Haar, Symlets, and Coiflets), db
wavelets possess orthogonality and perfect reconstruction (PR) properties, which ensure
that critical information within the ECG signal is retained during both decomposition and
reconstruction. Moreover, the availability of different orders offers flexibility in optimizing
noise reduction according to the specific characteristics of the signal. In contrast, Haar
wavelets, which are equivalent to db1, are computationally simple but have limited van-
ishing moments and frequency resolution. This can result in insufficient detail capture
for complex ECG signal features. Symlet wavelets offer improved symmetry compared to
Daubechies wavelets, but their lower-order variants may struggle to adequately address
high-frequency noise and transient features. Coiflet wavelets exhibit greater symmetry
and asymptotic properties than Daubechies wavelets, but their limited higher-order char-
acteristics can reduce their effectiveness for processing complex and rapidly changing
transient signals. For these reasons, Daubechies wavelets are widely preferred for ECG
signal processing. While higher-order Daubechies wavelets generally provide improved
vanishing moments and better time-frequency localization, leading to enhanced frequency
resolution and signal feature capture, we balanced processing efficiency with the accuracy
of signal processing. After careful consideration, we selected the db3 wavelet basis for
our study, as it offers a suitable compromise between computational speed and denoising
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performance. To determine the optimal decomposition level, we decomposed the ECG
signal into eight layers of wavelet coefficients. These coefficients were then processed layer
by layer using wavelet thresholding and threshold functions, while the SNR and RMSE
of the reconstructed signal were evaluated to assess the denoising performance. A typical
wavelet generalized threshold is

λ = σ
√

2 log N, (6)

where λ represents the wavelet threshold, and σ is the noise standard deviation. Unfor-
tunately, noise standard deviation estimation is challenging in practical scenarios. Subse-
quently, the wavelet coefficients containing the noise coefficients need to be shrunk using a
threshold function to remove the noise. Soft and hard thresholding functions are commonly
used, which are expressed as Equations (7) and (8), respectively:

ω̂ =

ω, |ωj,k| ≥ λ,

0, |ω| < λ,
(7)

ω̂ =

sgn(ω) ∗ (ω − λ), |ω| ≥ λ,

0, |ω| < λ,
(8)

where ω̂ and ω represent the wavelet coefficients before and after the threshold processing,
respectively, sgn(*) is the sign function. Hard thresholding methods outperform soft
thresholding methods in terms of mean square error, but they may introduce additional
oscillations and jump points in the signal, thereby reducing signal smoothness. In contrast,
soft thresholding maintains the overall continuity of the wavelet coefficients and reduces
additional oscillations. However, it tends to compress the signal and introduce a certain
bias, which directly affects the approximation of the reconstructed signal to the true signal.
To mitigate the pseudo-Gibbs phenomenon and the constant bias issues associated with
both soft and hard thresholding functions, Andrew Bruce and Hong-Ye Gao proposed a
semi-soft threshold function, and the formula is shown as follows, λ1 and λ2 are low and
high thresholds, respectively, refs. [64,65].

ω̂ =


0, if |ω| ≤ λ1

sgn(ω) λ2(|ω|−λ1)
λ2−λ1

, if λ1 < |ω| ≤ λ2

ω, if |ω| > λ2

(9)

Based on the continuity of the semi-soft threshold function, we propose an improved
threshold function based on the hyperbolic tangent function,

ω̂ = sgn(ω) ∗ |ω|
2

∗ {tanh[α ∗ (|ω| − λ)] + 1}. (10)

Simplifying Equation (10), we obtain

ω̂ = sgn(ω) ∗ |ω| ∗
{

exp[2α(|ω| − λ)]

1 + exp[2α(|ω| − λ)]

}
. (11)
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The asymptote of Equations (10) and (11) as α tends to infinity is y = x, i.e., it approxi-
mates the hard threshold function. The proof procedure is shown in Equations (12) and (13).
Let x = ω, when x > 0,

lim
x→+∞

sgn(x) · |x| · [tanh[α · (|x| − λ)] + 1]
2x

=
−|x| · [tanh(+∞) + 1]

2x
= 1.

(12)

Similarly, when x < 0,

lim
x→−∞

sgn(x) · |x| · [tanh[α · (|x| − λ)] + 1]
2x

=
−|x| · [tanh(+∞) + 1]

2x
= 1.

(13)

In this study, Gaussian white noise was added to a clean square wave signal, which
was then denoised using four different threshold functions: the soft threshold function,
the hard threshold function, the semi-soft threshold function, and the improved threshold
function proposed herein. The resulting output SNRs are presented in Table 1. Notably, the
input SNR for the semi-soft threshold function is higher than that of both the soft and hard
threshold functions. Moreover, the improved threshold function demonstrates superior
performance across a range of noise intensities, from −5 dB to 25 dB. The maximum output
SNR is achieved within this noise intensity range, with the improved threshold function
outperforming traditional threshold functions.

Table 1. Comparison of output SNRs after denoising noisy signals with different threshold functions.

Input SNR (dB) Soft Hard Semisoft Improved

−10 9.8933 9.4434 10.4166 10.7973
−5 12.5791 12.7460 13.3488 13.6201
0 16.1215 15.8090 16.9137 17.5043
5 19.4142 19.6456 20.9539 21.7680
10 25.1601 25.1404 26.1945 26.8667
15 29.2865 29.2438 29.8761 30.4211

The semi-soft thresholding function, represented by the black solid line in Figure 3,
achieves a smooth transition between soft and hard thresholding by adjusting the upper
and lower thresholds. However, this method is constructed based on a piecewise function,
which lacks high-order differentiability. Regarding the improved function, when α = 10, the
proposed threshold function is represented by the dash-dot line in Figure 3, which is closer
to the hard threshold function than the curve (dotted line) corresponding to α = 3. As α

approaches zero (α = 0.1), the proposed threshold function curve becomes more similar to
the soft threshold in the region where λ is significantly higher, while remaining closer to
the hard threshold function in regions away from λ, as illustrated by the dashed line. It is
well established that the soft threshold function was introduced to mitigate the pseudo-
Gibbs phenomenon associated with the hard threshold function; however, it introduces a
constant deviation. In contrast, the proposed threshold function does not approximate the
soft threshold as α approaches zero. Instead, it effectively avoids the constant deviation
characteristic of the soft threshold while preserving the continuity of the function around λ.
Additionally, the improved wavelet threshold function employs a non-segmented basis
function, which is continuously differentiable at higher orders. This approach addresses the
issue of discontinuity in the higher-order derivatives of traditional threshold functions and
alleviates the signal oscillations caused by hard thresholding. Furthermore, the function can
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be adjusted using the factor alpha to minimize the constant deviation problem. However,
selecting the optimal wavelet parameters, particularly the wavelet threshold and threshold
function, remains a challenge. The next subsection of this paper discusses the use of an
objective evaluation metric to determine the optimal wavelet threshold and tuning factor.

-

-

Hard
Soft
imp( =0.1)
imp( =3)
imp( =10)
Semi soft(

1
=0.9,

2
=1.1)

Figure 3. Comparison of the proposed threshold function with the soft, semi-soft and hard
threshold functions.

α is a tuning factor used to adjust the speed at which the improved threshold function
approaches the hard threshold function continuously at the threshold λ. The comparison
between the improved threshold function and the soft and hard threshold functions is
shown in Figure 3. When α = 0.1, the improved threshold function approaches the hard
threshold function slowly in the interval of |ω| ≫ λ with ω ̸= 0. When α = 10, the
improved threshold function quickly approaches the hard threshold function. Therefore,
different α enable the improved threshold function to control the speed approaching the
hard threshold function. If α is appropriate, the improved threshold function has the best
denoising effect.

2.3. Fast Algorithms for Thresholds and Threshold Function

To efficiently determine the threshold T and the tuning factor α, we have proposed a
bisection fast algorithm based on the evaluation metric (NZOPP) [36], as shown in Figure 4.

NZOPP

Threshold function

tuning factor α

P1

P2

P3
P4

P5

P6

P7

7651 2 3 4

(3)

(2)

(1)

α α αααα α

Figure 4. Schematic of fast bisection interpolation method for wavelet threshold function.
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According to the definition of SNR, a maximum SNR exists as the wavelet threshold
changes from a small value to a large value. When the wavelet threshold is optimized,
the NZOPP of the denoised signal, serving as an alternative measure of the SNR, reaches
its maximum value [36,37]. The basic idea of Figure 4 is to keep conducting bisection
interpolation within the preset wavelet threshold lookup range until the NZOPP reaches
the maximum. The steps to find the exact wavelet threshold T have been described in detail
in Ref. [37]. The focus of this paper describes the steps to find the optimal tuning factor α

of the threshold function.

(1) Set the wavelet basis as db3, perform an 8-layer wavelet decomposition, and set
a sufficiently wide tuning factor α in the range [α0, αm] with the interpolation
αi = (α0 + αm)/2, i.e., [α1, α5, α7], as shown in the step (1) of Figure 4;

(2) Denoise the noisy signals with each tuning factor of threshold function in [α1, α5, α7]
and calculate the NZOPP corresponding to each denoised signal to obtain [P0, Pi, Pm],
i.e., [P1, P5, P7];

(3) Find the maximum NZOPP. For example, P5 and its corresponding α5;
(4) Interpolate both sides of α5 to generate a new sequence [α1, (α1 + α5)/2, α5,

(α5 + α7)/2, α7], i.e., [α1, α3, α5, α6, α7], as shown in the step (2) of Figure 4.
(5) Denoise the noisy signals with each new tuning factor of threshold function

(α3, α6) and calculate the NZOPP corresponding to each denoised signal to obtain
[P1, P3, P5, P6, P7];

(6) Find the maximum value in [P1, P3, P5, P6, P7]. For example, P3 and its corresponding α3;
(7) Interpolate on both sides of α3 to obtain a new tuning factor sequence [α1,

(α1 + α3)/2, α3, (α3 + α5)/2, α5, α6, α7], i.e., [α1, α2, α3, α4, α5, α6, α7], as shown in the
step (3) of Figure 4;

(8) Repeat steps (4)∼(7) until αi − αi+1 < 10−10;
(9) Outputs the current αi as the optimal tuning factor.

3. Simulation Experiments
To validate the effectiveness of the enhanced DWT, we conducted denoising experi-

ments comparing its performance with traditional DWT and the state-of-the-art denoising
methods on various electrocardiogram (ECG) signals contaminated with different types of
noise. Then, the verified enhanced DWT was applied to denoise the real heartbeat signal
measured by the fiber optic sensing mattress. The ECG signals were obtained from the
MIT-BIH arrhythmia database (data No. 106, 109, 118, 210 and 233), Clayton University
ventricular arrhythmia database (No. cu03, cu07, cu11, cu18 and cu30), and PTB diagnostic
ECG database (No. s0016lrem, s00261rem, s0031lrem, s0038lrem, s0057lrem). The MIT-BIH
arrhythmia database contains 30-minute, two-channel ECG recordings sampled at 360 Hz,
covering a wide range of arrhythmias such as atrial fibrillation and premature ventricular
contractions. The Clayton University ventricular arrhythmia database focuses on severe
ventricular arrhythmias (e.g., ventricular tachycardia and fibrillation) with recordings
sampled at 250 Hz. The PTB diagnostic ECG database provides high-resolution, 15-lead
ECG signals sampled at 1 kHz, including both healthy subjects and patients with cardiac
conditions such as myocardial infarction and heart failure. The MIT-BIH noise stress test
database provides real noise signals, including baseline wandering, electrode motion ar-
tifact, and muscle artifact. Baseline wandering, a low-frequency noise typically below
0.5 Hz, arises from respiratory movements or poor electrode–skin contact, causing slow
drifts in the signal baseline. Electrode motion artifact, with a frequency range of 0.5 Hz to
10 Hz, results from relative motion between the electrode and the skin, leading to irregular
fluctuations and sudden spikes. Muscle artifact, a high-frequency noise ranging from
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20 Hz to 500 Hz, is generated by muscle activities, such as patient movement or tremors,
manifesting as rapid oscillations that obscure high-frequency ECG features.

The AWG noise was added to the clean ECG signals using MATLAB’s awgn function,
which specifies the signal-to-noise ratio (SNR) to control the noise intensity. The SNR values
were set in the range of −10 dB to 30 dB with increments of 5 dB to simulate different
noise levels. The noise was generated and superimposed on the clean signals to create
contaminated ECG data for evaluating the denoising performance. The above-mentioned
tests were conducted using MATLAB R2022b software on a 64-bit Windows 11 operating
system.The computer used for the test was equipped with a 2.70 GHz Intel Core i7 processor
(Intel Corporation, Santa Clara, CA, USA), 16 GB of RAM, and an NVIDIA GeForce RTX
3060 GPU (NVIDIA Corporation, Santa Clara, CA, USA) for accelerated computation. The
Signal Processing Toolbox and Wavelet Toolbox were utilized to implement the denoising
algorithms, ensuring compatibility and efficiency. The experimental workflow includes
the following steps: (1) loading the clean ECG signals and noise data, (2) adding noise to
the signals at specified SNR levels, (3) applying the traditional DWT, enhanced DWT, and
state-of-the-art denoising methods, and (4) evaluating the performance using metrics, such
as SNR, RMSE, and visual inspection.

3.1. ECG Signals Contaminated by AGW Noise

We initially employed the enhanced discrete wavelet transform (DWT) to denoise
the ECG signal recordings of No. 109 contaminated by additive white Gaussian (AWG)
noise and compared the results with those obtained from other methods, as illustrated
in Figure 5. Subsequently, the effectiveness of the proposed method was validated using
five additional types of ECG signals, each contaminated by AWG noise. After achieving
the precise threshold, the output SNRs of enhanced DWT at the optimal decomposition
layer were sightly higher than those of traditional methods. Specifically, the output SNR of
the denoised signal obtained by the improved threshold and soft threshold function (green
line) is greater than that obtained by the Universal threshold and soft threshold function
(red lines). Furthermore, by enhancing the threshold function, the results were further
improved: the output SNR of the denoised signal obtained by the improved threshold and
the improved function (blue line) is greater than that obtained by the improved threshold
and soft/hard threshold function (green/magenta lines), and the output SNR obtained by
enhanced DWT at different noise levels is greater than that of the semi-soft threshold func-
tion (black line). This enhancement effectively mitigated the pseudo Gibbs phenomenon
and constant deviation. To ensure robustness against the randomness of the noise dis-
tribution, we averaged the output SNR and RMSE of the optimal decomposition layer
obtained by the enhanced and traditional DWT, along with the state-of-the-art methods
(EMD + DWT, VMD + DWT, EEMD + LM), over 100 iterations. The results clearly demon-
strate that the enhanced DWT achieved the highest output SNR (highlighted in bold in
the first column of Table S1 in the Supplementary Material S1) and the lowest RMSE (high-
lighted in bold in the first column of Table S2 in the Supplementary Material S1). Thus, the
enhanced DWT significantly outperforms traditional DWT and other denoising methods
across input SNR levels ranging from −10 to 30 dB. When the input signal-to-noise ratio
is low, the autocorrelation of finite-length signals cannot completely suppress the noise
causing NZOPP fluctuations. For example, when the input SNR is −10 dB, the finite-length
large magnitude noise sequence is not completely uncorrelated. As a result, the NZOPP
metrics show non-monotonic variations due to this effect. Above −10 dB input SNR, the
NZOPP metric is more stable and directly reflects the signal quality. The Enhanced DWT
uses the NZOPP metric to find the exact threshold and the optimal threshold function.
Therefore, the wavelet coefficients representing signal and noise components can be ac-
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curately differentiated, and then the wavelet coefficients can be further processed by the
adaptive threshold function. The above experiments show that the method can retain the
most complete signal components while removing as much noise as possible, i.e., the RMSE
is minimized and the SNRimp is maximized.
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Figure 5. Comparison of improved wavelet thresholding and thresholding functions for denoising
ECG signals.

To visualize the denoising efficacy of the proposed method, Figure 6 compares denoising
results across various methods for 109 ECG signals contaminated with AWG noise. Figure 6a–c
shows the clean ECG signal, the noise-containing signal with 5 dB AWG noise, and the denoised
signal using the enhanced DWT method, respectively. The denoising results indicate that the
useful signal in Figure 6c is more accurately preserved compared to the signal highlighted by
the red dashed circle in Figure 6d using the Improved Threshold + Soft method. Specifically,
Figure 6c demonstrates reduced oscillations at the edges of the P-peak compared to the signal
highlighted by the red dashed circle in Figure 6e using the Improved Threshold + Hard method.
This demonstrates that the improved threshold function not only minimizes the constant devia-
tion associated with the soft threshold method but also effectively mitigates the pseudo-Gibbs
phenomenon observed with the hard threshold method. Furthermore, compared to the conven-
tional DWT method (Figure 6f), the denoising curve produced by the Improved Threshold + soft
method (Figure 6d) shows less distortion around the red dashed circle. This indicates that our
proposed improved thresholding method achieves more accurate denoising results. Meanwhile,
the noise level of the denoised ECG signals using the enhanced DWT is significantly lower than
those of the state-of-the-art techniques, including EMD + DWT, VMD + DWT, and EEMD + LM,
LWT. Therefore, the enhanced DWT method surpasses traditional DWT techniques and even
outperforms existing composite denoising methods.
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Figure 6. Visual comparison of the denoising waveforms of the 109 ECG signal with 5 db AWG
noise (a) Clean signal, (b) Noisy signal, (c) Enhanced DWT (improved threshold + improved thresh-
old function), (d) Improved threshold + soft, (e) Improved threshold + hard, (f) Universal + soft,
(g) EMD + DWT, (h) VMD + DWT, (i) EEMD + LM, (j) LWT.

To assess the accuracy and real-time performance of various methods for denoising
heartbeat shock signals, we compared the output SNR and computational time required by
six different denoising methods applied to ECG signals contaminated with 5 dB of AWG
noise. The proposed algorithm needs to try dichotomous interpolation in determining
the optimal threshold and the tuning factor of the threshold function and to evaluate the
quality of the denoised ECG signal using these values. Therefore, finding the appropriate
interpolation values is the most time-consuming. To improve the computational efficiency,
we do parallel ECG signal denoising for the two inserted tuning factor values. As shown
in Table 2, the enhanced DWT technique achieves the highest output SNR of 14.4542 dB, ac-
complishing this in a mere 0.2597 s. This elapsed time is more than that of the conventional
wavelet method but is less than those of those composite methods. If further improvement
of the algorithm efficiency is needed, a parallel computational method with three or four
times interpolation can also be used.

Table 2. Computational cost comparison.

Methods Ehanced DWT Improved T + Soft Universal + Soft EMD + DWT VMD + DWT EEMD + LM

Cost (s) 0.2597 0.1724 0.0960 0.3162 3.2624 0.4786

SNR (dB) 14.4542 13.9492 13.6104 13.7961 13.2239 12.6712

To demonstrate the generality of the proposed method under different signal and
noise distributions, we compared the denoising results of various state-of-the-art denoising
methods for ECG signals from different databases, as shown in Figure 7.

To mitigate the influence of AWG noise distribution, the output SNR of denoised
signals with identical input noise levels was averaged across 100 iterations. The en-
hanced DWT (Improved Threshold + Improved Threshold Function) consistently ex-
hibits significantly higher output SNR compared to the improved DWG (Improved
Threshold + soft/hard threshold function) and notably outperforms the conventional DWT
(Universal + soft threshold function) across ECG denoised signals ranging from input SNRs
of −10 dB to 30 dB. Importantly, it even surpasses composite denoising methods, such as
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EMD + DWT, VMD + DWT, EEMD + LM, and Activation Function Dynamic Averaging
(AFDA). Specific SNR and RMSE are detailed in Tables S1 and S2 of the Supplementary
Material S1. The superiority of the enhanced DWT method can be attributed to objec-
tive evaluation metrics that accurately determine wavelet thresholds, coupled with an
improved wavelet threshold function that effectively mitigates pseudo-Gibbs oscillations
and constant deviations.

To ensure robustness to the randomness of the noise distribution, we averaged
the PRDs of the best decomposition layers obtained in 100 iterations for the enhanced
DWT and the conventional DWT, as well as the state-of-the-art methods (EMD + DWT,
VMD + DWT, EEMD + LM, LWT). The results show that the enhanced DWT achieves the
smallest PRD in the input SNR range of −10 to 30 dB as shown in Figure 8 (see Table S9
in Supplementary Material S1 for detailed data). That is, the enhanced DWT changes
the original signal slightly less than the AFDA and significantly less than the conven-
tional DWT and the state-of-the-art composite denoising methods, such as EMD + DWT,
VMD + DWT, and EEMD + LM. This is attributed to the fact that the objective evaluation
metric (NZOPP) can accurately determine the wavelet threshold and the tuning factor α of
the threshold function.
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Figure 7. Comparison of the SNRs of the enhanced DWT and the combination methods for denoising
6 ECG signals containing different AWG noise levels.

To evaluate the distortion of the denoised signals and assess the fidelity of the proposed
method, we introduced Gaussian white noise at various input SNRs to different ECG
signals and calculated the SINAD of the denoised signals. The results, presented in Figure 9
(specific data can be found in Supplementary Material S1), indicate that the fidelity of the
denoised signals obtained through the enhanced DWT method surpasses that achieved
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by traditional wavelet methods combined with other techniques, including EMD + DWT,
VMD + DWT, EEMD + LM and AFDA.
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Figure 8. Comparison of the SNRs of the enhanced DWT and the combination methods for denoising
6 ECG signals containing different AWG noise levels.

-10 -5 0 5 10 15 20 25 30
Input SNR (dB)

0

10

20

30

SI
N

A
D

Enhanced DWT
Improved T +soft
Improved T +hard
Universal +soft
EMD+DWT

VMD+DWT
EEMD+LM
LWT
AFDA

(a) 109 ECG signal

-10 -5 0 5 10 15 20 25 30
Input SNR (dB)

0

10

20

30

SI
N

A
D

Enhanced DWT
Improved T +soft
Improved T +hard
Universal +soft
EMD+DWT

VMD+DWT
EEMD+LM
LWT
AFDA

(b) 233 ECG signal

-10 -5 0 5 10 15 20 25 30
Input SNR (dB)

0

10

20

30

SI
N

A
D

Enhanced DWT
Improved T +soft
Improved T +hard
Universal +soft
EMD+DWT

VMD+DWT
EEMD+LM
LWT
AFDA

(c) Cu07 ECG signal

-10 -5 0 5 10 15 20 25 30
Input SNR (dB)

0

10

20

30

SI
N

A
D

Enhanced DWT
Improved T +soft
Improved T +hard
Universal +soft
EMD+DWT

VMD+DWT
EEMD+LM
LWT
AFDA

(d) Cu11 ECG signal

Figure 9. Cont.
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Figure 9. Comparison of the SNRs of the enhanced DWT and the combination methods for denoising
6 ECG signals containing different AWG noise levels.

3.2. ECG Signals Contaminated by Real Noise

To assess the practicality of enhanced DWT, we conducted denoising experi-
ments on ECG signals contaminated with practical noises, such as baseline wander
noise, electrode motion noise, and muscle artifact noise. We compared the SNR gain
(SNRimp = SNRout − SNRin) and RMSE of various denoising methods for noise reduction
of noisy ECG signals, as shown in Figure 10.
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Figure 10. Comparison of the SNRs of the enhanced DWT and the combination methods for denoising
6 ECG signals containing different AWG noise levels, (a) 109 ECG signal, (b) 233 ECG signal, (c) cu07
ECG signal, (d) cu11 ECG signal, (e) s0016lrem ECG signal, and (f) s0026lrem ECG signal.

A comparison of the SNR gains and RMSE obtained by different noise reduction meth-
ods for ECG signals contaminated by baseline wander noise is shown in Figure 10a and 10b,
respectively, (shown in Tables S3 and S4 of the Supplementary Material S1, respectively).
The SNRimp obtained by the enhanced DWT surpassed that of the existing method and
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even the AFDA method, while the RMSE was significantly lower. It is worth noting that
the Improved threshold + soft method obtained a higher SNRimp than the other methods,
while the enhanced DWT (Improved threshold + Improved threshold function) further
improved SNRimp.

A comparison of the SNR gains and RMSE obtained by different noise reduction methods for
ECG signals contaminated by electrode motion noise is shown in Figure 10c and 10d, respectively,
(shown in Tables S5 and S6 of the Supplementary Material S1, respectively). The enhanced
DWT exhibited superior performance with a much larger SNRimp and smaller RMSE compared
to existing methods. The enhanced DWT with improved threshold function outperformed all
other techniques.

A comparison of the SNR gains and RMSE obtained by different noise reduction methods
for ECG signals contaminated by the muscle artifact noise is shown in Figure 10e and 10f,
respectively, (shown in Tables S7 and S8 of the Supplementary Material S1, respectively). The
enhanced DWT demonstrated significantly higher SNRimp and lower RMSE than the other
methods. Particularly, the enhanced DWT with the improved threshold and soft threshold
function already outperformed other methods and occasionally underperformed the AFDA
method. The improved thresholding function further improves the DWT denoising capability
and makes it superior to existing methods.

Baseline wander noise belongs to low-frequency noise, and its frequency is usually
lower than 0.15 Hz; electrode motion noise usually exhibits sudden high-frequency noise
with a wide frequency range (0.1 Hz 10 Hz); muscle artifacts are high-frequency noise with
a frequency range of 5 Hz–100 Hz. Since the noise-containing signals are mainly denoised
for high-frequency noise during the decomposition process, enhanced DWT performs more
significantly in removing the electrode motion noise and muscle artefact noise and is able to
achieve higher output SNR and smaller RMSE. In addition, since the method proposed in
this paper is based on the correlation between the signals themselves, enhanced DWT does
not need to pre-assume the distributional characteristics of the noise, thus outperforming
the other comparative methods in terms of SNR increment and RMSE metrics.

Baseline wander is a prevalent form of noise in electrocardiogram (ECG) signals. It
primarily arises from factors, such as respiration, variations in electrode–skin contact, and
patient movement. The defining characteristic of baseline wander is its slow variation
over an extended time scale, resulting in a vertical displacement of the entire ECG signal.
Baseline wander adversely affects the morphology of the ECG signal, complicating accurate
measurement and analysis of the waveform. Consequently, it may lead to the misinterpreta-
tion of critical points within the ECG signal, including the identification of the QRS complex.
For visualization, Figure 11 illustrates denoising outcomes from various methods applied
to 109 ECG signals contaminated by baseline wander noise. Figure 11a,b depicts clean
ECG signals and those contaminated by baseline wander noise, respectively. Figure 11c
displays the denoising results using enhanced DWT, while Figure 11d–j showcases the
results from other existing methods. It is evident that enhanced DWT effectively removes
baseline wander noise, demonstrating significantly smaller fluctuations in signal amplitude
compared to other noise reduction methods.
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Figure 11. Visual comparison of the denoising results of the 109 ECG signal with baseline wander
(a) clean signal, (b) noisy signal, (c) enhanced DWT, (d) improved threshold + soft, (e) improved
threshold + hard, (f) universal + soft, (g) EMD + DWT, (h) VMD + DWT, (i) EEMD + LM, (j) LWT.

Electrode movement refers to alterations in the relative position of the electrode
to the skin, which can induce additional irregularities in the ECG. Potential causes of
this phenomenon include the patient’s physical activity, respiration, and muscle tension.
Figure 12 compares the denoising outcomes of various methods applied to ECG signals
contaminated by electrode motion noise. Figure 12a and 12b presents a clean ECG signal
and a noisy signal contaminated by electrode motion, respectively. Figure 12c displays the
denoising results obtained using enhanced DWT, while Figure 12d–j showcases results from
other existing methods. The comparison shows that enhanced DWT can effectively mitigate
the morphological distortion caused by electrode motion noise on ECG. It preserves the
signal components more completely and removes the noise to the maximum extent.
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Figure 12. Visual comparison of the denoising results of the 109 ECG signal with electrode motion
(a) Clean signal, (b) Noisy signal, (c) Enhanced DWT, (d) Improved threshold + soft, (e) Improved
threshold + hard, (f) Universal + soft, (g) EMD + DWT, (h) VMD + DWT, (i) EEMD + LM, (j) LWT.
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Muscle artifacts are disturbances in the electrocardiogram (ECG) signal caused by
random and irregular electrical activity generated during muscle contraction and relaxation.
These artifacts typically exhibit a relatively wide frequency range, generally between 10 Hz
and several hundred Hz. This broad frequency spectrum complicates the distinction of true
ECG features and may result in erroneous diagnoses of heart disease. Figure 13 compares
the denoising curves of different denoising methods for ECG signals contaminated by
muscle artifacts. Figure 13a and 13b shows the clean ECG signal and the noisy signal
contaminated by muscle artifacts, respectively. A comparison with the denoising results
of other methods in Figure 13d–j shows that the denoising curve of the enhanced DWT
in Figure 13c is closest to the clean one. Therefore, the proposed method can accurately
remove artifacts and better preserve the characteristics of useful signals.
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Figure 13. Visual comparison of the denoising results of the 109 ECG signal with muscle artifact
(a) Clean signal, (b) Noisy signal, (c) Enhanced DWT, (d) Improved threshold + soft, (e) Improved
threshold + hard, (f) Universal + soft, (g) EMD + DWT, (h) VMD + DWT, (i) EEMD + LM, (j) LWT.

As shown in Figures 11–13, the enhanced DWT method has a smaller PRD than
the other methods for denoising ECG signals interfered with by baseline drift, electrode
movement, and muscle artifacts. This indicates that the deviation of the denoised signal
from the original clean signal is minimized by the enhanced DWT.

In conclusion, the proposed enhanced DWT exhibited superior denoising capabilities
across various practical noise scenarios, outperforming existing methods in terms of SNR
improvement and RMSE. The enhanced DWT, especially when coupled with an improved
threshold function, proved to be highly effective in mitigating practical noise interference
in ECG signals.

3.3. Heartbeat Signals Detected by Non-Invasive Technology

The heartbeat signal is monitored using a 1 × 1 m² smart mattress equipped with a
fiber optic sensor based on intermodal interference. A 650 nm laser excites higher-order
modes in a 1 m multimode fiber (MMF), where physiological activities such as heartbeat
and respiration alter the light intensity distribution. These variations are detected by
a Thorlabs DET10A2 photodetector (Thorlabs Inc., Newton, NJ, USA), converted into
electrical signals, amplified, digitized at 2048 Hz, and processed on a computer to extract
heartbeat information. To validate the noise reduction effect of the enhanced DWT on the
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heartbeat signals for non-invasive detection, we conducted a visual comparison of the
noise reduction results from various techniques applied to the fiber optic micro-vibration
sensors, as shown in Figure 14. Since obtaining a clean signal with precise noise levels is
challenging due to the nature of the measured heartbeat signal, a visual comparison was
employed to assess the effectiveness of the noise reduction.

Figure 14b exhibits the clearest heartbeat profile with minimal noise interference
between peaks compared to Figure 14c–j. This clarity can be attributed to the effective-
ness of the enhanced DWT method in minimizing noise interference while preserving
signal components as much as possible. In contrast, Figure 14h, while visually free of
noise interference, shows a notable decrease in signal amplitude compared to Figure 14a.
Notably, Figure 14c,d presents clearer results compared to Figure 14e, indicating that the
improved wavelet threshold significantly enhances denoising quality. Moreover, Figure 14b
demonstrates cleaner signal profiles compared to Figure 14c,d, highlighting the further
improvement brought by the enhanced threshold function. A closer examination of the
denoised waveforms (inset of Figure 14) reveals that the detailed waveforms obtained by
enhanced DWT (Figure 14b) are comparable to those obtained by improved threshold + soft
(Figure 14c), significantly outperforming other methods shown in Figure 14d–j. Thus, the
enhanced DWT method surpasses alternative denoising techniques in effectively reducing
noise and preserving the integrity of heartbeat signals. Sections 3.1 and 3.2 have estab-
lished the effectiveness and statistical validity of the proposed method for processing ECG
signals from various databases contaminated with different types of noise. However, in
practical applications, the unavailability of clean signals and the challenges associated with
accurately estimating the noise level can lead to inaccuracies in the calculated values of
SNR, RMSE, PRD, and SINAD. In this subsection, the effectiveness of the proposed method
is validated using fiber optic heartbeat monitoring as a specific example of measured
heartbeat signals.

Figure 14. Visual comparison of the denoising results of the measured heartbeat signals (a) using
different methods, including (b) enhanced DWT (improved threshold + improved threshold function),
(c) improved threshold + soft, (d) improved threshold + hard, (e) universal + soft, (f) EMD + DWT,
(g) VMD + DWT, (h) EEMD + LM.

4. Conclusions
To realize non-invasive real-time and accurate heartbeat detection for wearable devices,

this paper proposes a wavelet denoising method based on the autocorrelation function
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evaluation metrics of the denoised signals with exact wavelet thresholding and adaptive
thresholding function. The excellent denoising performance of the enhanced DWT is
verified by comparing the denoising results with traditional wavelet methods and state-
of-the-art techniques for many types of heartbeat signals, including Gaussian white noise,
baseline drift, power line noise and muscle artifacts.

Denoising ECG signals contaminated with AWG noise, enhanced DWT improves the
signal-to-noise ratio by 1–5 dB, along with a higher SINAD, and lower RMSE and PRD
than conventional DWT and other state-of-the-art methods. These results show that the
proposed method minimizes distortion while maximizing denoising.

In denoising ECG signals affected by real noise, the enhanced DWT obtains SNR and
SINAD gains that are tens to hundreds of times higher than those obtained by other state-
of-the-art techniques, while RMSE and PRD are substantially lower. This demonstrates that
the proposed enhanced DWT can efficiently determine the wavelet threshold and threshold
function even when the spectra of the signal and the noise are very similar.

Furthermore, when applied to heartbeat signals monitored by an actual fiber optic
microvibration sensing system, the enhanced DWT yields visually clearer denoised wave-
forms compared to existing methods that lack clean signal references and accurate noise
level estimations.

The enhanced DWT employs signal estimation rather than traditional noise level esti-
mation to obtain wavelet thresholds and threshold functions. The autocorrelation function
(ACF)-based wavelet threshold effectively distinguishes between spectrally similar signals
and noise components, while the improved threshold function exhibits higher-order differ-
entiability, significantly mitigating the pseudo-Gibbs phenomenon and reducing constant
deviation. The proposed method uses the non-zero periodic peak of the autocorrelation
function of a periodic signal as a noise-reduction quality assessment metric to select the
appropriate wavelet threshold and threshold function. The method has no constraints
except for the periodic signal. In addition, the effectiveness of this signal quality assessment
index has been demonstrated by the non-local average noise reduction in φ-OTDR vibration
signals [59], and it is applicable to the optimization of bilateral filtering parameters [36]
and the threshold of DWT [37].

Limitations of the study: The proposed method is based on the non-zero periodic
peak of the autocorrelation function (NZOPP), and therefore, it fails when dealing with
non-periodic signals. For example, in the case of highly irregular heart rhythms (e.g.,
arrhythmias), the periodicity assumption no longer holds.

Future research challenges include the following three aspects: First, to address these
limitations, future research on algorithms for processing nonperiodic signals, such as
heartbeats with severe arrhythmia or other nonperiodic biosignals, is needed. Second,
accurately separating and extracting heart rate and respiration frequency from complex
physiological data based on noise reduction will be conducted; finally, embedding the
proposed method into IoT devices (e.g., wearable sensors or smart medical systems) to
enable continuous, real-time monitoring of physiological signals will be conducted (e.g.,
heartbeat and respiration patterns).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s25061743/s1, Supplementary Material S1: Comparison of
SNR, RMSE, PRD, SINAD between enhanced DWT and other methods for signal denoising.
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The following abbreviations are used in this manuscript:

DWT Discrete Wavelet Transform
AWG Additive White Gaussian
AI Artificial Intelligence
EMD Empirical Mode Decomposition
VMD Variable Mode Decomposition
SSA Singular Spectrum Analysis
NLM Non-Localized Mean Filtering
EEMD Ensemble Empirical Mode Decomposition
CEEMD Complementary Ensemble Empirical Mode Decomposition
IMF Intrinsic Mode Functions
WT Wavelet Transform
SDWT Spcshrink’s Discrete Wavelet Transform
SWT Stationary Wavelet Transform
SWPT Stationary Wavelet Packet Transform
DTCWT Dual Tree Complex Wavelet Transform
DDC Double Density Complex
SBWT Stationary Bionic Wavelet Transform
SNR Signal-to-Noise Ratio
RMSE Root Mean Square Error
MMF Multimode Fiber
SMF Single Mode Fiber
NZOPP Nonzero-Order Periodic Peak
ACF Autocorrelation Function
PRD Root Mean Square Difference Percentage
SINAD Signal-to-Noise and Distortion Ratio
ECG Electrocardiogram
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6. Ertuğrul, Ö.; Acar, E.; Aldemir, E.; Öztekin, A. Automatic diagnosis of cardiovascular disorders by sub images of the ECG signal
using multi-feature extraction methods and randomized neural network. Biomed. Signal Process. 2021, 64, 102260. [CrossRef]

7. Cosoli, G.; Spinsante, S.; Scardulla, F.; D’Acquisto, L.; Scalise, L. Wireless ECG and cardiac monitoring systems: State of the art,
available commercial devices and useful electronic components. Measurement 2021, 177, 109243. [CrossRef]

8. Ribeiro, H.; Arnold, A.; Howard, J.; Shun-Shin, M.; Zhang, Y.; Francis, D.; Lim, P.; Whinnett, Z.; Zolgharni, M. ECG-based real-time
arrhythmia monitoring using quantized deep neural networks: A feasibility study. Comput. Biol. Med. 2022, 143, 105249. [CrossRef]

9. Rahul, J.; Sora, M.; Sharma, L.; Bohat, V. An improved cardiac arrhythmia classification using an RR interval-based approach.
Biocybern. Biomed. Eng. 2022, 41, 656–666. [CrossRef]

10. Saini, S.; Gupta, R. Artificial intelligence methods for analysis of electrocardiogram signals for cardiac abnormalities: State-of-the-
art and future challenges. Artif. Intell. Rev. 2022, 55, 1519–1565. [CrossRef]

11. Yin, C.; Zhou, X.; Zhao, Y.; Zheng, Y.; Shi, Y.; Yan, X.; Guo, X. Diagnosis of exercise-induced cardiac fatigue based on deep learning
and heart sounds. Appl. Acoust. 2022, 197, 108900. [CrossRef]

12. Ahmed, A.; Abbas, Q.; Daadaa, Y.; Qureshi, I.; Perumal, G.; Ibrahim, M. A residual-dense-based convolutional neural network
architecture for recognition of cardiac health based on ECG signals. Sensors 2023, 23, 7204. [CrossRef] [PubMed]

13. Madan, P.; Singh, V.; Singh, D.; Diwakar, M.; Kishor, A . Denoising of ECG signals using weighted stationary wavelet total
variation. Biomed. Signal Process. 2022, 73, 103478. [CrossRef]

14. Jiang, F.; Zhou, Y.; Ling, T.; Zhang, Y.; Zhu, Z. Recent research for unobtrusive atrial fibrillation detection methods based on
cardiac dynamics signals: A survey. Sensors 2021, 21, 3814. [CrossRef]

15. Houssein, E.H.; Ibrahim, I.E.; Hassaballah, M.; Wazery, Y.M. Integration of machine learning and optimization techniques for
cardiac health recognition. In Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems; Houssein, E.H.,
Elaziz, M.A., Oliva, D., Abualigah, L., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 121–148.[CrossRef]

16. Boujnouni, I.; Zili, H.; Tali, A.; Tali, T.; Laaziz, Y. A wavelet-based capsule neural network for ECG biometric identification.
Biomed. Signal Process. 2022, 76, 103692. [CrossRef]

17. Hossain, M.; Bashar, S.; Lazaro, J.; Reljin, N.; Noh, Y.; Chon, K. A robust ECG denoising technique using variable frequency
complex demodulation. Comput. Meth. Prog. Biomed. 2021, 200, 105856. [CrossRef]

18. Mourad, T. ECG denoising based on 1-D double-density complex DWT and SBWT. In The Stationary Bionic Wavelet Transform and
Its Applications for ECG and Speech Processing; Springer International Publishing: Cham, Switzerland, 2022; pp. 31–50. [CrossRef]

19. Chen, C.; Shu, M.; Zhou, S.; Liu, Z.; Liu, R. Wavelet-domain group-sparse denoising method for ECG signals. Biomed. Signal
Process. 2023, 83, 104702. [CrossRef]

20. Sraitih, M.; Jabrane, Y. A denoising performance comparison based on ECG signal decomposition and local means filtering.
Biomed. Signal Process. 2021, 69, 102903. [CrossRef]

21. Gan, M.; Pan, H.; Chen, Y.; Pan, S. Application of the Variational Mode Decomposition (VMD) method to river tides. Estuar. Coast.
Shelf Sci. 2021, 261, 107570. [CrossRef]

22. Ding, Y.; Chen, Z.; Zhang, H.; Wang, X.; Guo, Y. A short-term wind power prediction model based on CEEMD and WOA-KELM.
Renew. Energy 2022, 189, 188–198. [CrossRef]

23. Zhang, W.; Teng, F.; Li, J.; Zhang, Z.; Niu, L.; Zhang, D.; Song, Q.; Zhang, Z. Denoising method based on CNN-LSTM and CEEMD
for LDV signals from accelerometer shock testing. Measurement 2023, 216, 112951. [CrossRef]

24. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition, IEEE Trans. Signal Process. 2014, 62, 531–544.
https://10.1109/TSP.2013.2288675. [CrossRef]

25. Guo, T.; Zhang, T.; Lim, E.; Lopez-Benitez, M.; Ma, F.; Yu, L. A review of wavelet analysis and its applications: Challenges and
opportunities. IEEE Access 2022 ,10, 58869–58903. [CrossRef]

26. Prashar, N.; Sood, M.; Jain, S. Design and implementation of a robust noise removal system in ECG signals using dual-tree
complex wavelet transform. Biomed. Signal Process. 2021, 63, 102212. [CrossRef]

27. Baldazzi, G.; Sulas, E.; Urru, M.; Tumbarello, R.; Raffo, L.; Pani, D. Wavelet denoising as a post-processing enhancement method
for non-invasive foetal electrocardiography. Comput. Meth. Prog. Biomed. 2020, 195, 105558. [CrossRef]

28. Kumar, A.; Tomar, H.; Mehla, V.K.; Komaragiri, R.; Kumar, M. Stationary wavelet transform based ECG signal denoising method.
ISA Trans. 2021, 114, 251–262. [CrossRef]

29. Mourad, N. ECG denoising based on successive local filtering. Biomed. Signal Process. 2022. 73, 103431. [CrossRef]
30. Zaki, F.; Wang, Y.; Su, H.; Yuan, X.; Liu, X. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence

tomography. Biomed. Opt. Express 2017, 8, 2720. [CrossRef]
31. Ghorat, M.; Gharehpetian, G.B.; Latifi, H.; Hejazi, M.A. A new partial discharge signal denoising algorithm based on adaptive

dual-tree complex wavelet transform. IEEE Trans. Instrum. Meas. 2018, 67, 2262–2272. [CrossRef]
32. Bayer, F.M.; Kozakevicius, A.J.; Cintra, R.J. An iterative wavelet threshold for signal denoising. Signal Process. 2019, 162, 10–20. [CrossRef]
33. Chatterjee, S.; Thakur, R.S.; Yadav, R.N.; Gupta, L. Sparsity-based modified wavelet denoising autoencoder for ECG signals.

Signal Process. 2022, 198, 108605. [CrossRef]

http://dx.doi.org/10.1016/j.bspc.2020.102260
http://dx.doi.org/10.1016/j.measurement.2021.109243
http://dx.doi.org/10.1016/j.compbiomed.2022.105249
http://dx.doi.org/10.1016/j.bbe.2021.04.004
http://dx.doi.org/10.1007/s10462-021-09999-7
http://dx.doi.org/10.1016/j.apacoust.2022.108900
http://dx.doi.org/10.3390/s23167204
http://www.ncbi.nlm.nih.gov/pubmed/37631741
http://dx.doi.org/10.1016/j.bspc.2021.103478
http://dx.doi.org/10.3390/s21113814
http://dx.doi.org/10.1007/978-3-030-99079-4_6
http://dx.doi.org/10.1016/j.cmpb.2020.105856
http://dx.doi.org/10.1007/978-3-030-93405-7_2
http://dx.doi.org/10.1016/j.bspc.2023.104702
http://dx.doi.org/10.1016/j.bspc.2021.102903
http://dx.doi.org/10.1016/j.ecss.2021.107570
http://dx.doi.org/10.1016/j.renene.2022.02.108
http://dx.doi.org/10.1016/j.measurement.2023.112951
http://dx.doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/10.1109/ACCESS.2022.3179517
http://dx.doi.org/10.1016/j.bspc.2020.102212
http://dx.doi.org/10.1016/j.cmpb.2020.105558
http://dx.doi.org/10.1016/j.isatra.2020.12.029
http://dx.doi.org/10.1016/j.bspc.2021.103431
http://dx.doi.org/10.1364/BOE.8.002720
http://dx.doi.org/10.1109/TIM.2018.2816438
http://dx.doi.org/10.1016/j.sigpro.2019.04.005
http://dx.doi.org/10.1016/j.sigpro.2022.108605
http://dx.doi.org/10.1109/ICWOC57905.2023.10200530


Sensors 2025, 25, 1743 22 of 23

34. Fu, R.; Zhang, J.; Wang, R.; Xu, T. Improved wavelet thresholding function and adaptive thresholding for noise reduction. In
Proceedings of the 2023 11th International Conference on Intelligent Computing and Wireless Optical Communications (ICWOC),
Chongqing, China, 16–18 June 2023; pp. 25–30. [CrossRef]

35. Malik, S.A.; Parah, S.A.; Aljuaid, H.; Malik, B.A. An ierative filtering based ECG denoising using lifting wavelet transform
technique. Electronics 2023, 12, 387. [CrossRef]

36. Chen, Y.; Zhu, P.; Yin, Y.; Wu, M.; Yu, K.; Feng, L.; Chen, W. Objective assessment of ipm denoising quality of Φ-OTDR signal.
Measurement 2023, 214, 112775. [CrossRef]

37. Yu, K.; Feng, L.; Chen, Y.; Wu, M.; Zhang, Y.; Zhu, P.; Chen, W.; Wu, Q.; Hao, J. Accurate wavelet thresholding method for ECG
signals. Comput. Biol. Med. 2024, 169, 107835. [CrossRef]

38. He, C.; Xing, J.; Li, J.; Yang, Q.; Wang, R. A new wavelet thresholding function based on hyperbolic tangent function. Math. Probl.
Eng. 2015, 10, 528656. [CrossRef]

39. Wang, J.; Sun, S.; Sun, Y. A muscle fatigue classification model based on LSTM and improved wavelet packet threshold. Sensors
2021, 21, 6369. [CrossRef]

40. Sun, Z.; Lu, J. An ultrasonic signal denoising method for EMU wheel trackside fault diagnosis system based on improved
threshold function. IEEE Access 2021, 9, 96244–96256. [CrossRef]

41. Kong, X.; Xu, T.; Ji, J.; Zou, F.; Yuan, W.; Zhang, L. Wind turbine bearing incipient fault diagnosis based on adaptive exponential
wavelet threshold function with improved CPSO. IEEE Access 2021, 9, 122457–122473. [CrossRef]

42. Zhu, J.; Fu, Z.; Li, K.; Su, A. Chromatography denoising with improved wavelet thresholding based on modified genetic particle
swarm optimization. Electronics 2023, 12, 4249. [CrossRef]

43. Ming, F.; Long, H. Partial discharge de-noising based on hybrid particle swarm optimization SWT adaptive threshold.
IEEE Access 2023, 99, 1–14. [CrossRef]

44. Xie, B.; Xiong, Z.; Wang, Z.; Zhang, L.; Zhang, D.; Li, F. Gamma spectrum denoising method based on improved wavelet threshold.
Nucl. Eng. Technol. 2020. 52, 1771–1776. [CrossRef]

45. Li, G.; Han, Y.; Yang, H. A new underwater acoustic signal denoising method based on modified uniform phase empirical
mode decomposition, hierarchical amplitude-aware permutation entropy, and optimized improved wavelet threshold denoising.
Ocean. Eng. 2024, 293, 116629. [CrossRef]

46. Chen, M.; Cheng, Q.; Feng, X.; Zhao, K.; Zhou, Y.; Xing, B.; Tang, S.; Wang, R.; Duan, J.; Wang, J.; Zhang, B. Optimized
variational mode decomposition algorithm based on adaptive thresholding method and improved whale optimization algorithm
for denoising magnetocardiography signal. Biomed. Signal Process. 2024, 88, 105681. [CrossRef] [PubMed]

47. Wang, Y.; Xu, C.; Wang, Y.; Cheng, X. A comprehensive diagnosis method of rolling bearing fault based on CEEMDAN-DFA-
improved wavelet threshold function and QPSO-MPE-SVM. Entropy 2021, 23 , 1142. [CrossRef]

48. Yin, C.; Wang, Y.; Ma, G.; Wang, Y.; Sun, Y.; He, Y. Weak fault feature extraction of rolling bearings based on improved ensemble
noise-reconstructed EMD and adaptive threshold denoising. Mech. Syst. Signal Process. 2022, 171, 108834. [CrossRef]

49. Wang, L.; Xu, H.; Liu, Y. A novel dynamic load identification approach for multi-source uncertain structures based on the
set-theoretical wavelet transform and layered noise reduction. Structures 2023, 51, 91–104. [CrossRef]

50. Chegini, S.; Bagheri, A.; Najafi, F. Application of a new EWT-based denoising technique in bearing fault diagnosis. Measurement
2019, 144, 275–297. [CrossRef]

51. Gao, L.; Gan, Y.; Shi, J. A novel intelligent denoising method of ECG signals based on wavelet adaptive threshold and mathematical
morphology. Appl. Intell. 2022, 52, 10270–10284. [CrossRef]

52. Dao, F.; Zeng, Y.; Qian, J. A novel denoising method of the hydro-turbine runner for fault signal based on WT-EEMD. Measurement
2023, 219, 113306. [CrossRef]

53. Kaplun, D.; Voznesenskiy, A.; Romanov, S.; Nepomuceno, E.; Butusov, D. Optimal estimation of wavelet decomposition level for
a matching pursuit algorithm. Entropy 2019, 21, 843. [CrossRef]

54. Chen, Y.; Yu, K.; Wu, M.; Feng, L.; Zhang, Y.; Zhu, P.; Chen, W.; Hao, J. Wavelet decomposition layer selection for the φ-OTDR
signal. Photonics 2024, 11, 137. [CrossRef] [PubMed]

55. Serhal, H.; Abdallah, N.; Marion, J.; Chauvet, P.; Oueidat, M.; Heurtier, A. Overview on prediction, detection, and classification of
atrial fibrillation using wavelets and AI on ECG. Comput. Biol. Med. 2022, 142, 105168. [CrossRef] [PubMed]

56. Phadikar, S.; Sinha, N.; Ghosh, R. Automatic eyeblink artifact removal from EEG signal using wavelet transform with heuristically
optimized threshold. IEEE J. Biomed. Health 2021, 25, 475–484. [CrossRef]

57. Meymandi, A.; Ghaffari, A. A deep learning-based framework for ECG signal denoising based on stacked cardiac cycle tensor.
Biomed. Signal Process. 2022, 71, 103275. [CrossRef]

58. Jin, Y.; Qin, C.; Liu, J.; Liu, Y.; Li, Z.; Liu, C. A novel deep wavelet convolutional neural network for actual ECG signal denoising.
Biomed. Signal Process. 2024, 87, 105480. [CrossRef]

59. Wu, M.; Chen, Y.; Zhu, P.; Chen, W. NLM parameter optimization for φ-OTDR signal. J. Light. Technol. 2022, 40, 6045–6051. [CrossRef]

http://dx.doi.org/10.3390/electronics12020387
http://dx.doi.org/10.1016/j.measurement.2023.112775
http://dx.doi.org/10.1016/j.compbiomed.2023.107835
http://dx.doi.org/10.1155/2015/528656
http://dx.doi.org/10.3390/s21196369
http://dx.doi.org/10.1109/ACCESS.2021.3093482
http://dx.doi.org/10.1109/ACCESS.2021.3108890
http://dx.doi.org/10.3390/electronics12204249
http://dx.doi.org/10.1109/ACCESS.2023.3233974
http://dx.doi.org/10.1016/j.net.2020.01.025
http://dx.doi.org/10.1016/j.oceaneng.2023.116629
http://dx.doi.org/10.1016/j.bspc.2023.105681
http://dx.doi.org/10.3390/e23091142
http://www.ncbi.nlm.nih.gov/pubmed/34573767
http://dx.doi.org/10.1016/j.ymssp.2022.108834
http://dx.doi.org/10.1016/j.istruc.2023.03.037
http://dx.doi.org/10.1016/j.measurement.2019.05.049
http://dx.doi.org/10.1007/s10489-022-03182-3
http://dx.doi.org/10.1016/j.measurement.2023.113306
http://dx.doi.org/10.3390/e21090843
http://dx.doi.org/10.3390/photonics11020137
http://dx.doi.org/10.1016/j.compbiomed.2021.105168
http://www.ncbi.nlm.nih.gov/pubmed/35033876
http://dx.doi.org/10.1109/JBHI.2020.2995235
http://www.ncbi.nlm.nih.gov/pubmed/32750902
http://dx.doi.org/10.1016/j.bspc.2021.103275
http://dx.doi.org/10.1016/j.bspc.2023.105480
http://dx.doi.org/10.1109/JLT.2022.3186830
http://dx.doi.org/10.1109/10.983457


Sensors 2025, 25, 1743 23 of 23

60. Miaou, S.G.; Lin, C.L. A quality-on-demand algorithm for wavelet-based compression of electrocardiogram signals. IEEE Trans.
Biomed. Eng. 2002. 49, 233–239. https://10.1109/10.983457.

61. Strang, G.; Nguyen, T. Wavelets and Filter Banks; Wellesley-Cambridge Press: Wellesley, MA, USA, 1996. [CrossRef]
62. Zhang, K.; Tang, B.; Qin, Y.; Deng, L. Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple

association layers networks. Mech. Syst. Sig. Process. 2019, 131, 243–260. [CrossRef]
63. Beale, C.; Niezrecki, C.; Inalpolat, M. An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage

detection from wind turbine blades, Mech. Syst. Sig. Process. 2020. 142, 106754. https://doi.org/10.1016/j.ymssp.2020.106754.
64. Gao, H.Y.; Bruce, A.G. Waveshrink with firm shrinkage. Stat. Sin. 1997, 7, 855–874. http://www.jstor.org/stable/24306159. [CrossRef]
65. Bruce, A.G.; Gao, H.Y. WaveShrink: Shrinkage functions and thresholds. In Wavelet Applications in Signal and Image Processing III;

SPIE: San Francisco, CA, USA, 1995; Volume 2569, pp. 270–281. https://doi.org/10.1117/12.217582.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ymssp.2019.05.049
http://dx.doi.org/10.1016/j.ymssp.2020.106754
http://dx.doi.org/10.1117/12.217582

	Introduction 
	Principle
	ACF Evaluation Indicator
	Improved Threshold and Threshold Function
	Fast Algorithms for Thresholds and Threshold Function

	Simulation Experiments
	ECG Signals Contaminated by AGW Noise
	ECG Signals Contaminated by Real Noise
	Heartbeat Signals Detected by Non-Invasive Technology

	Conclusions
	References

