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ABSTRACT

Aging is a complex process that accompanied by
molecular and cellular alterations. The identification
of tissue-/cell type-specific biomarkers of aging and
elucidation of the detailed biological mechanisms of
aging-related genes at the single-cell level can help
to understand the heterogeneous aging process and
design targeted anti-aging therapeutics. Here, we
built AgeAnno (https://relab.xidian.edu.cn/AgeAnno/
#/), a knowledgebase of single cell annotation of ag-
ing in human, aiming to provide comprehensive char-
acterizations for aging-related genes across diverse
tissue-cell types in human by using single-cell RNA
and ATAC sequencing data (scRNA and scATAC). The
current version of AgeAnno houses 1 678 610 cells
from 28 healthy tissue samples with ages ranging
from 0 to 110 years. We collected 5580 aging-related
genes from previous resources and performed dy-
namic functional annotations of the cellular context.
For the scRNA data, we performed analyses include
differential gene expression, gene variation coeffi-
cient, cell communication network, transcription fac-
tor (TF) regulatory network, and immune cell propor-
tionc. AgeAnno also provides differential chromatin
accessibility analysis, motif/TF enrichment and foot-
print analysis, and co-accessibility peak analysis for
scATAC data. AgeAnno will be a unique resource
to systematically characterize aging-related genes
across diverse tissue-cell types in human, and it
could facilitate antiaging and aging-related disease
research.

INTRODUCTION

Aging is defined as the gradual deterioration of functional
characteristics in living organisms (1). The aging process is
also among the most well-known risk factors for most hu-
man diseases (2). Currently, the aging population is grow-
ing at an unprecedented pace and there is an urgent need to
initiate detailed studies and develop strategies for healthy
aging. Abundant evidence indicates that aging is accompa-
nied by complex molecular and cellular alterations, such as
dysregulated intercellular communication, epigenetic and
transcriptional alterations, genomic instability, and defects
in the telomere maintenance machinery (3). For example,
forkhead box O3 (FOXO3) is recognized as one of the
key regulators of aging-related processes. The expression
level of FOXO3 decreases with age (4). The interaction of
FOXO3 with NR2E1, SNX3 and CEP5 plays a critical role
in oxidative stress response and DNA damage during ag-
ing (5). High expression of FOXO3 regulated by the chro-
matin accessibility of its enhancer region, may have a pro-
tective effect on lifespan (6,7). Furthermore, FOXO3 is a
potential target of resveratrol, which is a candidate agent
for the prevention and treatment of aging and aging-related
diseases (8,9). As shown here, a systematic analysis of in-
dividual aging genes and the development of a functional
reference annotation will help to gain knowledge of the un-
derlying mechanisms of aging and to identify novel thera-
peutic targets for anti-aging and aging-related diseases.

There are several available aging databases, such as Hu-
man Aging Genomic Resources, Aging Atlas, the Digital
Ageing Atlas, AGEMAP and Open Genes (https://open-
genes.com/) (10–13). These databases mainly focused on
providing integrated biological datasets or a simple collec-
tion of aging-associated genes. In the era of personalized
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medicine, with the accumulated genomic data of individu-
als, an intensive knowledge base annotating the potential
mechanisms of individual aging genes is still lacking. Es-
tablishing a representative resource on aging will provide a
foundation for the individual genomic differences in terms
of aging. The high heterogeneity of molecular and cellular
changes during aging pushes bulk sequencing techniques to
their limits. Thanks to the advancement in single-cell se-
quencing technologies, single-cell sequencing data can re-
fine our understanding of cellular heterogeneity and molec-
ular alteration at the single-cell level in different tissues dur-
ing aging. Here, we built AgeAnno, a knowledgebase of
single-cell annotation of human aging, with the goal of pro-
viding comprehensive and intensive characterizations for
human aging-related genes across diverse tissues and cell
types by using single-cell RNA and single-cell ATAC se-
quencing data (scRNA and scATAC).

In this work, we annotated 5580 aging-related genes col-
lected from six public resources based on 1 678 610 cells
from 28 healthy tissue samples with ages ranging from 0
to 110 years. For scRNA data, first, we performed dif-
ferential gene expression analysis for aging-related genes
(DEGs) in each cell type and identified tissue- and cell-type-
specific DEGs between different age groups. Then, we an-
notated aging-related DEGs into three aging-related bio-
logical categories, including immune genes, telomere main-
tenance genes, and circadian genes. To better understand
the potential mechanisms of aging-related genes, we per-
formed enrichment analysis and transcriptomic variation
analysis to determine aging effect on gene transcriptional
noise; cell–cell communication analysis based on the coor-
dinated ligand–receptor (L–R) expression; and transcript
factor (TF) regulatory network analysis. To explore the im-
mune microenvironment alteration in the aging context,
we investigated the immune cell proportions between dif-
ferent age groups. For scATAC data, we identified dif-
ferential accessible regions (DARs) between age groups,
and provided detailed genetic annotation information such
as enhancers, promoters and introns. Then, we performed
motif/TF enrichment analysis, footprint analysis, and co-
accessibility peak analysis to provide functional annota-
tions for aging-related DARs. We also identified gene–drug
or gene–chemical interactions and related diseases for ag-
ing genes. As described above, AgeAnno provides inten-
sive multiple functional annotations of aging context from
single-cell data. We believe that AgeAnno will be a valuable
resource that can advance the understanding of the underly-
ing mechanisms of aging and help aging research communi-
ties develop anti-aging and aging-related disease treatment
strategies.

MATERIALS AND METHODS

Data collection and preprocessing

First, we collected human aging-related genes from six ref-
erence aging-related resources, including Genage, AgingAt-
las, Opengene, Digital ageing atlas, Gene Ontology, and an
aging study by Chatsirisupachai et al. based on GTEx data
(11,12,14–16). Then, we systematically collected scRNA
and scATAC data from previous studies. We searched pre-
vious studies from PubMed by using the keywords ‘hu-

man’, ‘single cell RNA sequencing’ and ‘single cell ATAC
sequencing’. Only samples from healthy tissues were in-
cluded. Corresponding age, tissue type, cell-specific marker
genes and expression profile of each sample were extracted.
Participants were divided into four age categories accord-
ing to the human development stages by the United Na-
tions and World Health Organization (WHO): childhood
and adolescence period included 0- to 19-year-old people
(Youth group in the database); adulthood period included
20- to 59-year-old people (Mid group in the database); old
age period included 60- to100-year-old people in scRNA
data and 50- to 100-year old people in scATAC data (Old
group in the database) and long-lived individuals with >100
years (Supold group in the database). Overall, total 276
samples were included in the database. In scRNA data, the
Youth group contains 32 samples, the Mid group contains
102 samples, the Old group contains 84 samples and the
Supold group contains 7 samples. In scATAC data, the Mid
group contains 12 samples and the Old group contains 38
samples. The age information of each sample was provided
in Supplementary Table S1.

Briefly, for scRNA data, the quality control and prepro-
cessing steps were performed using Seurat (v2.0), and batch
effect removal was performed using Harmony (17,18). For
scATAC data, we performed the quality control and prepro-
cessing steps using ArchR, and the batch effect removal was
performed using Harmony (18,19). The detailed parameters
used in preprocessing are provided in Supplementary Table
S2.

Cell clustering and annotation in scRNA and scATAC data

Cell clustering for scRNA data was performed using the
Seurat package in R based on the normalized gene expres-
sion profiles (17). For scATAC data, the gene score matrix
was calculated based on the accessibility of regulatory el-
ements close to the genes to estimate gene expression for
cell clustering using ArchR (19). Cell type annotation was
performed according to the markers provided by the origi-
nal papers. Cell cluster visualization of different cell types in
age groups was performed using both t-distributed stochas-
tic neighbor embedding (t-SNE) and the uniform manifold
approximation and projection (UMAP) method.

Differential gene expression analysis for aging-related genes

We performed differential expression analysis to identify
aging-related genes across different age groups (i.e. mid
versus youth, old versus mid, old versus youth) using
the FindMarkers function in the Seurat package for each
cell type (17). Aging-related differentially expressed genes
(DEGs) between age groups with P < 0.05 and |logFC|
> (mean(abs(logFC)) + 2 × sd(abs(logFC)) are shown
in the database (20). We also identified tissue- and cell-
type-specific DEGs. Moreover, we annotated DEGs into
three aging mechanism context-based categories, includ-
ing immune genes, telomere maintenance (TERT) genes,
and circadian genes. Immune genes were obtained from
InnateDB (https://www.innatedb.com/), TERT genes were
obtained from TelNet (http://www.cancertelsys.org/telnet/)
and circadian genes were obtained from the Circadian Gene
Database (http://cgdb.biocuckoo.org/) (21–23).

https://www.innatedb.com/
http://www.cancertelsys.org/telnet/
http://cgdb.biocuckoo.org/
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Aging-related variation coefficient analysis

Transcriptional noise describes molecular fluctuations that
lead to the variability of gene expression within a cell popu-
lation (24). Prior studies found that transcriptional control
showed age-dependent deterioration and instability, which
led to increased transcriptional noise (25). To identify the ef-
fects of aging on aging-related DEGs in different cell types,
we performed variation coefficient analysis based on the ex-
pression of aging-related DEGs to measure the transcrip-
tional noise as described in previous studies (26,27). Briefly,
for a given gene, the variation coefficient was defined as the
ratio of the standard deviation to the mean of expression
difference between the old and young groups. The coeffi-
cient of variation for each aging-related DEG in multiple
cell types are shown using a radar plot. For a gene in a given
cell type, a higher variation coefficient represents a higher
vulnerability to aging-related stress than those in other cell
types.

Enrichment analysis for aging-related DEGs

To explore the potential biological function of aging-related
DEGs, we performed Gene Ontology (GO) term enrich-
ment analysis using clusterProfiler v3.15 package for the
up- and downregulated DEGs in each cell and tissue type
(28). Pathways containing more than five genes with a sig-
nificance level of P < 0.05 are provided on the webpage of
AgeAnno.

Identifying cellular communication for aging-related DEGs

To systematically identify the cellular interaction networks,
we performed cell–cell communication analysis utilizing
CellPhoneDB v2.0 software for aging-related DEGs in each
age group (29). CellPhoneDB is a knowledgebase that con-
tains ligands, receptors and their interactions collected from
published papers. The L–R interactions with a significant
value of P < 0.05 were selected. Cell–cell communications
are shown using interactive circular network plots.

Identifying the TF–target regulatory network for aging-
related DEGs

We used the pySCENIC package to identify key TFs in the
aging process according to a ‘three-step’ TF–target regula-
tory network construction (30). First, TFs and their target
genes were extracted using gene inference methods based on
the correlation of gene expression across cells. Then, target
genes that were not enriched for a corresponding TF were
deleted. Finally, the activity of these TFs was calculated via
an enrichment score in each cell type (regulon specificity
score, RSS). All parameters were set as default values. The
information on TFs and their target genes are summarized
by table, and the RSSs are shown using interactive radar
plots.

Identifying immune cell proportions in the different age
groups

Aging leads to profound changes in the immune system.
For example, the changes in the proportion and the abso-
lute number of T cells can reduce the immune response in

older individuals (31). The immune cell components were
identified using Seurat, and immune proportions between
different age groups are shown by using an interactive sun-
burst plot to analyze the aging impact on the immune mi-
croenvironment. All immune cell components are shown in
Supplementary Table S3.

Identification of aging-related differentially accessible re-
gions

It is challenging to perform downstream analyses directly
since scATAC data are in a binary format (32). To address
this, we first performed pseudo-bulk replicates preprocess-
ing using the addGroupCoverages function in ArchR (19).
This analysis simulated a bulk ATAC-seq experiment by
grouping the data from cells together to generate data at
the sample level. The pseudo-bulk replicates were then used
to generate a peak matrix using the ArchR function ad-
dReproduciblePeakSet. We used MACS2 (v.2.2.7.1) to per-
form peak calling (33). We then compared peak sets be-
tween different age groups using the ArchR function get-
MarkerFeatures to identify differential accessible regions
(DARs). The threshold were set at P < 0.05 and |logFC| > 1.
After comparison, we used the ChIPseeker (v.1.30.3) pack-
age to annotate the differential peaks to the nearest genes
(34). Only DARs annotated with aging-related genes will
be retained in the database.

Co-accessibility analysis

Co-accessibility was performed to investigate correlated
interactions between different genomic regions, such as
promoters, introns, and enhancers in aging-related DARs
(35). Co-accessibility analysis was performed using the ad-
dCoAccessibility function of ArchR. The threshold was set
at corCutOff > 0.5.

Motif/TF enrichment analysis and footprint analysis

TFs are highly involved in the aging process, and under-
standing the accessible variation of TFs will help to ad-
vance the knowledge of their roles during aging. scATAC
allows for simultaneous analysis of motifs that are associ-
ated with the activities of related TFs. Therefore, motif/TF
enrichment analysis was performed based on aging-related
DARs using the addMotifAnnotations function in ArchR.
The threshold was set at P < 0.05. Moreover, the activity of
motif/TF in the different age groups was measured using
the deviation score provided by chromVAR (36). Then, we
plotted footprints for each TF in different age groups using
the plotFootprints function in ArchR.

Drug and disease information

Disease information for aging-related genes was ex-
tracted from the DisGeNet v4.0 database (https://www.
disgenet.org) (37). Drug/chemical-gene interaction infor-
mation was derived from The Comparative Toxicogenomics
Database (CTD, http://ctdbase.org), which contains >10
000 drug/chemical-gene interactions and detailed informa-
tion on how drugs/chemicals can affect genes (38).

https://www.disgenet.org
http://ctdbase.org
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Manual curation of PubMed articles

We searched the publications from PubMed for 5580 aging-
related genes. Taking FOS as an example, the keywords
used for searching were ‘((FOS [Title/Abstract]) AND ag-
ing [Title/Abstract])’. After a manual review of the ab-
stracts, we obtained 142 pieces of literature related to the
function of corresponded gene in aging process.

Database construction

AgeAnno is freely available at https://relab.xidian.edu.cn/
AgeAnno/#/. The front-end of AgeAnno website was de-
veloped using Vue 3.0 and Element Plus (https://element-
plus.org/). The back-end of the website was developed us-
ing node.js and express (https://expressjs.com/). Data stor-
age and management were performed using MySQL v5.7
(https://www.mysql.com/). ECharts v5.3.2 plugin software
(https://echarts.apache.org/zh/index.html) was used to cre-
ate interactive tables and results visualization. All upstream
and downstream analyses were performed using R 4.1.2 and
Python 2.7 based on the Linux system. All data in AgeAnno
is available to the users in the ‘Download’ section. AgeAnno
website can be visited on popular web browsers, such as
Google Chrome, Firefox, Microsoft Edge, and Safari.

DATABASE CONTENT AND FEATURES

Overview of AgeAnno

AgeAnno aims to provide comprehensive characterizations
for aging-related genes across diverse tissue-cell types in hu-
mans by using scRNA and scATAC data. After cell and
gene quality control, 1 678 610 cells across 28 healthy tis-
sue samples with ages ranging from 0 to 110 years were
included. Cell counts and sample sizes for each tissue are
shown in Supplementary Table S4. Figure 1A–1C shows the
content and construction of AgeAnno. For scRNA data, af-
ter batch effect removal and quality control, we first identi-
fied 152 cell types for 17 tissues based on 432 marker genes.
Differential gene expression analysis for aging-related genes
identified 20 122 aging-related DEGs. Among them, 2 466
DEGs were tissue-specific and 6 728 genes were cell-type
specific per tissue type. We also calculated the variation co-
efficient for aging-related DEGs in each cell type. Aging-
related DEGs include 566 immune genes, 310 telomere
maintenance genes and 299 circadian genes. Among aging-
related DEGs, scATAC analysis showed that 1230 genes
had increased accessibility and 966 genes had decreased
accessibility. Enrichment analysis for aging-related DEGs
identified 96 189 GO pathways, including 79 358 biologi-
cal process pathways, 9 243 cellular component pathways
and 7 588 molecular function pathways. Cell–cell commu-
nication analysis in different age groups identified 36 670
L–R pairs for aging-related DEGs. TF-regulatory network
analysis identified 312 enriched TFs with 19 293 target
genes. Among them, 105 TFs also showed enriched by us-
ing scATAC data and 1 548 target genes showed differential
accessibility. Analysis of the changes in the proportion of
immune cells found that the proportions of 71 immune cell
types changed with aging.

For scATAC data, we identified 124 cell types for 11 tis-
sues based on 179 marker genes. Analysis of aging-related

DARs identified 65 322 genes with increasing accessibil-
ity and 36 490 genes with decreasing accessibility. Com-
pared with matched control tissues, 2 196 genes are DEGs.
DAR annotation identified 49 438 promoters, 31 716 in-
trons, 2 955 exons, 15 050 distal intergenic regions, 103
downstream regions, 2 316 3′ UTR regions and 234 5′ UTR
regions. Co-accessibility analysis for DARs identified 6 844
co-accessible regions for decreasing accessible regions and
6 051 for increasing accessible regions across 11 tissues.
Motif/TF enrichment analysis and footprint analysis iden-
tified 12 456 TFs. Among them, 7 099 TFs had increased ac-
cessible regions and 5 357 had decreased accessible regions
following aging. Moreover, disease analysis identified 5 389
disease-related genes and chemicals- and drugs–gene inter-
action analysis identified 5 532 targetable genes that poten-
tially interact with chemicals and drugs.

For example, ETS proto-oncogene 1 (ETS1) is one of the
critical regulators in human aging (39). We found ETS1 was
upregulated in immune cells in aged skin (Supplementary
Figure S1A). According to scATAC data analysis, this may
be due to the higher accessibility of the ETS1 promoter
region. Krishnamurthy et al. found that an age-related in-
crease in Ink4a/Arf expression was attributed to the expres-
sion of ETS1(40). Ink4a and Arf are principal mediators of
senescence in aging (40). Moreover, ETS1 was identified as
a TF enriched in immune cells, and its target genes, such
as DUSP4 were also upregulated, as shown in Supplemen-
tary Figure S1B and C. High expression of DUSP4 in the
elderly impairs T cell-dependent B-cell responses with age
(41). ETS1 is also involved in telomere maintenance (42).
Chemical & drug analysis showed that ETS1 interacts with
Estradiol (Supplementary Figure S1D), which can prevent
collagen reduction and has anti-aging potential (43). There-
fore, our database can be used to identify potential func-
tions and the underlying mechanisms of aging-related genes
and discover chemical-gene interactions, thereby driving the
development of anti-aging strategies.

Additionally, AgeAnno also provides tools to manually
curate aging-related data from published literature, includ-
ing aging clock, brain age, anti-aging drug prediction and
aging data procession toolkit. All related files in AgeAnno
are available for free download on the ‘Download’ page
through a github link.

Annotations and utility of AgeAnno

Cell map module. We performed cell clustering and an-
notation based on scRNA and scATAC data and pro-
vided both tSNE and UMAP methods for tissue-specific
cell cluster visualization (Supplementary Figure S2A). In
this module, AgeAnno also provided visualization of cells
from different age groups (Supplementary Figure S2B). Cell
numbers and cell-specific marker genes from different age
groups are summarized by interactive bar charts and tables
(Supplementary Figure S2C and D). In the Cell map mod-
ule, users can choose the tissue type of interest and view
cell proportions, marker genes, and global map of cell clus-
ters. Here, using brain tissue as an example, we annotated
six cell types based on marker genes, including excitatory
neurons, inhibitory neurons, oligodendrocytes, endothelial
cells, oligodendrocyte progenitor cells (OPCs), and astro-

https://relab.xidian.edu.cn/AgeAnno/#/
https://element-plus.org/
https://expressjs.com/
https://www.mysql.com/
https://echarts.apache.org/zh/index.html
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Figure 1. Database content and construction of AgeAnno. (A) Public resources used in AgeAnno. (B) Dynamic functional annotations of aging-related
genes in AgeAnno. (C) User interface of AgeAnno. Users can perform data queries and browse through multiple paths. AgeAnno supports browsing,
searching, and downloading information on aging-related genes.

cytes. As can be seen from the histograms, there were more
excitatory neurons, oligodendrocytes and OPCs in the aged
group, and more endothelial cells in the youth group (Sup-
plementary Figure S2C).

Aging-related DEG module. The aging-related DEG mod-
ule was developed to compare the expression of aging-
related genes in different age groups. This module provides
four search options, including gene symbol, age group, tis-
sue type, or cell type (Supplementary Figure S3A). Detailed
information was summarized by table. AgeAnno also pro-
vides the box plot for each DEG. The users can right-click to
view the figures in a larger size and save them. This module
also provides information on whether this gene is a tissue-
or cell-type-specific (Supplementary Figure S3B). We found
vasoactive intestinal peptide (VIP) is significantly downreg-
ulated in the inhibitory neurons following brain aging (Fig-
ure 2A), which is consistent with a previous report (44). VIP
is one of the major regulatory peptides in the mammalian
brain (45). Age-related down-regulation of VIP mRNA ex-
pression in the brain may potentially affect the excitatory–
inhibitory balance, leading to learning and memory deficits
in the aged population (44,46).

Aging-related variation coefficient module. Aging-
dependent increases in transcriptional noise could affect
the gene expression. To measure aging-related transcrip-
tional noise, we performed variation coefficient analysis for
aging-related genes in each cell type. In this module, users
can input gene symbols, and compare groups or tissue
types of interest (Supplementary Figure S4A). AgeAnno
feeds back the information on the searched gene and radar
plots of variation coefficients for individual cell types
(Supplementary Figure S4B). Figure 2B shows a radar
plot of the variation coefficient of VIP in six cell types of
the brain. As shown in Figure 2C, the variation coefficient
of VIP increased in all types of cells alone with aging.
This result suggests that dysregulation of transcriptional
regulation may be the potential mechanism responsible for
the age-dependent changes in VIP gene expression.

Aging-related pathway module. Aging-related pathway
module was designed to identify biological functions for an-
notated aging-related genes. Users can search by gene sym-
bol to view pathways related to this gene. They can also
search by age group, tissue type or cell type of their inter-
est (Supplementary Figure S5). Figure 2D showes the top 5



D810 Nucleic Acids Research, 2023, Vol. 51, Database issue

Figure 2. Examples from functional analyses of AgeAnno. (A) VIP expression in inhibitory neurons of different age groups. VIP is significant downregulated
with the aging process. (B) Radar plot of variation coefficient of VIP in each cell type between mid-group and youth group. (C) Comparison of VIP variation
coefficient between different age groups (mid versus youth, old versus mid). (D) Top 5 enriched biological pathways of VIP. (E) Circular network plot of
the brain of the mid group. (F) Circular network plot of the brain of the old group. Nodes with different colors represent different cell types, while the edges
represent L–R interactions between two cell types. (G) RSS of FOS in different cell types. (H) Sunburst plot of immune cell components and proportion in
blood in youth group. (I) Sunburst plot of immune cell components and proportion in the blood of the old group. (J) SOX9 showed significantly increased
chromatin accessibility in astrocytes in aged brain. (K) TF footprint plot of different age groups. Red line represents the mid group and blue line represents
old group.
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enriched pathways related to VIP. We found that VIP ex-
hibits a potential role in ion transportation and memory
and cognition functions. Previous studies suggest that dys-
regulated VIP may have an effect on neuronal excitability
through Kv4.2 channels (47) and age-related downregula-
tion of VIP can lead to learning and memory deficits (48).
As shown here, this module will help users identify potential
biological functions and pathways of aging-related genes.

Cell–cell communication module. To better annotate the
function of aging-related genes, we performed cell–cell com-
munication network analysis through L–R pairs across dif-
ferent cell types. AgeAnno provides interactive networks for
individual tissues. In the cell–cell communication network
module, users can obtain the analysis results on the iden-
tified aging-associated L–R pairs in different age groups.
Users can choose the tissue type for which they want to ob-
tain the cell interaction networks in different age groups.
In the network, nodes with different colors represent dif-
ferent cell types, while edges represent L–R interactions be-
tween the two cell types. The more interactions between two
cells, the thicker the edges (Figure 2E and 2F). By clicking
the nodes, users can browse detailed interactions related to
this cell type (Supplementary Figure S6A). By clicking the
edges, users can browse detailed interactions between two
cell types (Supplementary Figure S6B). We observed the in-
terplay between inhibitory and excitatory neurons via the
L–R interaction of VIP-VIPR1. Previous studies showed
that VIPR1 medicated the induction of Adenosine 3′,5′-
cyclic monophosphate (cAMP) signaling (49), and cAMP
accumulation in the aged brain can open ion channels and
weaken prefrontal neuronal firing (50). Our results indicate
that altered cellular interactions might be a potential mech-
anism of aging.

TF regulatory network module. Growing evidence of tran-
scriptional regulation dysfunction suggests that TFs play an
important roles in aging and age-related diseases. Therefore,
AgeAnno provides TF regulatory network module for iden-
tifying TF-target regulatory networks across cell types. In
the TF regulatory network module, users can obtain the po-
tential TF regulators driving the age-dependent changes in
expression. Users can input gene symbols, and age groups
and tissue types of their interests (Supplementary Figure
S7A and B). Users can also explore detailed information
in AgeAnno by clicking TFs or target genes. For exam-
ple, FOS is one of the TFs enriched in blood across several
age groups, while it is differentially expressed in several cell
types. Our analysis indicated that the RSS of FOS in gran-
ulocytes was higher than in other cell types, which suggests
FOS may be a granulocytes-specific TF in age groups (Fig-
ure 2G). S100A9, one of the target genes of FOS, was upreg-
ulated in the aged group. Previous studies have shown that
FOS is a critical regulator of the aging process (51). Aging
is commonly associated with a state of chronic inflamma-
tion. Calgranulin B encoded by S100A9 gene could induce
chronic inflammation during aging(52).

Immune cell proportion module. Altered proportions of
immune cells may reflect immunosenescence in aging.
AgeAnno provides an immune cell proportion module for

exploring the aging impact on the immune microenviron-
ment. In this module, users can obtain immune cell propor-
tion in different age groups. We found an age-dependent in-
crease in the proportion of activated CD8+ T cells, whereas
the proportion of naı̈ve CD4+ T cells decreased (Figure
2H and 2I). This result is consistent with previous reports
(53,54). Studies indicate that the age-dependent decline in
naı̈ve T cells weakens proliferative capacity and telomerase
activity and leads to the progressive deterioration of the im-
mune responses (55,56).

Aging-related DAR module. AgeAnno provides aging-
related DAR module to detect altered chromatin accessi-
bility for exploring underlying epigenetic mechanisms asso-
ciated with aging-related genes. In the Aging-related DAR
module, users can obtain the altered chromatin accessibility
regions in aging. Users can input gene symbols or choose
tissue or cell types of interest to obtain accessible regions
(Supplementary Figure S8A). The search results are shown
in Supplementary Figure S8B. As shown in Figure 2J, we
found the chromatin accessibility of SOX9 is significantly
increased in astrocyte cells of the aged brain. Moreover,
the expression of SOX9 was also upregulated in astrocyte
cells. This result suggests that the age-related overexpres-
sion of SOX9 may be attributed to increased chromatin
accessibility. SOX9 has a critical role in aging and aging-
related diseases, such as Alzheimer’ disease (AD) (57). As
an astrocyte-specific nuclear marker, SOX9 maintains as-
trocyte morphology and interactions with neurons (58,59).
Dysregulation of SOX9 may be one of the potential mecha-
nisms leading to astrocyte aging, which contributes to brain
aging (60).

Co-accessibility link module. Interactions between ge-
nomic elements (i.e. promoter-enhancer interactions) play
an important role in transcriptional regulation. AgeAnno
provides Co-accessibility link module for co-accessibility
analysis of aging-related DARs. In the co-accessibility link
module, users can input gene symbols or choose tissue or
cell types to obtain interacting genomic region pairs (Sup-
plementary Figure S9A). Supplementary Figure S9B dis-
plays information on aging-related DARs and correlated
genomic regions, as well as correlation coefficients between
these regions (Supplementary Figure S9B).

Motif/TF enrichment module. AgeAnno provides
Motif/TF enrichment module for extracting enriched
TFs based on aging-related DARs to identify differentially
TF accessible activity between age groups. Footprint images
are also provided to visualize TF binding activities in dif-
ferent age groups. Moreover, the activity of cis-regulatory
elements in different age groups were also estimated to
support the TF binding activity. In this module, users can
obtain TF accessible activities in different age groups. Users
can input gene symbols or choose tissue or cell types to
obtain TFs (Supplementary Figure S10). According to our
analysis, we found that the DNA binding activity of SP1 is
significantly decreased in the brain neurons, and the motif
activity in middle age group also higher than old age group
(Figure 2K). Previous studies reported altered binding
activity of SP1 in the aging process (61). The biological
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Figure 3. The main functions and usages of AgeAnno. (A) The top navigation bar of the main functions in AgeAnno. (B) On the ‘Home’ page, users can
perform data queries through two paths: ‘Search by gene symbol/Entrez ID’ and ‘Search by tissue type’. (C) The functional analyses included in AgeAnno.
Users can query and visualize genes in different functional analysis categories. (D) The ‘Link’ function includes published aging-related algorithms and
tools. (E) Data download function. (F) ‘Help’ function contains a brief introduction of AgeAnno and its functions. (G) Statistics information of samples
and annotations in AgeAnno.
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function of SP1 was widely reported in aging studies,
such as age-dependent oxidative stress, nucleocytoplasmic
trafficking and neuronal survival (62,63). Additionally, SP1
was identified as a pro-inflammatory transcription factor
associated with increased AD risk (64).

Related human diseases and chemical/drug module. Dis-
ease information for aging-related genes was obtained from
DisGeNet. A total of 23 501 diseases were identified to
be associate with aging-related genes. These results are
shown in the Related diseases of aging-related genes mod-
ule. Users can search by gene symbol and disease name to
obtain related information about diseases (Supplementary
Figure S11A). Moreover, AgeAnno also provides gene–
chemical/drug interactions extracted from the CTD and
stores 12 576 drugs associated with aging-related genes.
Users can search by gene symbol and drug name to ob-
tain gene–drug interactions and detailed information of
drugs (Supplementary Figure S11B). For example, ETS1 is
a druggable target of Estradiol. Estradiol was found to have
protential on preventing collagen reduction (43). As shown
here, this module will provide potentially druggable targets
for anti-aging studies.

Links module curated aging-related tools and methods.
AgeAnno provides twelve published methods for estimat-
ing the aging clock that use omics data, such as transcrip-
tomic or epigenetic data. Two methods for estimating brain
age based on neuroimaging and genetic data, one anti-aging
drug prediction method and one bioinformatics toolkit for
data-mining (Supplementary Figure S12). Users can browse
the basic information of these methods.

DISCUSSION AND FUTURE DEVELOPMENT

Currently, existing databases are mainly focused on provid-
ing integrated multi-omics datasets and collecting aging-
associated candidate genes. AgeAnno is the first database
that systematically characterizes aging-related genes across
diverse tissue and cell types in humans by analyzing scRNA
and scATAC data (Supplementary Table S5). To date,
AgeAnno has cataloged 1 678 610 cells from 28 healthy
tissue samples. Aging-related DEGs and DARs were iden-
tified and comprehensive functional annotations for these
aging genes were obtained. AgeAnno houses 5 580 aging-
related genes, including DEGs, DARs, TFs, ligands and re-
ceptors, etc. AgeAnno also provides cell clusters and pro-
portions in different age groups. In addition, AgeAnno pro-
vides a user-friendly searching and browsing interface (Fig-
ure 3A). As shown in Figure 3B, ‘Quick Search’ on the
‘Home’ page allows users to perform data queries through
two paths, including ‘search by tissue’ (choose one tissue of
interest), and ‘search by gene’ (input gene symbol or gene
EntrezID). All functional analyses are also available sepa-
rately on the home page (Figure 3C). Users can obtain pub-
lished aging-related tools and algorithms in the ‘Link’ func-
tion (Figure 3D). AgeAnno also provides results download,
statistics and help functions (Figure 3E-3G).

To better serve the broad biomedical research communi-
ties, we will continue to integrate other single-cell sequenc-
ing data types, such as single-cell DNA sequencing and

single-cell TCR/BCR sequencing data, to identify the po-
tential functions and mechanisms of aging-related genes.
We plan to expand our database with an effective web server
toolkit to facilitate cell type annotation, network modeling,
anti-aging drug response evaluation and omics data inte-
gration. We believe that AgeAnno can continually provide
a valuable resource for understanding molecular and cellu-
lar changes in aging biology and for identifying targetable
biomarkers for aging research.
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