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With the advancement in imaging technology, many commercial systems have been developed for performing motion analysis in
mice. However, available commercial systems are expensive and use proprietary software. In this paper, we describe a low-cost,
camera-based design of an autonomous gait acquisition and analysis system for inspecting gait deficits in C57BL/6 mice. Our
system includes video acquisition, autonomous gait-event detection, gait-parameter extraction, and result visualization. We
provide a simple, user-friendly, step-by-step detailed methodology to apply well-known image processing techniques for detecting
mice footfalls and calculating various gait parameters for analyzing gait abnormalities in healthy and neurotraumatic mice. The
system was used in a live animal study for assessing recovery in a mouse model of Parkinson’s disease. Using the videos acquired in
the study, we validate the performance of our system with receiver operating characteristic (ROC) and Hit : Miss : False (H: M : F)
detection analyses. Our system correctly detected the mice footfalls with an average H: M : F score of 92.1 :2.3: 5.6. The values for
the area under an ROC curve for all the ROC plots are above 0.95, which indicates an almost perfect detection model. The ROC
and H: M : F analyses show that our system produces accurate gait detection. The results observed from the gait assessment study

are in agreement with the known literature. This demonstrates the practical viability of our system as a gait analysis tool.

1. Introduction

Gait impairments are one the most common traits of many
neurodegenerative diseases, such as Parkinson’s disease
(PD), multiple sclerosis, amyotrophic lateral sclerosis,
Huntington’s disease, and spinal cord injury. Many human
neurological diseases are studied using their mouse models
[1]. Since preclinical mouse models of these diseases rep-
licate their respective gait abnormalities [2], gait analysis in
mice has always been a topic of interest for gaining insight
into neurodegenerative diseases and identifying potential
treatments. While validated commercial systems for gait
analysis in mice exist, they remain expensive and use pat-
ented or proprietary implementation of unpublished work.
To address the need for an economic gait assessment system,
in this paper, we describe a design for a low-cost monitoring

and assessment system for mice gait that can provide the
necessary data comparable with some of the commercial
systems already available in the market.

Traditionally, gait analysis in mice has been performed
through visual inspection [3] and open field activity mon-
itoring [4]. With advancements in imaging technology,
many commercial systems have been developed for moni-
toring mice gaits, such as Animal Strideway Systems
(Tekscan, Inc., South Boston, MA, USA), DigiGait Imaging
Systems (Mouse Specifics, Inc., Framingham, MA, USA),
and CatWalk XT (Noldus Information Technology,
Wageningen, NL). There even have been individual attempts
to develop an independent gait analysis system, such as one
made by Casey Harr of the University of Kentucky [5]. The
Animal Strideway System uses thin-film force sensors for
gait acquisition combined with digital imaging software for
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displaying the results. The DigiGait Imaging System im-
plements a treadmill with a transparent treadmill belt and
digital imaging hardware and software. CatWalk XT uses a
glass trackway equipped with image capturing hardware and
software for gait assessment. All these systems provide
possible options for gait acquisition in their own right, but
they remain quite expensive and are protected with patents
that apply closed source implementation.

In recent years, there has been a growing literature on
examining the gait kinematics in rodents during preclinical
trials. In [6], Maghsoudi et al. proposed a superpixel-based
image segmentation method to examine the kinematics of
running rodents to improve our understanding of motion
control and to aid in treating motor impairments. The
method utilizes spatial and color information for image
segmentation to extract various features from the images.
Wong and Shah [7] proposed a method to collect and an-
alyze three-dimensional kinematics data of quadrupedal
locomotion in rodents for preclinical trials. Their method
utilizes a six-camera motion capture system to analyze the
gait in rodents during treadmill locomotion and studies a
variety of motion behaviors in healthy and neurotraumatic
rats. In [8], Timotius et al. suggested a gait analysis technique
that systematically scales individual gait parameters in mice
and rats based on their video-derived silhouette length and
area data along with body weight and age. The silhouette-
scaled parameters are used for identifying the body length
independent motor functional differences in transgenic
Huntington’s disease mice and PD rats. An open-source gait
analysis suite called GAITOR [9] studies gait pattern
changes in rodents during preclinical trials. The GAITOR
suite is capable of detecting gait changes in rodent models of
monoiodoacetate (MIA) injection of joint pain, sciatic nerve
injury, elbow joint contracture, and spinal cord injury.

These efforts provide viable solutions for acquiring gait
kinematics data in rodents. The gait kinematics data is useful
for examining certain aspects of the gait, such as the position
of joints and segments through each phase of the gait.
However, these are not the only gait parameters indicative of
neurodegenerative disease. Quantitative gait pattern analysis
used during preclinical trials calculates parameters such as
cadence, stance, step and duty cycle, and interleg coordi-
nation. Available commercial systems for assessing these gait
pattern parameters remain expensive.

To address the need for a cost-effective, robust system for
comparing gait abnormalities in mouse models of neuro-
logical diseases to a baseline or control group, we have
developed and built an inexpensive, camera-based system
for gait acquisition and assessment using an LED-lit glass
trackway. We have also independently developed algorithms
for the extraction of various gait metrics and their analysis,
which are implemented using MATLAB R2015b (Math-
Works, Inc., Natick, MA, USA). Our system autonomously
detects the gait and extracts a large set of kinematic pa-
rameters, such as positioning of footfalls, step patterns,
contact and noncontact gait metrics, and interleg coordi-
nation. While we restrict our attention to the development
and performance of these algorithms in this paper, a detailed
build of our system is given in [10].
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We validate the accuracy of our gait detection algorithms
with a receiver operating characteristic (ROC) analysis
performed during a live animal study assessing recovery in a
classical murine model of PD. We also calculate the Hit:
Miss : False (H: M : F) ratio to verify the accuracy of our gait
detection system during the same study. The study was
conducted over a period of two weeks in three groups of
C57BL/6 mice. The first group was administered with Saline.
The second group was dosed with methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), which induces motor impair-
ments identical to those observed in PD. The third group was
treated with MPTP and 1,1-bis(3'indolyl)-1-(p-chlor-
ophenyl)methane (C-DIM12), which has demonstrated ef-
ficacy in reducing MPTP-induced neuronal loss in mice
[11-14]. The experimental setup and the training and ha-
bituation of mice to the trackway are explained in detail in
[15]. Various gait metrics data acquired during the study
showed general agreement with the known literature.

Apart from studying neurodegenerative diseases with
the help of gait analysis, there is a wide variety of real-world
problems that can be solved using accurate gait detection
and estimation. Gait recognition at a distance is useful for
video surveillance [16-19]. Characteristic gait parameters,
such as varus instability in the knee or ankle at heel strike,
are useful to perform comparisons between disguised per-
petrators and suspects. Remote gait detection and analysis
can be used for healthcare monitoring [20-22]. Gait is a
good indicator of our overall health status. Remote gait
analysis can be effectively used to support the healthcare
needs of the elderly in a noninvasive and reliable manner.
Also, the unique gait features of a person can be used for
biometric identification along with traditional methods such
as fingerprint, face, or iris recognition [23-26]. Gait bio-
metrics identifies features of an individual walking style,
such as the shape and gesture, and is one of the recent
biometrics systems. Clearly, systems analyzing gait patterns
in daily life are in demand due to their noninvasive nature
and ease of application.

Gait recognition is implemented as a combination of
multiple techniques, such as object localization, motion
recognition, and spatiotemporal event detection. Object
localization refers to identifying the location of one or more
objects in an image and drawing a bounding box around
their extent. Motion recognition is the process of detecting a
change in the position of an object relative to its sur-
roundings or a change in the surroundings relative to an
object. Events that can change in both time and space are
called spatiotemporal events. Spatiotemporal event detec-
tion is used to model dynamic events such as animal
movement and traffic control. The most popular approach
for human gait recognition is the use of video recordings,
where different methods, such as silhouette-based gait
recognition and gait feature extraction, are implemented for
identifying moving objects in the video [27-34]. Another
approach is the use of wearable sensors, where gait data is
collected by the sensors attached to the person’s body or
limb [35-42]. Yet another approach is the use of thermal
sensors, where infrared thermal imaging is used for col-
lecting human gait data and to remove noises from the
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complex background [43-45]. All these efforts highlight the
growing interest gait recognition has gained from re-
searchers and the need for an inexpensive, easy-to-imple-
ment system that can be reliably used for accurate gait
detection and estimation.

The main contribution of this paper is to provide a step-
by-step process for building a gait acquisition system and
describe the necessary image-processing algorithms for
autonomous gait detection and parameter extraction. We
also provide the gait analysis results using our described
system from a live animal study that validates the efficacy of
the system. A lack of open-source information is one of the
major limiting factors for building a low-cost gait analysis
system. Gait analysis is one of the nonintrusive ways of
diagnosis. The healthcare industry is experiencing a state of
revolution with modern computers providing faster diag-
nosis and therapeutics. Despite modern electronic equip-
ment and computers getting cheaper each year, healthcare
remains expensive in all parts of the world. The detailed
build guide provided in [10] and the image-processing al-
gorithms provided in this paper mitigate this limiting factor,
enabling implementation of an inexpensive gait analysis
system.

The remainder of this paper is organized as follows. In
Section 2, we give a detailed description of the gait acqui-
sition and detection algorithms used in our system. In
Section 3, we present detection performance, ROC analysis,
and gait assessment results of the system performed during
an in-lab experimental study. We discuss the overall per-
formance and potential improvements of our system in
Section 4 and provide concluding remarks in Section 5.

2. Method

Our gait acquisition system consists of a long trackway
across which a single mouse can run and algorithms to
detect the position and pressure of footfalls. The trackway is
two meters long and is made of glass, with a rectangular
enclosure, a ventrally located camera to capture footfalls,
top- and side-mounted LEDs, and a computer with our data
processing algorithms and a graphical user interface (GUI)
developed in MATLAB. The rectangular enclosure is made
of plastic and is placed on the top of the glass trackway to
ensure that the mouse continues to run in a particular di-
rection during an experiment. The goal of the system is to
autonomously detect and analyze the gait characteristics of
the mouse for the experiment. Figure 1 shows the proposed
gait acquisition system, and Figure 2 shows an overview of
the gait acquisition and assessment process. Each compo-
nent is further discussed in detail in the following sections.

2.1. Video Acquisition. LEDs are mounted on the top and
side of the glass trackway to illuminate the footfalls of the
mouse. Red LEDs are installed on the inside of the top side of
the rectangular enclosure, and green LEDs are installed
along the sides of the glass trackway. The LEDs are equipped
with adjustable intensity dimmers. The red LEDs illuminate
the glass trackway in a red glow. The light from the green
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F1cure 1: Gait acquisition system.
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FIGURE 2: System overview.

LEDs is reflected internally everywhere inside the glass
trackway, except at those areas where the footfalls of the
mouse make contact with the glass. The green light is
refracted towards the camera at the footfalls creating a
strong contrast between the footfalls and the background.
This is illustrated in Figure 3. A high-end camera provides a
high sampling rate and resolution, both of which are ex-
tremely important in collecting gait data. A higher-resolu-
tion camera helps in capturing relatively fine details of the
footfalls of a mouse, while a higher frame rate ensures that
no footfalls are missed while recording a video. The camera
of choice was GoPro HERO3+ (GoPro, Inc., San Mateo, CA,
USA), which can be installed easily on the adjustable mount
to determine the exact field of view of the lens. The videos are
recorded at 60 frames per second (fps) and
1080 x 1920-pixel resolution with the help of the GoPro
remote user interface. The captured videos are transferred to
a computer and are processed using MATLAB with the help
of the Image Processing and Computer Vision Toolbox.
Once the videos are acquired, we need to perform some
preprocessing on the image sequence before we acquire the
gait data. The primary aim of data preprocessing is to extract
only the necessary parts of an image and to avoid any extra
processing for faster analysis. Also, we need to adjust for any
possible distortion or rotation present in an image. For these
purposes, we use the system GUI for manually setting the
parameters for the preprocessing. First, we load an image
from a video to be analyzed. Second, we use the system GUI
to remove any barrel distortion in the image. Third, we
rotate the image to make sure that the trackway is oriented
horizontally in the image. Last, we mark the top and bottom
walls of the glass trackway to crop the image to a fixed
dimension and to remove the unnecessary areas. Figures 4
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FIGURE 3: A sample image of the trackway, zoomed-in, to show the illuminated footfalls.

(a)

(b)

FIGURE 4: Application of the preprocessing steps to a sample image. (a) Original image. (b) Image after correcting for barrel distortion.

and 5 demonstrate the preprocessing steps applied to a
sample image. The preprocessing parameters are saved using
the system GUI and will be applied to the rest of the image
sequences automatically as part of the preprocessing routine.

2.2. Paw Detection. In general, any digital image consists of a
rectangular grid of pixels, where a pixel is the smallest
controllable element of an image represented on the screen.
In the RGB color imaging system, color is generally rep-
resented by the three-component intensities, namely, Red,
Green, and Blue. A major task in paw detection is differ-
entiating the pixels in an image representing the footfalls of a
mouse from the rest of the pixels in that image. This task is
simplified when there is good color contrast between the
pixels representing the footfalls and the rest of the pixels. The
previously described LED lighting for the gait acquisition
helps in creating such contrast. Differentiating these pixels is
achieved by detecting the pixels with sufficiently high green
(G) values in an RGB image. More specifically, it is adequate
to detect the pixels with sufficiently high G values within the
rectangular enclosure in an image of the glass trackway. At
the beginning of the analysis, the top and bottom ends of the
rectangular enclosure are manually set from a random frame
in the video. To avoid detecting any possible noise, we use
the thresholding technique to ensure that only the pixels
representing the mouse’s footfalls are differentiated. Algo-
rithm 1 summarizes this technique.

After thresholding for the G value, there are still many
pixels remaining in the image which need to be identified as
paws or otherwise. Proximity clustering, which links closely
related pixels to form a larger object, is used for joining the

digits of the paws together which are disjointed from the
palm area. The distance between two pixels located at 2D
positions p and g is measured by the Euclidean norm,
represented by ||g — pll. Pixels within a predefined threshold
distance are then grouped. This is summarized in
Algorithm 2.

Finally, the clusters that are assumed to be paws, but are
smaller or larger than some predefined thresholds, are fil-
tered out. This eliminates the clusters formed by unwanted
areas such as noise, dust, and mouse feces on the glass
trackway. This procedure is summarized in Algorithm 3.

After finalizing the paw clusters, the centroids of these
clusters are recorded for each frame of an acquired video.
The set of N pixels belonging to cluster k at the frame t is
denoted as p; = {pk“ Pryp -5 Pry }, with coordinates of
pixel p att bemg (x;, y;)- Here, the X direction is along the
trackway, while the Y direction is perpendicular to the
trackway. The centroid for cluster k at time ¢ is

1 N
=N > bi, (1)
i

The centroid represents a 2D location of the paw cluster
at a given time.

Figure 6 depicts two sample images from a test video
after the application of Algorithms 1-3. Our system correctly
identifies two paw clusters in Figure 6(a) and four paw
clusters in Figure 6(b). The system automatically marks the
detected paw clusters with bounding boxes and also indi-
cates their positions inside the image by highlighting their
respective X and Y coordinates. Later, in Section 3.1, we
show that our system very rarely misses a paw cluster present
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(a)

(b

F1GURE 5: Application of the preprocessing steps to a sample image. (a) Image after correcting for rotation. (b) Cropped image showing just

the glass trackway.

for Each input frame do

end if
end for
end for

for Each pixel within the rectangular enclosure do
if Pixel’s green value is greater than a given threshold T, then
Mark pixel as green-pixel

ALGORITHM 1: Green pixel threshold.

end if

if [|green-pixel-cluster,—green-pixel-cluster, || is less than a given threshold T; then
Merge green-pixel-cluster, and green-pixel-cluster, as green-pixel-cluster,

ALGORITHM 2: Proximity clustering.

Mark cluster as detected-paw
Return centroid for the detected-paw
end if

if Cluster size is greater than a given threshold T and cluster size is smaller than a given threshold T, then

ArcoriTHM 3: Cluster sizing.

in an image or falsely identifies some area in an image as a
paw cluster. In Section 3.2, we explain how to choose
particular threshold values in Algorithms 1-3 and how they
affect the false alarms and missed detections. The system
saves these values of X and Y coordinates for all detected paw
clusters along with their respective frame numbers for
further classification.

2.3. Paw Classification. The detected paw clusters need to be
classified into four groups, namely, Left-Front, Right-Front,
Left-Rear, and Right-Rear. There is a minimum of one and a
maximum of four paw clusters present in each frame, and

these paw clusters need to be matched with their corre-
sponding paws in the previous and future frames. There may
also be a mouse’s tail or nose detected in some frames in
addition to some random noise that may be present. This
redundant data needs to be eliminated. The main difficulty
with the paw classification is that the rear paws often occupy
similar locations that the front paws have previously oc-
cupied. This leads to many repeated coordinate entries in the
recorded data even for different paws.

To solve this problem, first, we categorize the images
from a video by the number of paw clusters detected in each
frame. In the frames with four paw clusters, classification of
individual clusters into Left-Front, Right-Front, Left-Rear,
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(a)

(b)

FI1GURE 6: Sample images showing detected paws after application of Algorithms 1-3. (a) Image with two detected paw clusters. (b) Image

with four detected paw clusters.

end if

if Number of paw clusters detected in the frame is equal to four then
Arrange detected paw clusters in increasing order of their X coordinates
Arrange first two and last two detected paw clusters in increasing order of their Y coordinates
Classify the first paw cluster as the Right-Rear paw
Classify the second paw cluster as the Left-Rear paw
Classify the third paw cluster as the Right-Front paw
Classify the fourth paw cluster as the Left-Front paw

ALGORITHM 4: Four-paw classification.

and Right-Rear is fairly easy. These are usually the frames
where a mouse is standing on all four of its paws. The
classification is done by using the X and Y coordinates for
the detected paw clusters. Given the fixed left to the right
direction with which a mouse is allowed to run on the
trackway, the two clusters with higher X coordinates are
classified as the front paws, and the remaining two are
classified as the rear paws. The front and the rear paws are
then further classified into the left and right paws based on
their Y coordinates. The fixed direction of the mouse
movement ensures that the right paws are the ones with the
smaller Y coordinates and vice versa. This is summarized in
Algorithm 4.

We move recursively from the frames with classified
paw clusters to their previous and successive frames. Any
unclassified paw cluster within a predefined threshold
distance from a classified paw is assigned to the same
category as that of the classified paw. This is summarized
in Algorithm 5. The process is repeated until there are no
more new classifications. The remaining unclassified
clusters at the end of this process are eliminated as re-
dundant data. The thresholds for the distance and the
frames were determined based on a large number of trial
runs and cross verification.

2.4. Parameter Extraction. Various gait parameters can be
calculated from the classified paws. These gait parameters are
useful for tracking any irregularities in gait. The gait

parameter definitions commonly used in clinical gait
analysis are listed for the reader’s convenience in Table 1.
These definitions are used by the CatWalk XT system and are
only used to guide our system’s proper estimation of these
parameters.

2.4.1. Run Duration. The GoPro HERO3+™ camera is able
to capture frames at a rate of 60 fps. The run duration (RD) is
calculated as

RD - by - fli, (2)
60

where { ; and ¢, are the times of the first and last frames with
at least one detected paw.

2.4.2. Step Recognition. To compute the gait parameters, the
steps must first be recognized accurately. The X coordinates
of each classified paw are projected into a Distance versus
Time graph as shown in Figure 7. Each run is composed of
two phases: Contact phase as recognized by the horizontal
line parts and Swing phase as recognized by diagonal line
parts. The number of steps S is obtained directly from the
number of contact phases during one entire run. The ca-
dence (Cad) is calculated as

S
= —, 3
Cad =D (3)
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A classified paw P, in frame F,
for Each frame F with an index that is within a given threshold T'; of the index of the above frame F, do
if There is an unclassified paw P in the frame F such that its location is within a given threshold T, of the given classified paw P,

then
Set the class of the unclassified paw P to be equal to that of the classified paw P,
end if
end for
ALGoriTHM 5: Unclassified paw identification.
TaBLE 1: Definitions of gait parameters.
Parameter Definition

Run duration

Stride length

Swing duration
Swing speed

Stance

Step cycle

Duty cycle

Cadence

Base of support
Diagonal dual support
Three-point support
Four-point support
Average area
Average intensity

Time of finishing an entire run
Distance between two consecutive travels in the same paw
Duration of no contact of a paw with the glass
Ratio of the stride length to the swing duration
Time the paws are in contact with the glass
Time between two consecutive initial contacts of the same paw
Percentage of the stance over the sum of the stance and the swing duration
Number of steps per time interval in the trial
Distance between the fore limbs and the hind limbs at the maximum area
Relative duration of simultaneous contact of two limbs with the glass
Relative duration of simultaneous contact of three limbs with the glass
Relative duration of simultaneous contact of four limbs with the glass
Average area of a paw contacting the glass
Average pressure of a paw contacting the glass

80 -

70 |

60 |-

50

Distance (cm)

20 -

10

1 2 3 4 5 6 7 8 9 10
Time (seconds)

—— Left-Front —— Left-Rear
—— Right-Front Right-Rear

FiGgure 7: Distance travelled by each paw during a sample run.

2.4.3. Stride Length, Swing Duration, Stance, and Duty Cycle. L.=lC (x.v) = Coim (x 4
Let t},tiy,, and tl] represent first, mean, and last frames, / " t{"( ) t{'ll( ’y)”’ @)
respectively, for step j, and let the centroids associated with

step j for a particular paw be C,

length is calculated as

;,C,;, and C,;. Now stride and the average stride length for a particular paw is calculated
gt as




8

138

L==-)>1L,. 5
s L (5)

The swing duration is calculated as
j_ j+l
p, = (©)
J 60

and the average swing duration for a particular paw is
calculated as

138
D= Z D,. (7)
i=1
The stance is calculated as
Jo_ 4
R - It} = t]] (8)
] 60

and the average stance for a particular paw is calculated as

S
'R, (9)
i=1

Once swing duration and stance are obtained, the duty
cycle is calculated as

R:

Nl

2iiRi

D=3
Y Ri+ 2, D;

(10)

2.4.4. Paw Support. Paw support indicates the relative du-
ration of simultaneous contact of two or more limbs with the
trackway. Different paw supports as defined in Table 1 are
calculated by comparing the frame numbers for the steps of
the required paws. Once we get the shared frames for the
paws, we obtain the duration of their simultaneous contact
simply by adding the total number of shared frames and
dividing it by 60.

2.4.5. Paw Pressure. Paw pressure is represented in the form
of an image by creating a surface plot for the green pixel
values in a paw cluster. Smoothing of the curve is achieved
by interpolating the values using a spline filter. The area of a
paw cluster is calculated as the total number of green pixels
in a paw cluster. The average area for a particular paw is then
calculated as the mean of areas of all the paw clusters of the
same category. The intensity of a paw cluster is calculated as
the mean of green pixel values in a paw cluster. The average
intensity of a particular paw is then calculated as the mean of
intensities of all the paw clusters of the same category.

2.5. Visualization. The system GUI provides all control
options and shows visualization results on the extracted gait
parameters. Visualizations for some of the gait parameters
acquired during the live animal study are shown in Figures 8
and 9. Visualization plays an important role in the quick and
efficient analysis of large data. The system GUI can also be
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used to save the analyzed data in .mat or .csv formats for
future use.

3. Results

The system described above was used during a live animal
study as one of the tools for assessing the recovery in C57BL/
6 mice acquired from Charles River Laboratories (Wil-
mington, MA, USA), which were medically induced with PD
using MPTP and treated with C-DIM12. The study started
with three different groups, each consisting of 12 healthy
mice, and was conducted over a period of 14 days. The first
group was treated with Saline throughout the experiment.
The second group was injected with MPTP on days 1, 5, 9,
and 13. The third group was treated with MPTP on the same
days, along with oral gavage of C-DIM12 compound dis-
solved in corn oil (or corn oil vehicle control). On the 14th
day, the mice were terminated. Behavior was assessed at
these time points using the gait acquisition system. The
detailed training and habituation of mice to the trackway is
given in [15]. After the treatment, each mouse was allowed to
run on the trackway with optimally present lightning. The
trackway was wiped with alcohol solution after each run to
clean any excretion left by the mice during a run. Each
mouse was allowed to run twice for the sake of obtaining
better test results. A run with the least number of stops was
selected for the analysis using the gait detection system. A
total of 328 videos or approximately 196,800 frames were
analyzed using our system.

From the video analysis, we acquired the footfall dataset
for each frame in the video in terms of the categories Left-
Front, Right-Front, Left-Rear, and Right-Rear, as well as X
and Y coordinates for each footfall indicating the centroid of
the footfall. Algorithms 1-3 detect footfalls in the video and
return a set of X and Y coordinates associated with the
footfalls along with their respective frame numbers. Algo-
rithms 4 and 5 classify the detected footfalls into the ap-
propriate categories Left-Front, Right-Front, Left-Rear, and
Right-Rear. To label the footfalls, we used a graphical image
annotation tool called Labellmg [46]. Labellmg is an open-
source tool written in Python and uses Qt for its graphical
interface. First, we annotated every footfall in each frame of
the video with its correct paw class and X and Y coordinates.
Then we saved the annotations in XML files using Labellmg.
After saving the annotations, we cross-referenced the gait
detection data acquired using our autonomous gait detec-
tion algorithms with the annotated gait data using Labellmg
as described above. Finally, we used the system GUI to
extract the gait parameters as defined in Table 1.

In this section, we show the results for the evaluation of
the gait detection algorithms using H: M : F detection ratio,
ROC analysis, and gait metrics acquired for the gait
assessment.

3.1. Hit : Miss : False Detection Ratio. H: M :F detection ratio
is the ratio of the percentage of positive paw identification
(hit) to missed paw identification (miss) to false identifi-
cation (false). A positive paw identification denotes correct
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F1GURE 8: Graphical visualization of gait parameters for the live animal study. (a) Stance period for the three mice groups on the 13th day. (b)
Run duration for the three mice groups on the 13th day. Error bars indicate 95% confidence intervals calculated over 20 measurements in 24

videos (n=480).
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FIGURE 9: Graphical visualization of gait parameters for the live animal study. (a) Change in stride length for the Left-Rear paw. (b) Change in
stride length for the Right-Rear paw. Error bars indicate 95% confidence intervals calculated over 20 measurements in 24 videos (1 = 480).

identification and classification of paws present in each
frame. A missed detection is when the system fails to detect
one or more paws present in any frame. A false detection is
incorrect identification of an object as a paw or misclassi-
fication of a detected paw. The goal of the gait acquisition
and detection system is to generate close to 100% positive
detection.

A missed detection can be caused by low contrast be-
tween a paw and the glass trackway. This happens when the
area where a paw makes contact with the glass plate is not
illuminated enough to be detected through the paw detec-
tion threshold explained in Algorithm 1. It may also happen
when a paw is being lifted, and the area of the contact is so
small that it does not get detected through the threshold in
Algorithm 3. A missed detection causes a gap in the acquired
gait data and can compromise the recorded gait metrics.

A false detection can be caused by some random noise or
alarge enough object other than a paw to be falsely labeled as

a paw cluster. Most commonly it is caused by a mouse’s nose
or tail making contact with the glass trackway. False de-
tection can also mean misclassification of some detected paw
clusters. This usually happens when a mouse is trying to turn
on the trackway during a run, making Algorithm 4 incor-
rectly classify one or more of the detected paw clusters.

We allowed the system to perform autonomous gait
detection and paw classification as explained by the algo-
rithms given in the previous section. For evaluation, we
manually labeled all the footfalls present in each frame. Our
described system correctly detected and classified each
footfall across all the frames with an average H: M : F score
0f92.1:2.3:5.6. The minimum H: M : F score was 84.3:0.9:
14.9, where a large number of footfalls were misclassified
due to the mouse turning in the opposite direction midway
through a run. The maximum H:M:F score was 96.0:1.4:
2.6, where the mouse completed a near-perfect run with
minimum stops.
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3.2. Receiver Operating Characteristic Analysis. To evaluate
how the system performs with the various threshold values
for the variables used in Algorithms 1-3, we did an ROC
analysis for each of these algorithms.

The gait detection system performs the role of a binary
classifier by analyzing each pixel in each image of a video and
returning a value of positive or negative for whether the pixel
is a part of a paw cluster or not. For the ROC analysis, we
chose a test set of carefully selected images from multiple
videos. These images represent different possible scenarios
while a mouse is walking on the glass trackway: all paws were
present, only two paws were present, and so forth. After
performing gait detection on the test set for each threshold,
we analyzed the accuracy of gait detection using the man-
ually labeled data. For the system performing as a binary
classifier with a given threshold, there are four possible
outcomes. Each correctly detected paw cluster is counted as
“true positive (TP),” incorrectly detected paw cluster as
“false positive (FP),” missed detection of a paw cluster as
“false negative (FN),” and the rest of the pixels as “true
negative (TN).” In each image, only the center part of the
image consisting of the glass trackway was analyzed, making
it a total of 1720 x 70 possible positive and negative pixels in
an image. Each bounding box of TP, FP, and FN is assumed
to have a size of 20 x 20 pixels, and the rest of the pixels are
labeled as TN. The true-positive rate (TPR) for the classifier
with a given threshold is then estimated as

TP
TPR = ——. 11
TP + FN (1)
The false-positive rate (FPR) of the classifier is
FP
FPR~ —— . (12)
FP + TN

ROC curves depict how a model’s TPR (shown on the
vertical axis) varies as a function of its FPR (shown on the
horizontal axis). For a binary classifier, each threshold value
corresponds to a single point (i.e., (FPR, TPR) pair) in the
ROC plane. Conceptually, we may imagine varying
threshold values for a variable from —oo to +00 and tracing a
curve through ROC space. Computationally, this is not an
optimal way of generating an ROC curve [47]. Instead, an
(empirical) ROC curve for each variable in Algorithms 1-3 is
constructed by computing FPR and TPR at each threshold
value, varied within a reasonable finite range, and inter-
polating by drawing a straight line between points corre-
sponding to consecutive thresholds. The area under an ROC
curve (AUC) is a commonly used summary statistic, typi-
cally ranging between 0.5 (random model) and 1 (perfect
model) [48].

The ROC curves for Algorithms 1 and 2 are shown in
Figures 10(a) and 10(b), respectively, while Figures 11(a) and
11(b) depict the ROC curves for the minimum and maxi-
mum cluster size obtained using Algorithm 3. We can see
that the AUC values for all the plots are above 0.95, which
indicates an almost perfect detection model. Here, we also
show the optimal threshold (OT) values in each ROC plot
which achieved the maximum TPR and minimum FPR for
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the respective ROC curve. Then we construct confusion
matrices for each of the OT values. The confusion matrices
for the green pixel threshold, proximity cluster threshold,
minimum cluster size, and maximum cluster size are shown
in Figures 12(a), 12(b), 13(a), and 13(b), respectively. The
confusion matrices show that there were 0 FN detections for
each of the OT values and the maximum FPR was 0.028 for
the maximum-cluster-size threshold. Again, all these con-
fusion matrices indicate that the performance of our de-
scribed gait detection algorithms was near perfect.

3.3. Experimental Gait Analysis. The gait analysis system was
used to assess locomotor function in the different mice
groups during the experiment. The analysis showed an in-
crease in stance period and run duration for the mice treated
with MPTP, which were largely restored to control levels by
day 13 in mice treated with MPTP + C-DIM12. The com-
parison of stance period and run duration between the three
groups is shown in Figures 8(a) and 8(b), respectively. Stride
length analysis also showed significantly shorter rear limb
stride lengths in the MPTP group compared to stride lengths
in the MPTP + C-DIM12 group from day 9 onward. The
change in stride lengths for Left-Rear and Right-Rear paws is
shown in Figures 9(a) and 9(b), respectively. The detailed
gait analysis results are presented in [15]. Another recent
study utilized the stride length calculated using our de-
scribed system as one of the indicators to show that chronic
exposure to Manganese is associated with neuro-
inflammation and extrapyramidal motor deficits resembling
features of PD [49]. The values obtained for these gait
metrics are in good agreement with the known literature
[50-53]. These results show that our system can be reliably
used to indicate gait abnormalities in mice.

4. Discussion

Quantitative gait analysis in mice during preclinical trials
has always been one of the go-to methods for studying
neurodegenerative diseases, such as PD or Huntington’s
disease. The commercial systems available in the market for
such gait analysis are expensive and implement patented
software. To address this issue, we developed an economic
rodent gait analysis system. A detailed build guide for
constructing this low-cost system is provided in [10]. In this
work, we described the necessary image-processing algo-
rithms for accurate gait detection and estimation. Our
system autonomously detected and classified mice gait with
very high accuracy when compared to the manually labeled
actual footfalls. The gait metrics data acquired during the
experiments indicate the robustness of the system for
assessing mice gait abnormalities. The average processing
time for one video using our described algorithms is ap-
proximately five minutes; thus, it can replace the time-
consuming efforts of manual labeling and measurements.
Opverall, our system has the potential to offer a cost-effective,
autonomous gait assessment tool that can be used for studies
involving tracking disease progression related to locomotor
function and planning treatment strategies.
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4.1. Economic Factors. We reiterate that our main goal is to
build an economic gait analysis system that can provide a
reliable alternative to the commercial systems available in the
market. The typical cost of a commercial system for gait
analysis in rodents is around $50,000. With the help of the
detailed build guide described in [10] and the gait detection
and estimation algorithms described in this paper, a robust
gait analysis system can be built for under $5,000. This cost
includes an academic license for MATLAB. Although our

software was written in MATLAB, the purpose of this paper is
to describe the underlying gait analysis algorithms. Indeed,
our algorithms are also easily implemented in open-source
systems such as Python. The system can be upgraded even
further as needed by replacing the camera module, though
prices for these high-speed, high-resolution cameras vary
widely (= $1,000-$25,000). Nonetheless, our described sys-
tem provides a viable option for constructing a reliable gait
analysis system under 10% of the cost of commercial systems.
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Figure 13: Confusion matrices for (a) minimum cluster size =65 and (b) maximum cluster size = 510.

4.2. Current Limitations. There are a few limitations to our
described gait detection algorithms. One limitation is the
dependence of Algorithms 1-3 on adequate lighting con-
ditions at the time of recording to create sufficient contrast
between the mice footfalls and the rest of the image. In-
adequate lighting conditions at the time of recording result
in difficulty detecting all footfalls present in the videos,
which cause loss of data and incorrect gait parameter cal-
culations. This can be rectified by recording multiple sample
videos before the actual experiment to ensure that the
lighting conditions are adequate. Another limitation is that
Algorithm 4 relies on the mouse moving in the designated
left-to-right direction. If the mouse turns in the opposite
direction midway through a run, the footfalls might be
misclassified, resulting in incorrect gait parameters. To avoid
such scenarios, all mice in our experiments were trained and
habituated to the trackway [15]. Algorithm 5 relies on a
predefined threshold to correctly associate unclassified
footfalls with those of correctly classified footfalls. We de-
termined this threshold manually to minimize the number
of unclassified paw identification. Still, in certain scenarios,
some detected footfalls might not be identified, resulting in
loss of data and incorrect gait parameter calculations. We
can trade off the probability of correctly identifying footfalls
with that of false alarms by updating the threshold value in
Algorithm 5. Overall, by training and habituating the mice to
the trackway, ensuring the lighting conditions are adequate
at the time of video acquisition, and, updating the threshold
value in Algorithm 5, we remedy the limitations of our
described gait detection algorithms for reliable gait detection
and estimation.

4.3. Future Scope. To further improve the results, one can
easily replace the existing camera with an improved
camera that can capture videos at a higher resolution and
frame rate. In practice, the supporting threshold values for
Algorithms 1-3 need to be adjusted for optimal auton-
omous gait detection. With better-resolution cameras, the
detection algorithms can be improved to approach the
ultimate goal of a 100:0:0 H: M : F detection score. Also,
with faster computing processors and optimized software
implementation, one can achieve real-time video

processing. The GUI can be modified as desired. Finally,
machine learning techniques can be implemented for
assessing irregularities in the mice gait. This is part of our
ongoing study.

5. Conclusions

In this paper, we have described a low-cost gait acqui-
sition and analysis system for assessing gait abnormalities
in mice. Our system automatically detects mice footfalls
and calculates gait parameters, such as cadence, stride
length, and bodyweight distribution. Using this system,
we were able to extract various gait parameters to track the
progression of PD in groups of mice under controlled
dosages of a drug. We validated the detection performance
of the system by performing an ROC analysis and cal-
culating H: M : F detection ratio. The ROC and H:M:F
analyses show that our system produces accurate gait
detection. The results observed from the gait assessment
study are in agreement with the known literature. This
shows that our system can be reliably used for further
studies involving mice gait abnormalities related to dis-
ease progression and treatment strategy.
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