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Wastewater is a rich source of valuable chemicals of industrial importance. However,
their economic recovery is crucial for sustainability. The objective of the present work
is to recover hexavalent chromium (Cr VI) as a value-added transition metal from
wastewater cost-effectively; the biosorbent derived from seed kernels of mango (M)
and jackfruit (JF) were applied for removing the metal from simulated wastewater. The
functional groups of the biomass were analysed with the help of Fourier transform
infrared (FTIR) spectroscopy, micrographs were generated using a scanning electron
microscope, and crystallinity was determined by an x-ray diffractometer (XRD). The
concentration of Cr VI in wastewater was analysed by an inductively coupled plasma
optical emission spectrometer (ICP-OES). Process parameters (pH, dose, contact time,
temperature, and initial concentration) were optimized for efficient Cr VI adsorption using
a response surface methodology-based Box–Behnken design (BBD) employing Design-
software 6.0.8. The batch experiment at room temperature at pH 4.8 and Cr VI removal
∼94% (M) and ∼92% (JF) was achieved by using a 60-mg dose and an initial Cr
(VI) concentration of 2 ppm in 120 min. The equilibrium Cr binding on the biosorbent
was well explained using Freundlich isotherm (R2 = 0.97), which indicated the indirect
interactions between Cr (VI) and the biosorbent. Biosorption of Cr (VI) followed the
pseudo-order and intra-particle diffusion models. The maximum adsorption capacity
of the M and JF bio-adsorbent is 517.24 and 207.6 g/mg, respectively. These efficient,
cost-effective, and eco-friendly biosorbents could be potentially applied for removing
toxic Cr (VI) from polluted water.
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INTRODUCTION

In the recent past, rapid industrialization and over-exploitation
of resources have drastically polluted our natural water bodies
with many toxic heavy metals. The presence of heavy metals
severely degraded the quality of the aquatic habitat. Wastewater
generated from various industries like leather, paper, pulp,
pigment, and electroplating carries significant amount of toxic
metal (Behera et al., 2020; Dhiman et al., 2020). The harmful
effect of heavy metal varies from metal to metal; however, their
trace concentration in parts per million (ppm) or parts per billion
(ppb) could be much harmful in chronic exposure to humans and
animals (Bharath et al., 2020). After entry into the environment,
the non-biodegradable toxic heavy metals persist and enter the
food chain and adversely affect different living organisms. So, it is
necessary to restrict the discharge of heavy metals in the aquatic
ecosystem and remediation of polluted waterbody to ensure good
health for animals including humans.

Chromium occurs in the earth’s crust in many oxidation
states of Cr (II–VI). However, the stable and prevalent oxidation
states are trivalent (Cr III) and (Cr VI), which exist in aquatic
and terrestrial ecosystems (Shahid et al., 2017; Sawalha et al.,
2020). Trace amount of chromium is required in mammalian
metabolism of protein, fat, and sugar, but no such requirement
has been reported in plants or microorganisms. The high
concentration of Cr is always toxic to animals, and its toxicity
varies depending on the oxidation state. The hexavalent form
(Cr VI) of chromium is more toxic compared to the trivalent
form (Cr III). The ill effects of Cr VI include diarrhoea, ulcer,
irritation of eye and skin, dysfunction of kidney, and carcinoma
of the lung (Costa, 2003; Mohanty et al., 2005). It adversely
affects reproductive health and causes birth defects (Kanojia
et al., 1998). High dose results in the death of the animal
and human, with an LD50 of approximately 50–100 mg in
oral intake for rats (De Flora et al., 1990). Chromium affects
plant growth by inhibiting photosynthesis (Shahid et al., 2017).
Plant cells exposed to Cr (VI) exhibit oxidative stress and
chromosome damage by forming adduct with the DNA. Such
interaction of Cr (VI) with genetic material causes genome
instability and epigenetic alterations leading to carcinogenesis
in animals and humans (Pavesi and Moreira, 2020). The
entry of Cr (VI) in the metabolism is mainly through water
consumption. The safe limit of Cr in drinking water as per the
Environmental Protection Agency (United States) is less than
0.1 ppm (Rambabu et al., 2019). Despite the higher concentration
limit, Cr has industrial applications in the area of utensils and
stainless steel pots, and as a pigment and chemical (Gaudiuso
et al., 2010). Approximately 80% of Cr has been mixed in
stainless steel utensils.

Chromium VI can be eliminated from polluted water using
different techniques. Some of the important procedures used
are adsorption (Rangabhashiyam et al., 2016), coagulation,
precipitation, membrane separation (Rambabu and Velu,
2016), ion-exchange method, and electrochemical technique
(Rangabhashiyam et al., 2016). The issue of Cr and other
metal pollutants can also be overcome by the use of novel
photocatalysts from biopolymers, biochar, carbons, enzymes,

and proteins (Kumar et al., 2020). The photocatalysts can rapidly
reduce Cr VI into Cr III by the use of a nano-composite of ZnO-
Fe2O3 (Dhiman et al., 2020). Despite the availability of many
options, cost-effective sustainable green processes are always
preferred. The use of biochar of various origin is an example
of such processes that has attracted attention for remediating
chromium-polluted aquatic systems (Lee et al., 2019). The
adsorption process is adapted mainly due to its efficiency,
selectivity, low operational cost, and reusability. This is a low-
cost green method that utilizes naturally occurring materials for
adsorbing toxic metal ions from water (Noormohamadi et al.,
2019). The plant materials vary in the chemical composition
depending on plant species, plant part, adaptation, and habitat
(Saygılı et al., 2018). The chemical composition and type of
phytochemical present in the biosorbent is likely to affect the
biosorption of metal from the water. Biosorbents from different
ecological adaptation that have been tested for their metal
biosorption potential are aquatic macroalgae Enteromorpha
(Rangabhashiyam et al., 2016), aquatic plant Vallisneria gigantea
(Iriel et al., 2015), husk of high-water requiring paddy (Varala
et al., 2019), terrestrial tree Pongamia pinnata seed (Brungesh
et al., 2015), leaves of Colocasia esculenta (Nakkeeran et al., 2016)
and Ficus auriculata (Rangabhashiyam et al., 2015), and bagasse
of sugarcane (Ullah et al., 2013). The main issue with the testing
of materials is their low adsorption capacity (Nirmala et al.,
2019). Nuts of the medicinal plant Terminalia arjuna activated
with zinc chloride have been used for removing chromium
from water (Mohanty et al., 2005). Recently, we prepared the
biosorbent from seeds of Java Plum and Amaltash that efficiently
removed arsenic from the synthetic wastewater below the safe
limit (Giri et al., 2021). In the present investigation, biosorbent
was prepared from the kernel of two tropical trees, jackfruit
(Artocarpus heterophyllus) and mango (Mangifera indica). The
trees are abundantly present across India and large numbers of
seed biomass are easily available for preparing biosorbent.

Thus, the objective of the present study was the recovery of Cr
from the synthetic wastewater using biosorbent prepared from
the kernel of jackfruit and mango in the batch experiment. In
the optimized operating experimental conditions, the selected
biosorbents were successfully applied in Cr VI removal from
synthetic wastewater.

MATERIALS AND METHODS

Investigational Setup and Procedure
The investigational arrangement was used to execute in batches
the adsorption procedure as described earlier (Pal et al., 2017;
Giri et al., 2021). In brief, the experiment was conducted in a
50-ml beaker having a magnetic stirrer (up to 500 rpm and least
count 5 rpm). The chromium concentration in the beaker varied
(0.8–2.5 ppm) for the varying bio-adsorbent dose (20–80 mg).
The experiments were conducted for 120 min for optimizing
the bio-adsorbent dose, pH, and initial Cr VI concentration of
the aqueous solution. Samples were taken out at an interval of
every 10 min for determining the remaining metal concentration
in the solution.
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Bio-Adsorbent Preparation
The biomasses were collected locally in BIT Mesra Ranchi,
Jharkhand, India campus. The surface washing of samples was
done under running tap water (10 min) to remove surface-
adhered soil particles. The washed seeds were oven-dried (48 h,
60◦C), crushed, milled, and passed through a mesh to obtain
uniform-sized biomass in powder form. The powdered biomass
was used in characterization and calcination (400◦C, 3 h).

Batch Adsorption Experiments
The heavy metal adsorption was studied at a specific initial Cr VI
concentration and definite dose of bio-adsorbent and at a fixed
pH of a solution. Separate experiments were performed at initial
Cr VI concentrations of 0.8, 1.0, 1.5, and 2.5 ppm for each dose
of 20, 40, 60, and 80 mg. Furthermore, the pH of the solution
was optimized at a specific initial concentration and dose by
experimenting with different pH (3, 4.8, 8, and 10) under constant
stirring conditions at room temperature for 120 min. Samples
were withdrawn at the specific interval and analysed for Cr VI
concentration using ICP-OES. The data obtained were applied in
kinetics analysis and equilibrium tests were performed.

Adsorption Isotherm
For the adsorption study, three classical models devised by
Langmuir, Freundlich, and Temkin were used in the present
investigation, which is represented below. The Langmuir model
is presented well by the equation given below (Langmuir, 1916,
1918):

Ce

qe
=

1
qmb0

+
tCe

qm
(1)

The Freundlich model linear form of the model equation
(Freundlich, 1906; Foo and Hameed, 2010) is shown below:

ln qe = ln Kf +
1
n

ln Ce (2)

The general linear equation of the Temkin model (Temkin and
Pyzhev, 1940) is presented as follows:

qe =
RT
bT

ln KT +
RT
bT

ln Ce (3)

Adsorption Kinetics Models Analysis
The sorption process depends on the physiochemical features of
the adsorbent as well as the conditions of the system (Nadeem
et al., 2006). The number of metals adsorbed is determined by
using the equation:

qCr =
(C0 − Ce) V

W
(4)

The pseudo-first-order model is expressed as follows (Farhan
et al., 2012):

log
(
qe − qt

)
= logqe +

k1

2.303
t (5)

The linear form of the pseudo-second order rate expression is
given below:

t
qt
=

1
q2

e k2
+

t
qe

(6)

The diffusion kinetic can be written as (Furusawa and Smith,
1974):

qt = t0.5kipd + C (7)

The linear form of the Elovich model can be written as (Zhang
et al., 2019):

qt =
1
β

log (αβ)+
1
β

log t (8)

Characterization
A morphological study of the bio-adsorbent surface was
done by using a field emission scanning electron microscope
assisted with EDX (Sigma-300 with EDX, Ametek), and IR-
Prestige 21 was used for recording the Fourier transform
infrared (FTIR) spectrum of the catalyst in the range of 400–
4000 cm−1 (Shimadzu Corporation, Japan). For recording x-ray
diffraction patterns, a diffractometer with a Cu-Kα radiation
at 40 kV and 40 mA was used (Rigaku, Smart Lab 9 kW
diffractometer, Japan). The analysis of Cr VI in the experiment
was done using an inductively coupled plasma optical emission
spectrometer (ICP-OES) from Perkin Elmer (United States), with
the ability to analyse 20–25 elements within 5 min, Optical
2100DV in the spectral range 160–900 nm, and a resolution of
0.009 nm at 200 nm.

Experimental Design
Chromium removal from wastewater by the use of biowaste is a
newly developed technology. This technology uses easily available
waste material to treat chromium-containing wastewater.
The experiments have been performed by using different
concentration levels of biowaste adsorbents. Two types of
adsorbents have been used to perform the experiments as
discussed earlier by using Design-Expert 6.0.8 software to design
experiments. Process parameters like pH, adsorbent doses, and
chromium concentration have been optimized based on %
removal. Equilibrium investigation has been performed by using
Design-Expert 6.0.8 software. For the response surface method,
the Box–Behnken design (BBD) has been chosen in this study.
A three-level and three-factor design was applied and the range
and levels are shown in Table 1. The full factorial design shows
a total number of 17 experiments by using each adsorbent. All
the results obtained in the form of % removal have been fed
to the DOE for developing a second-order polynomial model.
A quadratic response model was developed using all the linear,

TABLE 1 | Experimental range and levels of the independent test variables.

Variables Unit Range and level

Low Medium High

pH – 2 5 8

Adsorbent doses ppm 40 60 80

Concentration ppm 1 1.5 2
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FIGURE 1 | SEM micrograph of bio-sorbent material of Mango (MF) and Jack fruit (JF) kernel biomass.

quadratic, and interaction terms as described in the equation
given below:

Y = C0 +
∑

CiXi +
∑

CiiX2
ii +

∑
CijXiXj+ ∈ (9)

In the equation (9), predicted yield is represented by Y, which
depends on C0 (constant), Ci (linear coefficients), Cii (quadratic
coefficients), and Cij (cross-product coefficients).

RESULTS AND DISCUSSION

FE-SEM and ICP-OES Analysis
The FE SEM micrographs of the mango seed kernel (M) and
jackfruit seed kernel (JF) power calcined (400◦C, 3 h) are
given in Figure 1. A non-uniform irregular flake structure
has been observed for both the biomass seed. Based on prior
calcination biomass powder analysis by ICP-OES, the major
metal composition recorded was iron, calcium, magnesium zinc,
manganese, nickel, copper, and cobalt. Earlier investigations also
showed the presence of such elements. Theivasanthi et al. (2011)
showed the presence of C, O, Mg, Al, P, K, Ti, Fe, Ni, and Mo in
the biomass samples.

Fourier Transform Infrared Analysis
(FTIR)
The different useful groups existing on the biosorbent surface
in the FTIR spectra are depicted in Figure 2. The peculiar
peaks were observed at wave number 3,289, 2,921, 2,158, 1,626,
1,485, 1,349, 1,076, and 595 cm−1 in the FTIR spectra. The
stretch observed in the range of 3,289–3,272 were due to
involvement of –OH and NH2 in Cr VI binding (Krishnamoorthy
et al., 2019). The position of the peak at 2,921 is due to
the C–H stretching in the seed biosorbents. The peaks in the
range of 2,927–2,890 were assigned to C–H bond stretching
(Rangabhashiyam et al., 2015) and in the seed biosorbent of
Moringa oleifera (Araujo et al., 2010). The peak detected at
1,626 cm−1 and 1,485 cm−1 could be attributed to –C=C-

FIGURE 2 | FTIR spectra of bio-sorbent material of Mango (MF) and Jack fruit
(JF) kernel biomass.

and –C=O (Kumar et al., 2019). The C=C stretch has been
shown at 1,588 by Rambabu et al. (2020). The peak near 1636
has been assigned to the –COOH group and that near 1020 has
been assigned to the -CN group (Liu et al., 2013). The peak
at 1076 could be due to the stretching vibration C–O bond
of alcohol and carboxylic acid as assigned by Rambabu and
co-workers. The peak at 1643, 1419, and 1060 were attributed
to the stretching vibration of amide, C-H, and C-O bond of
alcohols in the powdered seed biomass of Strychnos potatorum
by Jayaram and Prasad (2009). The carboxyl group present
in the bio-adsorbent plays an important role in adsorbing
the heavy metal cations (Kim et al., 2015). The existence
of glacial groups on the biomass-based carbon plane could
help in the significant cation substitution of the absorbent
(Abdel-Ghani et al., 2009).
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The peak near 595 cm−1 could be assigned to Fe-O (Chen
et al., 2011). The cation exchange on the bio-adsorbent surface
is enhanced by polar groups such as C=O, which helps in their
adsorption (Abdel-Ghani et al., 2009; Kim et al., 2015).

FIGURE 3 | XRD spectra of bio-sorbent material of Mango (MF) and Jack fruit
(JF) kernel biomass.

X-Ray Diffraction (XRD)
The XRD analysis of mango (M) and jackfruit (JF) kernel biomass
is shown in Figure 3. Mostly, the amorphous phase was present
in the MF and JF calcined at 400◦C for 3 h and the crystalline part
was very small. A number of Bragg reflections can be seen, which
correspond to 2θ value at 15.12, 17.57, 23.01, 31.18, and 38.23 and
the corresponding (h, k, l) values are (1, 1, 1), (2, 0, 0), (2, 1, 1),
(3, 1, 1), and (3, 2, 2), respectively (Theivasanthi et al., 2011).

Kinetics Study and Equilibrium Isotherm
The reaction kinetics used in the present investigation for
chromium adsorption using mango (M) and jackfruit (JF) kernel
biomass-based bio-adsorbent is shown in Figure 4. The data
show the fast initial Cr adsorption with gradual slowdown with
time after 30–40 min of approximately 70%, which further
increased to attain the final adsorption level of 94% (M) and
92% (JF) at the 60-mg dose, pH 4.8, and an initial concentration
of 2 ppm. While using both the adsorbents (M and JF), steady
state was attained in 80 min; however, the experiment was
performed for 120 min at room temperature keeping pH at
4.8 to ensure equilibrium adsorption. In the present study, four
different kinetic models were tested to evaluate the kinetics
of the Cr VI adsorption on the biosorbents. Such type of

FIGURE 4 | Adsorption kinetics of chromium by using seed bio-sorbent of Mango (M) and Jackfruit (JF): (A) first order, (B) second order, (C) Elovich, and (D)
interparticle.
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TABLE 2 | Comparative kinetic parameters of Cr (VI) adsorption onto seeds bio-sorbent of Mango (M) and Jack fruit (JF) kernel biomass.

Kinetic model Parameters M
(Present
study)

JF
(Present
study)

Starch
maghemite

(Siddiqui
et al., 2020)

Watermelon
waste

(Khattak
et al., 2017)

HCl to
develop
modified

roots labeled
(AHP)

(Shooto, 2020)

Harpagophytum
procumbens
plant (PHP)

(Shooto, 2020)

Pseudo-first order k1 (min−1) 0.095 0.055 0.06 0.01589 0.0583 0.0551

qe (mg/g) 5.21 2.23 2.76 32894 103.1 76.81

R2 0.97 0.97 0.60 0.9745 0.96 0.99

Pseudo-second order k2 (g/mg. min) 0.00545 0.0094 9.16 2.32 × 10−6 0.0137 0.0185

qe (mg/g) 2.65 2.26 1.03 32894 128.9 97.24

R2 0.53 0.79 0.99 0.992 0.88 0.972

Intra-particle model Kipd (mgg−1 min−1/2) 0.171 0.182 0.03 NA 12.26 9.073

C (mg g−1) 0.091 0.157 0.62 NA 39.70 23.71

R2 0.91 0.92 0.90 NA 0.97 0.98

Elovich model β (g mg−1) 2.496 2.59 9.93 NA NA NA

α (mgg min−1) 2.894 2.59 9.76 NA NA NA

R2 0.94 0.95 0.81 NA NA NA

TABLE 3 | Summary of equilibrium parameters of Cr (VI) adsorption on Mango (M) and Jack fruit (JF) kernel biomass.

Isotherm model Parameters M (Present
study)

JF (Present
study)

Activated
carbon (Yao
et al., 2014)

Farmyard manure
bio-char (Idrees

et al., 2018)

Poultry manure
based bio-char
(Idrees et al.,

2018)

Seed (Aregawi
and Mengistie,

2013)

Langmuir model bo (L/mg) 0.017 0.013 0.1816 0.092 1.056 0.82

qm (mg/g) 517.24 207.6 17.86 6.652 2.403 3.23

R2 0.73 0.74 0.9998 0.998 0.479 0.999

Freundlich model Kf (mg/g) 2.68 2.46 7.3161 0.520 1.103 1.02

1/n 0.667 0.578 0.1808 0.765 0.536 0.086

R2 0.95 0.96 0.9806 0.984 0.809 0.966

Temkin model bT (J mol−1) 970.50 1103.63 NA 2942 3603 31568

KT (L g−1) 9.29 26.34 NA 9.634 285.6 2.29

R2 0.89 0.92 NA 0.922 0.949 0.971

model testing has been reported earlier (Furusawa and Smith,
1974; Farhan et al., 2012). These models are the pseudo-first-
order, pseudo-second-order, intra-particle diffusion, and Elovich
models, which are represented in the form of linear equation in
Eqs 5–8, respectively.

In Table 2, these pseudo-first-order, pseudo-second-order,
intra-particle, and Elovich models describe the experimental
data well with high coefficients. The biosorbent followed the
Freundlich adsorption model based on the regression coefficient
for linear fitted data (R2 = 0.95 M, R2 = 0.96 JF). The kinetics
of Cr VI adsorption was explained in terms of pseudo-first order
(R2 = 0.97 M, R2 = 0.97 JF). The maximum adsorption capacity
of M and JF bio-adsorbent is 517.24 and 207.6 g/mg, respectively,
whereas the equilibrium adsorption capacity was 5.21 and
2.23 g/mg, respectively. Comparison of the kinetic constraints
of various kinetic models and their regression constant is
tabulated in Table 3, which suggests better values in the present
study compared to others. These similar adsorbent results
also showed examples of nickel-zinc ferrite (Ahangari et al.,
2019), bark (Aregawi and Mengistie, 2013), starch maghemite

(Siddiqui et al., 2020), and seed (Aregawi and Mengistie, 2013;
Prasad et al., 2020; Pal et al., 2021).

Investigational information was analysed for deciding the
finest adsorption isotherm describing the adsorption process on
the selected bio-adsorbents. The adsorption mechanism in Eqs
1–3 for three different models such as Langmuir, Freundlich,
and Tempkin isotherms were tested for data fitting. The best-
suited isotherm was selected based on the value of R2 for linear fit
(Kan et al., 2017). The outcome of isotherm studies is presented
in Figures 5A–C and is also shown in Table 3. The Freundlich
isotherm (R2 = 0.95 M and R2 = 0.96 JF) and pseudo-first-order
kinetics (R2 = 0.97 M and R2 = 0.97 JF) provided the best fit
to the experimental data. Similar values of the coefficients have
been observed by other researchers (Yao et al., 2014; Idrees et al.,
2018; Joshi et al., 2019). Thus, we interpreted sorption following
the Freundlich and Tempkin models. The Cr heterogeneously
adsorbed on the biosorbent surface.

From Table 3 (Comparative equilibrium parameters of
different models and their regression coefficients), the present
study gives better values than others, such as activated
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FIGURE 5 | Equilibrium isotherms of chromium by using seed bio-sorbent of Mango (M) and Jackfruit (JF): (A) Freundlich model, (B) Langmuir model, and (C)
Tempkin model.

FIGURE 6 | Effect of chromium by using seed bio-sorbent of Mango (M) and Jackfruit (JF): (A) adsorbent dose and pH and (B) concentration and pH of solution.

carbon (Yao et al., 2014), bio-char (Idrees et al., 2018), bio-
char (Idrees et al., 2018), and seed (Aregawi and Mengistie,
2013). It assumes the extent of non-linearity among solution

composition and adsorption of chromium metal into the
adsorbent plane and displays no homogeneity regarding binding
location distribution.
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Effects of Contact Time, Adsorbent
Doses, pH, and Initial Chromium
Concentration
The chromium removal percentage was calculated concerning
initial concentration and fed to the DOE for statistical analysis.
The statistical analysis predicts a quadratic model that relates
dependent and independent variables (pH, adsorbent doses, and
metal ions of chromium) for the mango seed catalyst as shown in
the model below (10):

%removal = +42.61+ 2.04× pH+ 0.92× CD+ 35.30× C
−0.148× pH2

− 0.00316× CD2
− 7.28× C2

+

0.0045× pH× CD− 0.55× pH× C− 0.16×
CD× C

(10)
The dependency of percentage removal on the variation of

three parameters [pH, catalyst doses (CD), and concentration
(C) of heavy metal] can be seen in the given model.

As the model F value is 11.48, it shows that the model
is significant. The model R2 value is 0.93. By using JF
catalyst as an adsorbent, experiments have been designed
similarly and the quadratic model is presented in Eq. 11, as
shown below:

%removal = +26.5+ 1.53× pH+ 0.85× CD+ 48.85× C
−0.16× pH2

− 0.00293× CD2
− 9.37× C2

+

0.0023× pH× CD− 0.0366× pH× C− 0.35
×CD× C

(11)
This model is developed by using a JF catalyst, which shows
the extent of dependency of the dependent variable (% removal)
on independent parameters [pH, catalyst doses (CD), and
concentration (C) of heavy metal]. The model F-value of 12.35
implies that the model is significant. The model regression values
were approximately 0.94.

The dependence of percentage removal of Cr VI by the catalyst
is shown in Figures 6A,B, 7A,B. The % adsorption was linearly

FIGURE 7 | Effect of chromium by using seed bio-sorbent of Mango (M) and Jackfruit (JF): (A) dose and pH of solution and (B) concentration and pH of solution.

FIGURE 8 | (A) Influence of seeds bio sorbent dosage on chromium % removal and (B) influence of solution pH on chromium % removal (contact time = 80 min,
pH = 4.8, initial concentration = 2.5 mg·L−1, agitation speed = 400 rpm, room temperature).
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FIGURE 9 | chromium % removal on Mango (MF) and Jack fruit (JF) kernel
biomass (contact time = 80 min, pH = 4.8, initial concentration = 2.5 mg. L−1,
agitation speed = 400 rpm, room temperature).

from 15 to 80 min, and thereafter, it is approximately constant,
representative of the achievement of adsorption stability. The
adsorption rate was higher at the starting levels, which can be
caused by the large active sites available on the bio-adsorbent
plane for chromium adsorption. The sorption quickly happens
and is generally measured by the diffusion procedure from
the bulk to the surface. Through the increase of time, the
active sites are being drenched with more chromium ions. It
gives a decline in the adsorption speed until the adsorption
stability is achieved.

The pH of the solution is an important parameter that affects
the adsorption process by affecting the sorption behaviour of
adsorbate and adsorbent. The ionization of valuable groups
on the bio-adsorbent plane depends on the pH (Pal et al.,
2018; Prasad et al., 2020). The consequence of pH on the
% of adsorption of chromium by M and JF bio-adsorbent at
different pH significance is presented in Figure 8B. It was
shown that a spiky increase in chromium removal happens
when the pH value varies from 3 to 4.8. Further increase
in pH reduced adsorption of chromium ions. The highest
adsorption was at pH 4.8. The value of pH is 4.8, found
to be an optimal solution from DOE. Figures 6A,B, 7A,B

also show that the removal efficiency continuously increases
as the pH increases up to 4.8. Therefore, all the experiments
were further performed at pH 4.8. This adsorption behavior
of chromium at various pH values can be attributed to the
survival of chromium in various oxyanion appearances. The
pH of synthetic wastewater is an important constraint in
monitoring the chromium adsorption procedure (Issa et al.,
2010). The variation of bio-adsorbent doses (20, 40, 60, and
80 mg) on the adsorption of chromium by the composite
is presented in Figures 6–8. The % of chromium adsorption
improved with an increase in bio-adsorbent dose because of
more active sites and superior ease of use of plane binding
sites to the biomass. Additionally, the highest chromium
removal (∼94% for M and 92% JF) was recorded at the 60-
mg dose. Further changes in dose did not affect percentage
adsorption. Muibat et al. (2020) employed cobalt ferrite-
supported activated carbon and showed chromium removal
efficiency that attained equilibrium in 80 min at pH around
5. The maximum adsorption capacity of the material was
approximately 23.6 mg/g following Freundlich isotherm model
fitting with an R2 of 0.94 (Muibat et al., 2020). The requirement
of chromium reduction on the bio-adsorbent dose was studied
at pH 4.8 in 50 ml of chromium synthetic wastewater at
room temperature for more than 1 h in the range of 0.05–
0.215 mg/L adsorbent dosage. The % removal with contact time
increases with increased time until the equilibrium adsorption
is approximately 80 min, pH 4.8, and other constraints such as
initial concentration = 2.5 mg/L and agitation speed = 400 rpm
at room temperature, as shown in Figure 9. Padmavathy
et al. (2016) have investigated the magnetite nanoparticles
for chromium removal and achieved around 72% using the
Langmuir isotherm model at a contact time of approximately
120 min. Agegnehu et al. (2018) studied the low-cost adsorbent
vesicular basalt volcanic rock for chromium removal and
showed a maximum adsorption capacity of 79.20 mg/kg at
lower acidic pH around 2 and also showed pseudo-second-
order kinetics.

Table 4 shows a summary of the present study and others
in terms of adsorption capacity, pH ranges, contact time,
and percentage removal. From all results, we can see the
better percentage removal from all bio-adsorbents with less
contact time and maximum adsorption capacity. These bio-
adsorbents are amaltas seeds (Giri et al., 2021), ion imprinted
polymer (Samah et al., 2020), rice husk (Agrafioti et al., 2014),

TABLE 4 | Comparison between present study and reported adsorbents materials for the adsorption of chromium ions.

Bio-adsorbents Adsorption capacity (mg/g) pH range Adsorption time (h) % Removal References

Rice husk 2.59 (µg/g) 4–9 4 95 Agrafioti et al., 2014

Mulberry wood 5 2–11 6 <42 Zama et al., 2017

Amaltash seeds 1.42 5–11 2 91 Giri et al., 2021

Jamun seeds 1.45 5–11 2 93 Giri et al., 2021

Ion imprinted polymer 0.0679 mmol/g 1–11 4 90 Samah et al., 2020

Mango seeds (MF) 5.21 5–11 2 94 Present study

Jackfruit seeds (JF) 2.23 5–11 2 92 Present study
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Jamun seeds (Giri et al., 2021), and mulberry wood (Zama et al.,
2017).

CONCLUSION

Presently prepared seed kernel bio-sorbents of mango (M)
and jackfruit (JF) are well suited for chromium removal
from the aqueous solution. The batch experiment at room
temperature shows bio-adsorbent Cr VI removal of 94% (M)
and 92% (JF) in 80 min at pH 4.8 with an equilibrium
adsorption capacity of 5.21 and 2.23 g/mg, respectively. The
chromium adsorption behavior of the seed’s bio-sorbent was
well interpreted in terms of the Freundlich model, with a
maximum adsorption capacity of 517.24 and 207.6 g/mg in
80 min for M and JF, respectively, whereas the pseudo-first-order
model and Freundlich model were able to describe the kinetic
curves. The work may utilize industrially to 60% recovery Cr
from wastewater.
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