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Abstract
In this preliminary effort, we use a commercially available and chemically modified tube to

selectively capture circulating tumor cells (CTCs) from the blood stream by immobilizing

human anti-EpCAM antibodies on the tube's interior surface. We describe the requisite and

critical steps required to modify a tube into a cancer cell-capturing device. Using these sim-

ple modifications, we were able to capture or entrap about 85% of cancer cells from suspen-

sion and 44% of cancer cells from spiked whole blood. We also found that the percentage of

cells captured was dependent on the tube's length and also the number of cancer cells pres-

ent. It is our strong belief that with the utilization of appropriate tube lengths and procedures,

we can ensure capture and removal of nearly the entire CTC population in whole blood.

Importantly after a patient’s entire blood volume has circulated through the tube, the tube

can then be trypsinized to release the captured live CTCs for further analysis and testing.

Introduction
During cancer metastasis, the cells detach from the primary tumor detach, circulate in the
bloodstream via the circulatory system and get lodged at tissues distant from the primary site
where they begin to grow and multiply giving rise to secondary tumors. Current treatments
have been largely ineffective in treating metastasis, as is evident by the fact that more than 90%
of cancer deaths are due to metastasis [1]. Conventional treatments such as chemotherapy and
radiation therapy are severe and have, in many cases, toxic side effects. Further, recent evidence
supports the "tumor self-seeding" concept, in which circulating tumor cells (CTCs) colonize an
existing tumor, thus increasing its aggressiveness [2].

CTCs are generally believed to play a significant role in the metastatic process. In the past
decade, research has concentrated on developing methodologies for the detection, enrichment,
and enumeration of CTCs for diagnostic purposes. These efforts include micro-fluidic separa-
tion devices [3–5], devices that rely on size exclusion by centrifugation [6, 7] or filtration [8, 9],
immuno-magnetic separation [10, 11] and fluorescence-activated cell sorting (FACS) technol-
ogies [3, 12] and several other techniques or combinations thereof. These techniques are
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generally referred as "liquid biopsy" [4, 13]. In liquid biopsy, a small blood sample is drawn from
a patient and analyzed ex-vivo for CTCs. CTCs are typically separated and purified by antibodies,
such as the epithelial cell adhesion molecule (EpCAM) [14], cytokeratins [15], to name a few,
and subsequently enumerated. These numbers are indicative of the progression of the disease.
However all the aforementioned techniques are constrained by the low volume extracted for
analysis and thus by the low number of CTCs that can be detected. Other efforts have targeted
larger blood volumes; for example, one study incorporated the use of a structured and functiona-
lized medical wire coated with anti-EpCAM to enrich CTC from larger volumes [16].

A lot of experimental data suggests that techniques that remove CTCs from blood circula-
tion in vivo could reduce metastatic events, and at the same time reducing the aggressiveness of
existing tumors. There is indirect evidence that blood filtering, such as hemodialysis, might
reduce cancer metastasis by removing circulating tumor cells (CTCs) from the bloodstream
[17–19]. Extracorporeal filtration devices using leukocyte depletion filters have been used dur-
ing surgical removal of tumor cells in order to reduce the risk of their dissemination [20–22];
however, these devices have not been used to reduce metastasis post-surgery and therefore put-
ting a patient at risk of recurrent replapses. There have been efforts to remove or kill cancer
cells using microtubes functionalized with antibodies, selectin and TRAIL with a capture and a
kill rate between 30–41% [23, 24]. Recently, a technique to kill cancer cells in the bloodstream
was demonstrated by functionalizing circulating leukocytes with cancer-specific TNF-related
apoptosis inducing ligand (TRAIL) and E-selectin adhesion receptor [25].

In this preliminary work, we put forward a simple method that employs an extracorporeal
tube to remove and collect CTCs from the bloodstream with potential applications in: (a)
Reducing metastasis by removing CTCs from circulation and (b) In diagnostic applications
such as CTC enumeration and genetic analysis. Our device consists of a modified commercially
available plastic tube that is functionalized with EpCAM antibodies. EpCAM is a widely used
CTC marker [14]. At this proof-of-concept stage, the device already exhibits improved captur-
ing efficiency coupled with the fact that the device has a simple design, it is, inexpensive, and
finally able to handle large volumes of whole blood without the need of separation and process-
ing procedures (Fig 1(A)). Our method does not introduce any foreign agents into the blood-
stream and entails aseptic procedures; instead, blood flows through a tube in which CTCs bind
to appropriate antibodies (such as EpCAM) coated on the inner surface of the tube.

Materials and Methods

Tube surface modification
A polydimethylsiloxane (PDMS) tubing (Dow Corning Silastic laboratory tubing with an internal
diameter of 1.02 mm) was chosen for this study (Fig 2(B). The tube length was about 120 cm for
experiments entailing cancer cell suspensions and 15 cm for whole blood tests. The tube’s inter-
nal surface was activated by treatment with an acidic hydrogen peroxide solution (H2O:HCl:
H2O2 in 5:1:1 volume ratio) for five minutes at room temperature [26]. The tube was rinsed with
excess deionized (DI) water five times and dried in air. This treatment formed the hydrophilic
surface with hydroxyl groups (-OH) available for further functionalization (Fig 2(A) (i)). The
tube was then filled with aminopropyltrimethoxysilane (APTMS) for 10 minutes (Fig 2(A) (ii))).
The tube was rinsed with excess amount of DI water at least five times and dried in air. This step
adds the primary amine group on the surface based on the sol-gel reaction principle [27, 28].
To verify the presence of the primary amine group on the tube surface, a short section of the
treated tube was filled with an amine reactive fluorescence dye, fluorescein isothiocyanate (FITC,
0.1 mg/mL in PBS pH 7.4) for one hour (Fig 2(A) (ii)). The tube was then rinsed and the fluores-
cence from its inner surface was monitored using a fluorescence microscope.
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Immobilization of anti-EpCAM on the surface of the tube
Phycoerythrin (PE)—labeled human EpCAM (eBiosciences) antibody was treated for one hour
with Traut’s reagent (2-iminothiolane HCl, 2-IT) to generate an available sulfhydryl group
(-SH) (anti-EpCAM:2-IT = 1:10 in mole ratio) in PBS (pH 7.4). Then, unbound 2-IT was
removed from the antibodies using a spin column (MW 30 kDa, cutoff, Amicon filter or Corn-
ing Spin-X protein concentrator) at 4000 RCF for 30 minutes. The concentrated anti-EpCAM
was re-suspended in PBS, and the volume adjusted to of 1 mL. During the antibody-2-IT reac-
tion, the amine functionalized tube was filled with a hetero-bifunctional (amine reactive at one
terminal and thiol reactive at the other terminal) cross-linker, sulfo-SMCC (sulfosuccinimidyl
4-[N-maleimidomethyl]cyclohexane-1-carboxylate) in 2 mg/mL concentration in PBS (pH
7.4). After the EpCAM was spun down, the sulfo-SMCC solution was removed and the tube
was rinsed in PBS and re-filled with 1 mL EpCAM solution. The reaction was run on a shaker
for two hours at room temperature and continued overnight at 4°C. The next day, after the
unbound EpCAM solution was collected, the tube was gently rinsed with PBS and then refilled
with 1 mg/mL L-cystein for another two hours (Fig 2(A) (iii)). The conjugation of anti-
EpCAM on the tube surface was confirmed by PE's fluorescence on a fluorescence microscope.

Cell culture
A human prostate cancer cell line, PC-3, was purchased from American Type Culture Collec-
tion (ATCC) and propagated in RPMI 1640 media supplemented with 10% fetal bovine serum
and 1% Penicillin-Streptomycin. The expression of EpCAM on the cell surface was positively

Fig 1. (a) Conceptual diagram of extracorporeal device. (b) CTC capturing by antibody immobilized on
tube.

doi:10.1371/journal.pone.0133194.g001
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confirmed by performing the reaction with PE-labeled EpCAM and monitoring the fluores-
cence label on the cell surface.

Fig 2. (a) Schematic of the tube preparation: (i) activation of PDMS tube surface; (ii) amine
functionalized tube surface; (iii) antibody conjugation. (b) Photomicrograph of the tube, were
functionalized with human anti-EpCAM (Scale bar in mm). (c & d) PC-3 cells were placed in an unmodified
tube (without EpCAM coating), as control experiments, demonstrating absence of any captured cells in the
cavity of the tube. (d) (e) Fluorescence microscopic images of captured PC-3 cells on anti-EpCAM
immobilized tube and (f) phase contrast image of the same PC-3 cells.

doi:10.1371/journal.pone.0133194.g002
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Cell capturing in cell suspension
PC-3 cells were detached from the culture flask by treatment with 0.25% trypsin-EDTA. The
cell density was determined using a hemocytometer. 250,000 cells in 1 mL RPMI were selected
for the capturing experiments. The anti-EpCAM immobilized tube was filled with 1 mL PC-3
cell suspension. The tube was incubated at room temperature for one hour; the cell solution
was then collected from the tube and the number of cells remaining in the collected solution
were again measured by a hemocytometer. The capturing efficiency was calculated using the
following equation (Initial cell density–final cell density)/initial cell density x 100 (%). After
removing the cell solution, the tube was refilled with cell media containing a live cell fluores-
cence marker, Calcein AM. The captured cells inside tube were imaged by fluorescence micros-
copy based on Calcein AM’s fluorescence at 4 x objective magnification. A control experiment
was performed in parallel using another silicone tube without surface modification and anti-
body immobilization. All the sample solutions were processed for flow cytometry.

Processing samples for flow cytometry
All the samples collected through capturing experiments were pelleted by centrifugation at
1000 RPM for 5 min. The supernatant was removed and the cell pellet was re-suspended in 4%
glutaraldehyde in PBS for fixation (PC-3 cells only in equal volume (1 mL) and PC-3 cells in
blood in 10x excess volume (10 mL)). Samples were then gently agitated for 15 minutes at
room temperature. The samples were centrifuged again to remove excess fixative. The superna-
tant was removed and fixed cells were re-suspended in PBS. Once again, a centrifugation and
re-suspension cycle was run for washing. PC-3 only samples were adjusted to 1 mL final vol-
ume while PC-3 in blood samples were diluted in 10 mL (10x dilution) with PBS; fixed speci-
mens were kept refrigerated until flow cytometry.

Flow cytometry
Further evaluation of cell capture was investigated using flow cytometry to determine the cell
capture before and after exposure to the anti-EpCAM immobilized tube. PC-3 in media sam-
ples were measured using a Milteny MACSQuant device based on scattering (SSC vs FSC)
because the cells were not labeled by any fluorescence tag and this device could provide data
based on actual cell count / volume. 50 μL were injected for the measurements.

Cell capturing in blood
Human whole blood was purchased from Innovative Research (www.innov-research.com).
PC-3 cells were trypsinized for suspension and the initial cell density was measured using a
hemocytometer. After cell counting, cells were stained with Calcein AM for 15 min at 37°C,
after which PC-3 cells were centrifuged at 1000 RPM for five minutes to exclude free Cacein
AM from suspension. After removing the supernatant, the cell pellet was re-suspended in
RPMI media to achieve a density of 50,000 cells/20 μL. 20 μL of Calcein AM labeled PC-3 cells
were added to 100 μL whole blood aliquots containing various anti-coagulants (Li-heparin,
K2-EDTA, Na-citrate), and in blood with no anti-coagulants. Prepared EpCAM immobilized
tubes (15 cm long) were filled with PC-3 spiked whole blood and incubated for two hours on a
shaker at room temperature ((Fig 1(B)). The solutions were collected and processed for cell
counting. Six replicated sets of PC-3 spiked whole blood samples were prepared, including
three for cell count determination before tube (initial count) and three for cell count determi-
nation after capturing in tube (final count). The cell counts before and after were determined
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by a hemocytometer based on green fluorescence from Calcein AM staining to discriminate
PC-3 cells from other blood cells.

Results and Discussion
The images in Fig 2E & 2F are of PC-3 cells captured by anti-EpCAM conjugated silicone
(PDMS) tube after 1 hour of incubation. After collecting the solution from the tube, the cap-
tured cells were stained with Calcein AM containing cell media and imaged using a GFP filter
cube (Ex: 485 nm / Em: 525 nm) in an Olympus IMT-2 fluorescence microscope. The result
showed that PC-3 cells were effectively captured by the anti-EpCAM immobilized tube. As Cal-
cein AM is also a cell viability fluorescence probe, these images also confirmed that the cap-
tured cells are alive. In contrast, the unmodified control tubes, shown in Fig 2C & 2D,
exhibited negligible capture of PC-3 cells.

The cell capture was quantitatively determined by using a hemocytometrer (Table 1) and
flow cytometry (Table 2 and Fig 3). These results clearly demonstrated that target cells (PC-3)
can be captured in a highly effective manner, resulting in a significantly reduced number of
cancer cells in the media (about 85%, confirmed by both counts in a hemocytometer and flow
cytometry). The unmodified tube captured a significantly lower number of cells (about 0.8% in
hemocytometry and 5.7% in flow cytometry). This indicates that slight non-specific binding
occurred during the 1 hour of exposure to the unmodified tube surface. Non-specific binding
can be further reduced by surface modification using, for example, a PEGylation (polyethylene-
glycol) coating.

The EpCAM immobilized tubes showed about 44% capture efficiency of PC-3 cells in whole
blood (Table 3 and Fig 4). The reduction in capture efficiency confirms the existing complica-
tions in CTC capturing in blood. Blood is a suspension that is enriched with several cell popu-
lations, including red blood cells, white blood cells, platelets, and other vesicles. The presence
of these blood components could limit the movement of PC-3 cells in the solution and reduce
the chances of PC-3 cells having contact with anti-EpCAM on the tube's inner surface.

Secondly, we found that anti-coagulants can significantly interfere with the binding of
EpCAM antibody to the targeted PC-3 cells. In order to avoid blood clotting during the capture
experiments, which could inhibit the movement of cells by gelation and also clog the tube,
anti-coagulants are necessary. It is also known that platelets aggravate CTC metastasis; there-
fore, the use of anticoagulants may aid in the reduction of metastatic events [29]. We originally
used Li-heparin as an anti-coagulant and consistently obtained negligible capture of PC-3 cells.
We confirmed the lack of captured cells by fluorescence imaging and by hemocytometry.

Table 1. Cell count estimation by hemocytometry. The values are of mean ± standard error of the mean (n = 3). P<0.001 of control vs. immobilized tube
t-test.

Samples Initial (# cell/mL) Final (# cell/mL) Capture %

PC-3 in EpCAM immobilized tube 253,333 ± 2,083 38,750 ± 9,922 ~85

PC-3 in unmodified tube (Control) 257,917 ± 2,887 255,833 ± 5,774 ~1

doi:10.1371/journal.pone.0133194.t001

Table 2. Cell count estimation by flow cytometry. The values are of mean ± standard error of the mean (n = 3). P< 0.01 of control vs. immobilized tube t-
test.

Samples Initial (# cell/mL) Final (# cell/mL) Capture %

PC-3 in EpCAM immobilized tube 93,467 ± 13,360 12,907 ± 5,153 ~85

PC-3 in unmodified tube (Control) 61,440 ± 18,920 56,646 ± 15,000 ~5.7

doi:10.1371/journal.pone.0133194.t002
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While exploring solutions for this problem, we found that the capturing experiment using
whole blood without any anti-coagulant showed positive cell capture despite interference by
clotting. The presence of anti-coagulants was suspected of being responsible for the inhibition
of affinity to anti-EpCAM. Two additional anti-coagulants, Na-citrate and K2-EDTA, were
studied (shown in S1 Fig). The results revealed that K2-EDTA also inhibited cell capturing,
while Na-citrate allowed cell binding. It is still not certain whether Na-citrate does not interfere
with binding or does so partially. We were unable to find any interfering effects anti-coagulants
may have in CTC detection/diagnosis studies in published literature.

Third, we discovered that other antibodies can impede the anti-EpCAM to PC-3 binding.
In order to estimate the cell density change in the presence of blood, we initially used dye

Fig 3. Representative flow cytometry dot plots. The figures in the two upper panel rows clearly
demonstrated the reduction in cell count by anti-EpCAM immobilized tubes, while the figures in the two lower
panel rows showed minor difference between initial and final count by unmodified tube used as a control.

doi:10.1371/journal.pone.0133194.g003

Table 3. Quantitative analysis of cell capture from hemocytometry. Three independent experiments exhibited an average of 44.7% capture efficiency in
PC-3 cell spiked whole blood system. P< 0.01 initial vs. final, t-test.

Count/ 100 μL Initial 1 Initial 2 average Initial final 1 final 2 average final capture efficiency

trial 1 29000 31500 30250 14750 15750 15250 49.6%

trial 2 27500 22750 25125 16500 17250 16875 32.8%

trial 3 27000 21750 24375 10250 13250 11750 51.8%

Average 26583 ± 1846 14625 ± 1512 44.7%

doi:10.1371/journal.pone.0133194.t003
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Fig 4. (a) Fluorescencemicroscopy images for captured PC-3 cells on anti-EpCAM immoibized tubes
in the presence of whole blood. The PC-3 cells were pre-stained by Calcein AM and Na-citrate was used
as an anticoagulant for the blood sample. (b) and (c) are representative images PC-3 cells from the
hemocytometry counting using Calcein AM fluorescence. Initial (b) showed significantly more cells than final
(c), indicating reduction of cell density by capture.

doi:10.1371/journal.pone.0133194.g004
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conjugated CD-44 antibody to visualize the PC-3 cells. CD-44 expression in PC-3 cells has
been previously reported [30]. The capturing efficiency of anti-EpCAM immobilized tubes
between CD-44 labeled PC-3 cells and PC-3 with no label was compared; this revealed that the
number of captured cells was reduced by half when the PC-3 cells were labeled by CD-44 as
compared to PC-3 cells with no label (S2 Fig and Table 1). These results indicated that CD-44
interferes with the EpCAM antibody-antigen binding. EpCAM is known to often associate
with other proteins, including claudin-7, tetraspanin or CD44, etc., and a possible explanation
could be that EpCAM affinity can be inhibited by co-existence of a high affinity antibody [31].
It is not known whether CD-44 antibody and EpCAM have a common epitope to compete
with each other in PC-3 cells. This result also allows the inference that other isolation technolo-
gies that rely on multiple antibodies may be influenced by this effect.

We believe that capture efficiency can be further improved. While we discovered the afore-
mentioned complications in whole blood, we reduced the tube length for the experiment from
120 cm tube for PC-3 suspension study to 15 cm tube for capturing in blood. However, the
number of cells could not be reduced sufficiently to maintain reliable numbers in hemocytome-
ter counting (250,000 cells for suspension study to 50,000 cells for blood study). Considering
the ratio of the number of captured cell over the tube length, the capturing efficiency in the
blood study was only 17% less than that in suspension (1,770 cells/cm vs 1,467 cells/cm). The
capturing efficiency can be improved by using a longer tube, thus making it necessary to opti-
mize the tube length, dependent on the blood volume required to cleanse. Unlike other CTC
detection/diagnostics technologies that concentrate on small volumes and enrich CTCs, the
tube format is not necessarily limited by sample volume. Eventually, an unlimited volume of
samples can be circulated through the tube, thus removing the majority of CTCs from blood.
We believe that this procedure can be done safely and successfully in a clinical setting by process-
ing the entire blood in continuous or intermittent flow. Alternatively, consecutive drawings of as
much as 0.5 liter of blood (a quantity in line with typical blood donations) can undergo the clean-
ing process for CTC removal. The blood can then be re-injected in the patient as the whole proce-
dure can be performed under aseptic conditions. The process can be repeated until all of the
blood is cleared of CTCs (a typical adult has a blood volume of between 4.7 and 5 liters).

We also confirmed that, by removing captured cells by trypsinization (data not included),
the tubes can be reused with only a minor reduction in capturing ability This method can be
easily adapted to current medical practices using existing medical tubing without the need for
complicated microfluidics and micro-fabrication.

While, in these experiments, we used EpCAM, we do recognize that other types of cancer cells
that have undergone epithelial-to-mesenchymal transition (EMT) and do not express epithelial
markers on their surfaces. Thus, additional markers would have to be added in the future.

The device can be used for diagnostics as well as therapeutic applications, given that the cap-
tured cells on the tube can be counted and further re-suspended and geneotyped. An interest-
ing application of this technique is in collecting live cancer cells for patient-derived tumor
xenografts (PDTX) models to be used in cancer drug research. Additional filters and apoptosis-
causing agents may also be added to enhance the capture/kill rate. This device can be used dur-
ing tumor surgery to remove CTCs to reduce the risk of their spreading through the blood.
Finally, we want to note that this principle can also be applied to other conditions such as bac-
terial or viral blood borne infections.

Supporting Information
S1 Fig. The effect of anticoagulants on cell capture. Cell capture was significantly reduced in
the blood when Li-heparin and K2-EDTA were used. Successful cell capture was observed in
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blood with Na-citrate. The cell capturing in the blood without any anti-coagulant was exam-
ined by removing early blood clots from blood specimen. The anti-EpCAM immobilized tube
could effectively capture the cells in this blood sample.
(TIF)

S2 Fig. The effect of additional antibodies on cell capturing. PC-3 cells were labeled by FITC
conjugated CD-44 antibodies prior to the cell capturing experiment in the blood. Captured
cells were re-stained after capture by filling the tube with Calcein AM contained RPMI media.
Compared to PC-3 cell without prior labeling (left), cell capture in CD-44 pre-stained PC-3
was considerably reduced (right).
(TIF)

S1 Table. The reduction in capture efficiency by CD-44 pre-staining was quantified using
hemocytometry.
(PDF)
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