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Abstract: Phenoxyacetohydrazide Schiff base analogs 1–28 have been synthesized and their 

in vitro β-glucouoronidase inhibition potential studied. Compounds 1 (IC50 = 9.20 ± 0.32 µM), 

5 (IC50 = 9.47 ± 0.16 µM), 7 (IC50 = 14.7 ± 0.19 µM), 8 (IC50 = 15.4 ± 1.56 µM),  

11 (IC50 = 19.6 ± 0.62 µM), 12 (IC50 = 30.7 ± 1.49 µM), 15 (IC50 = 12.0 ± 0.16 µM),  

21 (IC50 = 13.7 ± 0.40 µM) and 22 (IC50 = 22.0 ± 0.14 µM) showed promising  

β-glucuronidase inhibition activity, better than the standard (D-saccharic acid-1,4-lactone, 

IC50 = 48.4 ± 1.25 µM). 
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1. Introduction 

A range of bioactivities are reported for hydrazide-hydrazone compounds, such as antibacterial, 

anticonvulsant, antimalarial, analgesic, antiinflammatory, antiplatelets, antifungal, antituberculosis, 

and anticancer activities [1–6]. A variety of semicarbazones, thiosemicarbazones and guanyl hydrazones 

are found to be key compounds for drug design [7], for metal complexes [8], organocatalysis [9], and 

are used for the preparation of heterocyclic rings [10]. A few pyrazole carbohydrazide hydrazone 

derivatives [11] and novel 3-aryl-1-arylmethyl-1H-pyrazole-5-carbohydrazide hydrazones were found 

to be proliferation inhibitors of A549 cells [12,13] Some evidence proposes a pharmacophoric 

character for the hydrazone moiety present in phenylhydrazone derivatives in the inhibition of 

cyclooxygenase [14]. Antioxidant [15–18], antiglycation [19–22] and antileishmanial [23] activity 

have recently been reported, as well as applications in mass spectrometry [24]. 

The present work aimed to investigate the potential activity of a series of aryl hydrazide-hydrazones 

as in vitro β-glucouoronidase inhibitors. In our designed analogues substituted phenoxy-acetohydrazides 

were treated with different aromatic aldehydes to scrutinize their potential activity. The earlier reported 

literature [25] showed that β-glucouoronidase is a lysosomal enzyme, present in many organs like the 

spleen, kidney, lung, bile, serum and urine, etc., where its specific task is to catalyze the cleavage of 

glucuronosyl-O-bonds [26–28]. It degrades glucuronic acid-containing glycosaminoglycans, like 

heparan sulfate, chondroitin sulfate and dermatan sulfate [29]. An elevated level of β-glucouoronidase 

was observed in various types of malignancies, such as breast, lung and gastrointestinal tract 

carcinomas, and melanomas. Its high expression also observed in bronchial tumors [30]. On the other 

hand, mucopolysaccharidosis type VII (MPS VII; Sly Syndrome) is caused by the deficiency of human 

β-glucuronidase [31]. The circulating level of β-glucuronidase is also useful as a lysosomal enzyme in 

children affected by leprosy. In borderline tuberculoid patients and lepromatous patients higher activity 

of this enzyme was also observed. 

2. Results and Discussion 

2.1. Chemistry 

Lead identification is a well defined tool in drug design and discovery. Our research group has been 

involved for a decade in lead discovery programs in search of novel therapeutic agents. We have 

earlier reported Schiff bases of different classes of organic compounds in the search for lead molecules 

with different biological activities [32–34]. Earlier, our group reported the leishmanicidal and  

β-glucurinodase inhibition potential of hydrazides derived from the corresponding esters [35–38]. In 

view of the formerly reported work we synthesized hydrazide Schiff bases and screened their potential 

biological activities [39–42]. Acylhydrazide Schiff base derivatives 1–28 were synthesized from an 

acylhyrazide by condensing it with different aromatic aldehydes and acetophenones under reflux 
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conditions in ethanol for 2–3 h (Scheme 1). The crude products (Table 1) were further recrystallized 

from methanol and needle-like crystals were obtained in most of the cases. The starting acylhydrazide was 

synthesized from ester of ethyl 2-(4-chloro-2-methylphenoxy) acetate by refluxing with hydrazine hydrate. 

Scheme 1. Synthetic scheme for benzohydrazide followed by synthesis of Schiff bases 1–28. 
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Table 1. Synthesis of acylhydrazide Schiff base derivatives 1–28. 

Compound 
No. 

R1 R2 
Yield 
(%)

Compound 
No. 

R1 R2 
Yield 
(%) 

1 

 

H 81 15 

 

H 88 

2 

 

H 85 16 

 

H 92 

3 

 

H 93 17 

 

CH3 94 

4 

 

H 87 18 

 

H 89 
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Table 1. Cont. 

Compound 
No. 

R1 R2 
Yield 
(%)

Compound 
No. 

R1 R2 
Yield 
(%) 

5 

 

H 83 19 

 

CH3 87 

6 

 

H 86 20 

 

H 84 

7 

 

H 89 21 

 

H 94 

8 

 

H 91 22 

 

H 93 

9 

 

H 94 23 

 

H 91 

10 

 

H 82 24 

 

CH3 95 

11 

 

H 88 25 

 

H 91 

12 

S
5'2'

4'

 

H 91 26 

 

H 88 

13 

 

H 86 27 

 

H 81 

14 
 

H 93 28 

 

H 93 
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2.2. β-Glucuronidase 

Synthetic acyl hydrazides Schiff bases 1–28 were screened for their in vitro potential as  

β-glucoronidase inhibitors. The in vitro β-glucornidase inhibitory potential was evaluated by using the 

literature protocol [43]. Compounds 1–28 showed diversified β-glucoronidase inhibitory activities, 

with IC50 values ranging between 9.20–30.7 µM. Compounds 1, 5, 7, 8, 11, 12, 15, 21, and 22 showed 

excellent β-glucoronidase inhibitory activities, with IC50 values of 9.20 ± 0.32, 9.47 ± 0.16, 14.7 ± 0.19, 

15.4 ± 1.56, 19. ± 0.62, 30.7 ± 1.49, 12.0 ± 0.16, 13.7 ± 0.40, and 22.0 ± 0.14 µM, respectively, and 

the remaining compounds exhibited no activity (Table 2). 

Table 2. In vitro β-glucuronidase activity of compounds 1–28. 

Compounds IC50 (μM ± SEM a) Compounds IC50 (μM ± SEM a) 

1 9.20 ± 0.32 15 12.0 ± 0.16 
2 NA b 16 NA b 
3 NA b 17 NA b 
4 NA b 18 NA b 
5 9.47 ± 0.16 19 NA b 
6 NA b 20 NA b 
7 14.7 ± 0.19 21 13.7 ± 0.40 
8 15.4 ± 1.56 22 22.0 ± 0.14 
9 NA b 23 NA b 
10 NA b 24 NA b 
11 19.6 ± 0.62 25 NA b 
12 30.7 ± 1.49 26 NA b 
13 NA b 27 NA b 
14 NA b 28 NA b 
D-saccharic acid-1,4-lactone c 48.4 ± 1.25 - - 

SEM a is the standard error of the mean; NA b Not active; c standard inhibitor for β-glucuronidase. 

It was observed that both the substituents’ nature and their position at the benzilidine part have 

great importance in the β-glucoronidase inhibition activity of a compound, and apparently the acylium 

part does not take part in the activity (Figure 1). 

Figure 1. The two parts of molecule on which activity is based. 

 

The best activity was shown by compound 1 (IC50 = 9.20 ± 0.32 µM, fivefold better than the 

standard D-saccharic acid-1,4-lactone, IC50 value 48.4 ± 1.25 µM) which has a methoxy group at the 

ortho position. Surprisingly, a marked decline in activity (to the point of being inactive) was observed 
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in analog 2 which has a methoxy residue at the para position instead of the ortho position as in 

compound 1. This huge difference in the activities of compounds 1 and 2 clearly indicates that a 

specific group at a specific position of the benzylidine phenyl ring part plays a vital role in making a 

potent β-glucornidase inhibitor in this type of compounds. The excellent activity of compound 5  

(IC50 = 9.47 ± 0.16 µM) having an ortho nitro group on the phenyl ring as compared to the inactivity 

of its closely related derivative 6 having a meta nitro group on phenyl ring proves our hypothesis that a 

suitable group at a suitable position of the phenyl ring of benzilidine part of molecules is a prerequisite 

for β-glucornidase inhibitory potential in these N-acylhydrazone Schiff bases. Comparison of activity 

of chloro-containing compounds 7 (IC50 = 14.7 ± 0.19 µM), 8 (IC50 = 15.4 ± 1.56 µM), and 9 

(inactive) demonstrated that the nature and location of a substitution is important for β-glucornidase 

inhibitory potential. Dichloro-substituted compounds 9 and 10 were found to be completely inactive 

which further proves our hypothesis. Compound 11 (IC50 = 19.6 ± 0.62 µM) having an ortho fluoro group 

showed excellent activity, but a little less than analogous chloro compounds 7 and 8. We also 

evaluated the effect of heterocyclic ring-containing derivatives, and it was observed that the five 

membered heterocyclic thiophene ring-containing derivative 12 (IC50 30.7 ± 1.49 µM) produced 

remarkable activity, while on the other hand five membered heterocyclic rings like furan and its methyl 

derivatives 13 and 14 were found to be completely inactive. Almost all mono-, di- and trihydroxy 

substituted compounds 16, 17, 18, 19, and 20 found to be completely inactive, but unexpectedly 

compound 15 (IC50 = 12.0 ± 0.16 µM) which bears 2,3-dihydroxy substitution, was found to be very 

efficient and displayed remarkable activity, better than the standard, but, compound 16, also a  

3,4-dihydroxy derivative did not show any activity. N-acylhydrazones Schiff base 21 (IC50 = 13.7 ± 

0.40 µM) synthesized from 1-napthaldehyde was found to be more active than 22 (IC50 = 22.0 ± 0.14 µM) 

which was synthesized from 2-napthaldehyde, both without any substitution. Remaining compounds 

23–28 were found to be completely inactive. This pattern of activity reveals that the substituent and its 

position on the phenyl ring of benzylidine part is a driving force for β-glucornidase inhibition activity. 

In conclusion, a number of potential lead molecules has been identified as β-glucuronidase 

inhibitors. Compounds 1, 5, 7, 8, 11, 12, 15, 21, and 22 demonstrated excellent activity and it is 

anticipated that by slight synthetic modification in these molecules, some new most active  

β-glucuronidase inhibitors can be developed. 

3. Experimental  

3.1. General Information 

1H-NMR experiments were performed on an Avance-Bruker AM 300 MHz instrument  

(Wissembourg Cedex, France). A Carlo Erba Strumentazione-Mod-1106 (Milan, Italy) used to 

measure CHN analysis. EI MS was performed on a Finnigan MAT-311A (Bremen, Germany). Thin 

layer chromatography (TLC) was carried out on pre-coated silica gel glass plates (Kieselgel 60, 254,  

E. Merck, Darmstadt, Germany). The chromatograms were visualized by UV at 254 and 365 nm or 

iodine vapours. 
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3.2. Biological Assays 

β-Glucuronidase (E.C. 3.2.1.31 from bovine liver, G-0251) and p-nitrophenyl-β-D-glucuronide  

(N-1627) were purchased From Sigma Chemical Co. (St. Louis, MO, USA). Anhydrous Na2CO3 and 

all other reagents of standard grade were obtained from E. Merck. The anhydrous EtOH and CHCl3 

used in the experiments were dried employing the standard methods. All other solvents and reagents 

like the benzoyl chloride were of standard grade. 

3.3. Assay for β-D-Glucuronidase 

β-D-Glucuronidase inhibition was determined by measuring the absorbance of the p-nitrophenol 

which is produce from the substrate at 405 nm. The total reaction volume was 250 µL. The reaction 

mixture contains 5 µL of test compound solution, 185 µL of 0.1 M acetate buffer, and 10 µL of 

enzyme, and it was incubated at 37 °C for 30 min. The plates were read on a multiplate reader at  

405 nm after the addition of 50 µL of 0.4 mM p-nitrophenyl-β-D-glucuronide. All assays were 

performed in triplicate. 

3.4. Typical Method for the Synthesis of Compounds 1–28 

To a mixture of 2-(4-chloro-2-methylphenoxyacetic acid) hydrazide (1 mmol) in methanol (25 mL) 

was added a substituted aldehyde (1 mmol) and 3 drops of glacial acetic acid and the mixture was 

refluxed for 3 h. After completion of the reaction (TLC analysis), it was cooled and evaporated on a 

rotary evaporator. The resultant crude product was crystallized from methanol to afford 80%–90% 

yields of pure product. The structures of synthetic compounds 1–28 were determined by different 

spectroscopic techniques, including 1H-NMR, and EI MS spectroscopy. 

2-(4-Chloro-2-methylphenoxy)-N'-[(3-(2-methoxyphenyl)-2-propenylidene]acetohydrazide (1). Yield: 

68%; 1H-NMR (DMSO-d6) δ: 8.04 (d, 1H, J = 9.3 Hz, N=CH-CH), 7.63 (dd, 1H, J5',6' = 7.8 Hz,  

J5',3' = 1.2 Hz, H-6'), 7.34 (dd, 1H, JCH-HC=CH = 8.1 Hz, CH-HC=CH), 7.23 (d, 1H, JHC=CH = 6 Hz, 

HC=CH), 7.12–7.20 (m, 2H, H-3/5) 6.85–7.06 (m, 3H, H- 3'/4'/5'), 6.80 (d, 1H, J6,5 = 9 Hz, H-6), 5.17 (s, 

2H, -OCH2), 3.84 (s, 3H, -OCH3), 2.23 (s, 3H, CH3); EI MS: m/z (%) 358 (M+, 30), 327 (100),189 

(40), 175 (55), 159 (100), 125 (75.0), Anal. Calcd for C19H19ClN2O3, C = 63.60, H = 5.34, N = 7.81. 

Found: C = 63.55, H = 5.31, N = 7.80. 

2-(4-Chloro-2-methylphenoxy)-N'-[(3-(4-methoxyphenyl)-2-propenylidene]acetohydrazide (2). Yield: 

70%; 1H-NMR (DMSO-d6) δ: 8.02 (d, 1H, J = 9.3Hz, N=CH-CH), 7.55 (d, 2H, J2',3' = J6',5' = 8.7 Hz,  

H-2'/6'),7.12–7.23 (m, 2H, H-3/5),7.01 (d, 2H, J3',2' = J5',6' = 7.0 Hz, H-3'/5'), 6.76–6.87 (m, 2H, HC = CH), 

6.92 (d, 1H, J5,6  = 8.4 Hz, H-6), 5.03 (s, 2H, -OCH2), 3.76 (s, 3H, OCH3), 2.21 (s, 3H, CH3); m/z (%) 

358 (M+, 95), 189 (40), 175 (85), 159 (100), 125 (60). Anal. Calcd for C19H19ClN2O3, C = 63.60,  

H = 5.34, N = 7.81. Found: C = 63.57, H = 5.32, N = 7.79. 

2-(4-Chloro-2-methylphenoxy)-N'-[(4-ethoxyphenyl)methylidene]acetohydrazide (3). Yield: 80%; 1H-NMR 

(DMSO-d6) δ: 8.20 (s, 1H, -N=CH), 7.62 (d, 2H, J2',3' = J6',5' = 8.7 Hz, H-2'/6'), 7.23–7.12 (m, 2H, H-3/5), 

6.84 (d, 2H, J3',2' = J5',6' = 8.7 Hz, H-3'/5'), 6.84 (d, 1H, J6,5 = 8.7 Hz, H-6), 5.13 (s, 2H, OCH2), 4.04 (q, 
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2H, J = 6.9 Hz, -CH2), 2.22 (s, 3H, -CH3), 1.32 (t, 3H, J = 6.9 Hz, -CH3); EI MS: m/z (%) 347 (M+, 56), 

205 (95), 155 (89), 147 (92), 119 (73). Anal. Calcd for C18H19ClN2O3, C = 62.34, H = 5.52, N = 8.08. 

Found: C = 62.33, H = 5.50, N = 8.03. 

2-(4-Chloro-2-methylphenoxy)-N'-[(3,4,5-trimethoxyphenyl) methylidene]acetohydrazide (4). Yield: 

72%; 1H-NMR (DMSO-d6) δ: 8.43 (s, 1H, -N=CH), 7.56 (d, 1H, J2',6' = 2.7 Hz, H-2'), 7.23 (m, 1H, H-5), 

7.13 (d, 1H, J3,5 = 2.7 Hz, H-3), 6.92(s, 1H, H-6'), 6.83 (d, 1H, J5,6 = 8.7 Hz H-6), 5.13 (s, 2H, -OCH2), 

3.82 (s, 9H, -OCH3), 2.22 (s, 3H, -CH3); EI MS: m/z (%) 392 (M+, 62.1), 251 (15.5), 193 (100), 179 

(88.9), 155 (26.8). Anal. Calcd for C19H21ClN2O5, C = 58.09, H = 5.39, N = 7.13. Found: C = 58.05,  

H = 5.37, N = 7.11. 

2-(4-Chloro-2-methylphenoxy)-N'-[(2-nitrophenyl)methylidene]acetohydrazide (5). Yield: 65%; 1H-NMR 

(DMSO-d6) δ: 8.09(s, 1H, N=CH), 8.29 (m, 2H, H-4'/5'), 7.98 (d, 2H, J3',4' = J6',5' = 9, H-3'/6') 7.24 (m, 

1H, H-5), 7.13 (d, 1H, J3,5 = 2.7 Hz, H-3), 6.89 (d, 1H, J6,5 = 8.7, H-6), 5.22 (s, 2H, -OCH2), 2.22 (s, 3H, 

-CH3); EI MS: m/z (%) 347 (M+, 72), 206 (100), 155 (83.3), 125 (75.8). Anal. Calcd for C16H14ClN3O4, 

C = 55.26, H = 4.06, N = 12.08. Found: C = 55.23, H = 4.02, N = 12.04. 

2-(4-Chloro-2-methylphenoxy)-N'-[(3-nitrophenyl)methylidene]acetohydrazide (6). Yield: 70%; 1H-NMR 

(DMSO-d6) δ: 8.40 (s, 1H, -N=CH), 8.51 (d,1H, J5',6' = 7.2 Hz H-6'), 8.12–8.25 (m, 2H, H-2'/5'), 7.76 (m, 

1H, H-4'), 7.12-7.24 (m, 2H, H-3/5), 6.90 (dd, 1H, J6,5 = 6.2 Hz, H-6), 5.22 (s, 2H, OCH2), 2.23 (s, 3H, 

CH3); EI MS: m/z (%) 347 (M+, 92), 206 (100), 178 (28.4), 141 (17.5), 125 (39.9). Anal. Calcd for 

C19H21ClN2O5, C = 58.09, H = 5.39, N = 7.13. Found: C = 58.06, H = 5.37, N = 7.12. 

2-(4-Chloro-2-methylphenoxy)-N'-[-(4-chlorophenyl)methylidene]acetohydrazide (7). Yield: 63%; 1H-NMR 

(DMSO-d6) δ: 8.27 (s, 1H, -N=CH), 7.73 (d, 2H, J2',3' = J6',5' = 8.7 Hz, H-2'/6'), 7.51 (d, 2H,  

J3',2' = J5',6' = 8.1 Hz, H-3'/5'), 7.13–7.23 (m, 2H, H-3/5), 6.89 (d, J6,5 = 7.8 Hz, 1H, H-6), 5.15 (s, 2H,  

-OCH2), 2.19 (s, 3H, CH3); EI MS: m/z (%) 336 (M+, 20), 195 (35), 155 (55), 125 (80), 89 (100). Anal. 

Calcd for C16H14Cl2N2O2, C = 56.99, H = 4.18, N = 8.31. Found: C = 56.95, H = 4.15, N = 8.28. 

2-(4-Chloro-2-methylphenoxy)-N'-[-(2-chlorophenyl)methylidene]acetohydrazide (8). Yield: 66%; 1H-NMR 

(DMSO-d6) δ: 8.26 (s,1H, -N=CH), 7.77 (m, 2H, H-3'/6'), 7.48 (br.t, 2H, J4',5' = J5',4' = 8.5 Hz, H-4'/5'), 

7.13–7.24 (m, 1H, H-3/5), 6.89 (d, 1H, J6,5 = 8.7 Hz, H-6), 5.15 (s, 2H, -OCH2), 2.23 (s, 3H, -CH3), 

2.19 (s, 3H, CH3); EI MS: m/z (%) 336 (M+, 10), 195 (30), 155 (40), 125 (75), 89 (100). Anal. Calcd for 

C16H14Cl2N2O2, C = 56.99, H = 4.18, N = 8.31. Found: C = 56.96, H = 4.15, N = 8.27. 

2-(4-Chloro-2-methylphenoxy)-N'-[(3,4-dichlorophenyl)methylidene]acetohydrazide (9). Yield: 70%; 
1H-NMR (DMSO-d6) δ: 8.25 (s, 1H, =N-CH), 7.96 (s, 1H, H-2'), 7.68 (br. s, 2H, 5'/6'), 7.12–7.23 (m, 

2H, H-3/5), 6.88 (d, 1H, J6,5 = 7.0 Hz H-6), 5.08 (s, 2H, OCH2), 2.22 (s, 3H, CH3); EI MS: m/z (%) 

371 (M+, 92.2), 228 (100), 155 (87.1), 125 (89.8). Anal. Calcd for C16H13Cl3N2O2, C = 51.71, H = 3.53, 

N = 7.54. Found: C = 51.68, H = 3.50, N = 7.52. 

2-(4-Chloro-2-methylphenoxy)-N'-[(2, 6-dichlorophenyl)methylidene]acetohydrazide (10). Yield: 60%; 
1H-NMR (DMSO-d6) δ: 8.48 (s,1H, -N=CH), 7.57 (d, 2H, J3',4' = J5',4' = 8.7 Hz, H-3'/5'), 7.44 (dd, 1H, 

J4,5 = 7.2 Hz, H-4'), 7.24–7.11 (m, 2H, H-3/5), 6.78 (d, 1H, J6,5 = 8.7 Hz, H-6), 5.09 (s, 2H, -OCH2), 2.18 
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(s, 3H, CH3); EI MS: m/z (%) 370 (M+, 17.3), 229 (39.5), 155 (60.1), 125 (100), 89 (62). Anal. Calcd for 

C16H13Cl3N2O2, C = 51.71, H = 3.53, N = 7.54. Found: C = 51.66, H = 3.51, N = 7.52. 

2-(4-Chloro-2-methylphenoxy)-N'-[-(2-fluorophenyl)methylidene]acetohydrazide (11). Yield: 74%; 
1H-NMR (DMSO-d6) δ: 8.52 (s, 1H, -N=CH), 7.95 (dd, 1H, J4',5' = 8.1 H-5') 7.48 (dd, 1H, J6',5' = 6.9 Hz, 

H-6'), 7.25-7.31 (m, 2H, H-3'/4'), 7.12–7.21 (m, 2H, H-3/5), 6.90 (d, 1H, J6,5 = 8.7 Hz, H-6), 5.17 (s, 

2H, -OCH2), 2.23 (s, 3H, CH3); EI MS: m/z (%) 320 (M+, 12), 179 (80), 125 (100), 89 (75.8). Anal. Calcd 

for C16H14ClFN2O2, C = 59.91, H = 4.40, N = 8.73. Found: C = 59.89, H = 4.39, N = 8.72. 

2-(4-Chloro-2-methylphenoxy)-N'-[3-thienylmethylidene]acetohydrazide (12). Yield: 68%; 1H-NMR 

(DMSO-d6) δ: 8.07 (s, 1H, -N=CH), 7.12–7.24 (m, 3H, H-3, 5, 6), 6.73–9.92 (m, 3H, H-2'/4'/5'), 5.10 

(s, 2H, -OCH2), 2.22 (s, 3H, CH3); EI MS: m/z (%) 308 (M+, 15), 199 (10), 155 (45), 125 (100). Anal. 

Calcd for C14H13ClN2O2S, C = 54.46, H = 4.24, N = 9.07. Found: C = 54.45, H = 4.22, N = 9.04. 

2-(4-Chloro-2-methylphenoxy)-N'-[-2-furylmethylidene]acetohydrazide (13). Yield: 70%; 1H-NMR 

(DMSO-d6) δ: 8.17 (s, 1H, -N=CH), 7.11–7.23 (m, 2H, H-3,5), 6.90 (d, 2H, J3',4'= J5',4' = 3.3 Hz, H-3'/5'), 

6.81(d, 1H, J6,5 = 8.7 Hz, 6), 6.62 (dd, 1H, J4,3 = J4,5 = 3.3 Hz, 4'), 5.07 (s, 2H, -OCH2), 2.22 (s, 3H,  

-CH3); EI MS: m/z (%) 292 (M+, 35), 155 (50), 151 (80.), 125 (100). Anal. Calcd for C14H13ClN2O3, 

C = 57.44, H = 4.48, N = 9.57. Found: C = 57.44, H = 4.46, N = 9.56. 

2-(4-Chloro-2-methylphenoxy)-N'-[-(5-methyl-2-furyl)methylidene]acetohydrazide (14). Yield: 72%; 
1H-NMR (DMSO-d6) δ: 8.07 (s, 1H, -N=CH), 7.11–7.23 (m, 2H, H-3,5), 6.88 (d, 1H, J5,6 = 8.7 Hz, H-6), 

6.80 (d, 1H, J3',4' = 5.4 Hz, 3'), 6.24 (d, 1H, J4',3' = 2.7 Hz, 4'), 5.07 (s, 2H, -OCH2), 2.21 (s, 3H, -CH3) 

2.19 (s, 3H, -CH3); EI MS: m/z (%) 306 (M+, 20), 65 (30), 137 (100), 125 (40). Anal. Calcd for 

C15H15ClN2O3, C = 58.73, H = 4.93, N = 9.13. Found: C = 58.70, H = 4.96, N = 9.10. 

2-(4-Chloro-2-methylphenoxy)-N'-[-(2,3-dihydroxyphenyl)methylidene]acetohydrazide (15). Yield: 76%; 
1H-NMR (DMSO-d6) δ: 8.41 (s,1H, -N=CH), 7.24 (m, 1H, H-5), 7.13 (d, 1H, J3,5 = 2.7 Hz, H-3), 6.89 

(d, 1H, J5',6' = 8.7 Hz, H-6'), 6.83 (d, 1H, J6,5 = 8.7 Hz, H-6), 6.71 (m, 2H, H-3'/4'), 5.15 (s, 2H,  

-OCH2), 2.19 (s, 3H, -CH3); EI MS: m/z (%) 334 (M+, 100),300 (9), 175 (89.7), 193 (35), 179 (50), 

137 (65), 125 (60). Anal. Calcd for C16H15ClN2O4, C = 57.41, H = 4.5, N = 8.37. Found: C = 57.40,  

H = 3.50, N = 8.36. 

2-(4-Chloro-2-methylphenoxy)-N'-[-(3,4-dihydroxyphenyl)methylidene]acetohydrazide (16). Yield: 68%; 
1H-NMR (DMSO-d6) δ: 8.06 (s, 1H, -N=CH), 7.12-7.19 (m, 2H, H-3/5),7.24 (d, 1H, J2',6' = 2.7 Hz, H-2'), 

6.85–6.92 (m, 2H ,H-5'/6'), 6.76 (d, J6,5 = 8.1 Hz, 1H, H-6), 5.10 (s, 2H, -OCH2), 2.22 (s, 3H, CH3); EI 

MS: m/z (%) 334 (M, 36.8), 193 (23.9), 155 (71.6), 125 (88.8), 77 (100). Anal. Calcd for 

C16H15ClN2O4, C = 57.41, H = 4.5, N = 8.37. Found: C = 57.39, H = 3.50, N = 8.37. 

2-(4-Chloro-2-methylphenoxy)-N'-[1-(4-hydroxyphenyl)ethylidene]acetohydrazide (17). Yield: 70%; 
1H-NMR (DMSO-d6) δ: 7.65 (d, 2H, J2',3' = J6',5' = 8.7 Hz , H-2'/6'), 7.23 (m, 1H, Hz H-6), 7.12 (d, 1H, 

J = 2.4 Hz, H-3), 6.90 (d, J3',2'= J5',6' = 8.7 Hz, 2H, H-3'/5'), 6.77 (d, 1H, J6,5 = 8.7 Hz, H-6), 5.16 (s, 

2H, -OCH2), 2.19 (s, 6H, CH3); EI MS: m/z (%) 332 (M+, 56.7), 191 (100), 177 (24.5), 149 (34.5), 134 
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(37.9). Anal. Calcd for C17H16ClN2O3, C = 61.36, H = 5.15, N = 8.42. Found: C = 61.34, H = 5.14,  

N = 8.40. 

2-(4-Chloro-2-methylphenoxy)-N'-[(3-hydroxyphenyl)methylidene]acetohydrazide (18). Yield: 61%; 
1H-NMR (DMSO-d6) δ: 8.18 (s, 1H, -N=CH), 7.04-7.24 (m, 5H, Ar-H), 6.79–6.89 (m, 2H, H-5-6), 

5.14 (s, 2H, -OCH2), 2.22 (s, 3H,-CH3); EI MS: m/z (%) 318 (M+, 97.6), 177 (100), 155 (71), 125 

(65.3). Anal. Calcd for C16H15ClN2O3, C = 60.29, H = 4.74, N = 8.79. Found: C = 69.27, H = 3.49,  

N = 8.34. 

2-(4-Chloro-2-methylphenoxy)-N'-[1-(2,4,6-trihydroxyphenyl)ethylidene]acetohydrazide (19). Yield: 62%; 
1H-NMR (DMSO-d6) δ: 8.16 (s, 1H, -N=CH), 7.21 (br.s, 2H, H-3'/5'), 7.16–7.23 (m, 2H, H-3/5), 6.86 (d, 

J6,5 = 8.7 Hz, 1H, H-6), 4.98 (s, 2H, -OCH2), 2.18 (s, 3H, CH3), 1.93 (s, 3H, CH3); EI MS: m/z (%) 254 

(M+, 100), 155 (91.2), 142 (75.5), 125 (100), 113 (100), 99 (86.6). 

2-(4-Chloro-2-methylphenoxy)-N'-[(4-hydroxyphenyl)methylidene]acetohydrazide (20). Yield: 72%; 
1H-NMR (DMSO-d6) δ: 7.88 (s, 1H, -N=CH), 7.52 (d, 2H, d, 2H, J2',3' = J6',5' = 8.7 Hz , H-2'/6'), 7.24 (d, 

1H, J5,6 = 8.1 Hz, H-5), 7.13(d, 1H, J = 2.4 Hz, H-3), 6.88 (d, 2H, J3',2' = J5',6' = 8.7 Hz, H-3'/5'), 6.79 

(d, 1H, J6,5 = 8.7 Hz, H-6), 5.11 (s, 2H, -OCH2), 2.22 (s, 3H, CH3); EI MS: m/z (%) 318 (M+, 9.30), 

199 (10.78), 177 (27.43), 155 (44), 125 (67.50), 77 (100). Anal. Calcd for C16H15ClN2O3, C = 60.29,  

H = 4.74, N = 8.79. Found: C = 69.26, H = 3.50, N = 8.34. 

2-(4-Chloro-2-methylphenoxy)-N'-[-1-naphthylmethylidene]acetohydrazide (21). Yield: 68%; 1H-NMR 

(DMSO-d6) δ: 8.66 (s, 1H, N=CH), 8.83 (d, J = 8.1 Hz 1H, H-8'), 8.61 (d, 1H, J4',3' = 8.4 Hz, H-4'), 

8.02 (br, d, 2H, J = 7.8 Hz, H-2'/5'), 7.93 (d, 1H, J3',4' = 7.8 Hz, H-3') 7.65 (m, 2H, H-6'/7'), 7.14–7.25 

(m, 2H, H-3/5), 6.95 (d, J6,5 = 8.4 Hz, 1H, H-6), 5.24 (s, 2H, -OCH2), 2.26 (s, 3H, -CH3); EI MS: m/z 

(%) 352 (M+, 100), 211(65), 199. Anal. Calcd for C20H17ClN2O2, C = 68.09, H = 4.86, N = 7.94. 

Found: C = 68.06, H = 4.84, N = 7.92. 

2-(4-Chloro-2-methylphenoxy)-N'-[-2-naphthylmethylidene]acetohydrazide (22). Yield: 70%; 1H-NMR 

(DMSO-d6) δ: 8.43 (s, 1H, N=CH), 8.16 (t, 2H, J = 8.4 Hz, H-3',6'), 7.94 (br, s, 2H, H-5/4') 7.56 (t, 

2H, J5',6' = J8',7' = 9.6 Hz, H-5'/8'), 7.22 (s, 1H, H-1'), 7.17 (d, 1H, J7',8' = 8.7 Hz, H-7'), 6.92 (m, 2H,  

H-5/6), 5.23 (s, 2H, OCH2), 2.23 (s, 3H, CH3); EI MS: m/z (%) 352 (M+, 72), 211 (60) 199 (35), 169 

(45), 153 (100), 127 (60). Anal. Calcd for C20H17ClN2O2, C = 68.09, H = 4.86, N = 7.94. Found:  

C = 68.04, H = 4.85, N = 7.91. 

2-(4-Chloro-2-methylphenoxy)-N'-[(5-Chloro-2-hydroxyphenyl)methylidene]acetohydrazide (23). Yield: 

66; 1H-NMR (DMSO-d6) δ: 8.23 (s,1H, -N=CH), 7.70 (d, 1H, J6',4'= 2.7 Hz H-6'),7.12–7.23 (m, 2H,  

H-3/5), 7.31 (m, 1H, H-4'), 6.93 (d, 1H, J3',4' = 7.8Hz, H-3'),6.86 (d, 1H, J6,5 = 8.7 Hz, H-6), 5.17 (s, 

2H, -OCH2), 2.22 (s, 3H, -CH3); EI MS: m/z (%) 352 (M+, 83.8), 210 (7.4), 197 (62.6), 155 (100), 141 

(46.8). Anal. Calcd for C16H14Cl2N2O3, C = 54.41, H = 4.00, N = 7.93. Found: C = 54.39, H = 4.00,  

N = 7.92. 

2-(4-Chloro-2-methylphenoxy)-N'-[1(2,4-dihydroxy-5-nitrophenyl)ethylidene]acetohydrazide (24). Yield: 

70%; 1H-NMR (DMSO-d6) δ: 8.23 (s, 1H, H-6'), 7.17–7.23 (m, 2H, H-3/5), 6.89 (d, 1H, J6,5 = 8.7 Hz,  
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H-6), 6.51 (s, 1H, H-3'), 4.82 (s, 2H, -OCH2), 2.26 (s, 3H, CH3), 2.21 (s, 3H, CH3); EI MS: m/z (%) 

392 (M+, 64.4), 251 (72.1), 237 (100), 125 (89.9), 77 (68.5). Anal. Calcd for C16H14ClN3O6, C = 50.60, 

H = 3.72, N = 11.07. Found: C = 50.57, H = 3.70, N = 11.05. 

2-(4-Chloro-2-methylphenoxy)-N'-[(4-hydroxy-3-methoxyphenyl)methylidene]acetohydrazide (25). Yield: 

59%; 1H-NMR (DMSO-d6) δ: 8.11 (s, 1H, -N=CH), 7.12–7.23 (m, 2H, H-3/5), 7.03 (s, 1H, H-2'),  

6.86–6.96 (m, 2H, H-5'/6') 6.83 (d, 1H, J6,5 = 8.7 Hz, H-6), 5.12 (s, 2H, -OCH2), 3.78 (s, 3H, OCH3), 

2.23 (s, 3H, CH3); EI MS: m/z (%) 348 (M+, 88.5), 207 (51), 193 (100), 155 (43), 125 (46.9). Anal. 

Calcd for C17H17ClN2O4, C = 58.54, H = 4.91, N = 8.03. Found: C = 58.53, H = 4.90, N = 8.02. 

2-(4-Chloro-2-methylphenoxy)-N'-{-[4-(methylsulfanyl)phenyl]methylidene}acetohydrazide (26). Yield: 

63%; 1H-NMR (DMSO-d6) δ: 8.22 (s, 1H, -N=CH), 7.63 (d, 2H, J2,3 = J6,5 = 8.4 Hz, H-2'/6'), 7.31 (d, 2H, 

J3,2 =J5,6 = 8.4 Hz, H-3'/5'),7.23 (m, 1H, H-5), 7.13 (d, 1H, J = 2.7 Hz, H-3), 6.89 (d, J6,5 = 8.4Hz, 1H, 

H-6), 5.15 (s, 2H, -OCH2), 2.19 (s, 3H, CH3); EI MS: m/z (%) 348 (M+, 60), 207 (25), 149 (100), 125 

(35), 118 (35). Anal. Calcd for C17H17ClN2O2S, C = 58.53, H = 4.91, N = 8.03. Found: C = 58.51,  

H = 4.90, N = 8.02. 

2-(4-Chloro-2-methylphenoxy)-N'-[(2-methylphenyl)methylidene]acetohydrazide (27). Yield: 67%;  
1H-NMR (DMSO-d6) δ: 8.25 (s, 1H, -N=CH), 7.78 (d, J = 7.5 Hz, 1H, H-6'), 7.30–7.21 (m, 3H,  

H-3'/4'/5'), 7.13-7.17 (m, 2H, H-3/5), 6.84 (d, 1H, J6,5 = 8.7 Hz, H-6), 5.15 (s, 2H, -OCH2), 2.23 (s,3H, 

-CH3), 2.19 (s, 3H, CH3); EI MS: m/z (%) 316 (M+, 79.4), 199 (78.9), 175 (89.7), 155 (100), 141 

(93.2), 118 (94.2). Anal. Calcd for C17H17ClN2O2, C = 64.46, H = 4.41, N = 8.84. Found: C = 64.45,  

H = 4.40, N = 8.83. 

2-(4-Chloro-2-methylphenoxy)-N'-[(4-methylphenyl)methylidene]acetohydrazide (28). Yield: 63%;  
1H-NMR (DMSO-d6) δ: 8.23 (s, 1H, -N=CH), 7.59 (d, 2H, J2',3'= J6',5' = 7.8 Hz, H-2'/6'), 7.24 (d, 2H, 

J3',2'= J5',6' = 8.1 Hz, H-3'/5'),7.13 (d, J = 2.7 Hz, 1H, H-3), 7.17 (m, 1H, H-5), 6.85 (d, J6,5 = 8.7 Hz, 

1H, H-6), 5.15 (s, 2H, -OCH2), 2.32 (s, 3H, CH3), 2.19 (s, 3H, CH3); EI MS: m/z (%) 316 (M+, 9.61), 

199 (10.80), 175 (36.26), 155 (47.70), 125 (71.62). Anal. Calcd for C17H17ClN2O2, C = 64.46,  

H = 4.41, N = 8.84. Found: C = 64.44, H = 4.40, N = 8.82. 

4. Conclusions  

A number of potential lead molecules 1, 5, 7, 8, 11, 12, 15, 21, and 22 have been identified as  

β-glucuronidase inhibitors and it is anticipated that by slight synthetic modification in these molecules, 

some new most active β-glucuronidase inhibitors can be developed. 
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