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Knockdown of RRM1 in tumor cells promotes radio-/
chemotherapy induced ferroptosis by regulating p53
ubiquitination and p21-GPX4 signaling axis
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Ferroptosis, a type of regulated cell death brought about by lipid peroxidation, has been discovered to suppress tumor growth.
Here, we report that targeting RRM1 promotes ferroptosis and affects sensitivity to radiation and chemotherapeutics in cancer cells.
In vitro experiments demonstrate that RRM1 increases the accumulation of cellular reactive oxygen species (ROS) and lipid
peroxidation by disrupting the activity and expression of the antioxidant enzyme GPX4. Further studies reveal the downstream
mechanisms of RRM1, which can regulate the deubiquitinating enzyme USP11 and ubiquitinating enzyme MDM2 to affect the
ubiquitination modification of p53. Unstable p53 then inhibited the activity and expression of GPX4 by restraining the p21 protein.
Furthermore, our data reveal that targeting RRM1 also increases radiation-induced DNA damage and apoptotic signaling and
causes crosstalk between ferroptosis and apoptosis. On the basis of our collective findings, we propose that RRM1 is an essential
negative mediator of radiosensitivity through regulating ferroptosis, which could serve as a potential target to inhibit the tumor’s
antioxidant system and enhance the efficiency of radio/chemotherapy.
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INTRODUCTION
Radiation resistance has yet to be fully elucidated. Cancer cells
accumulate resistance to radiation by activating intrinsic mechan-
isms, such as DNA repair and apoptosis inhibition [1, 2]. Radiation-
induced reactive oxygen species (ROS) damage nucleic acids,
proteins, and lipids in many ways [3, 4]. However, tumor cells can
acquire the ability to adapt to ROS by synthesizing more
antioxidants [5, 6]. Therefore, targeting cellular antioxidant
defense systems enhances radiosensitivity [7].
Ferroptosis is caused by ROS and lipid peroxidation, which

differs from apoptosis in its morphology and mechanism [8, 9]. As
a cellular process, ferroptosis is an essential factor for both normal
development and various diseases, including cancer [10, 11]. As a
central regulator of ferroptosis, glutathione peroxidase 4 (GPX4)
converts lipid hydroperoxides into lipid alcohols using reduced
glutathione, thereby reducing lipid peroxidation and preventing
ferroptosis [12, 13]. Current studies show that the production of
ROS and the expression of the lipid metabolism enzyme ACSL4 are
the main mechanisms through which radiation induces ferroptosis
in cancer cells [14]. Notably, the radiation also induces the
expression of GPX4, which likely represents a potential adaptive
response and may contribute to radioresistance.
Using our previously established dbCRSR database (dbCRSR,

http://www.xialab.info:8080/dbCRSR/) [15], after constructing the
functional network by integrating protein-protein interaction (PPI)

and gene co-expression information, a radiosensitivity gene RRM1
(Ribonucleotide reductase subunit M1) was identified. As a key
enzyme catalyzing the transformation of ribonucleotide dipho-
sphates to deoxyribonucleoside diphosphates, RRM1 is involved in
cell migration, tumor and metastasis development, and DNA
synthesis [16, 17]. Studies have shown that RRM1 is recruited to
DSB sites to ensure a balanced supply of dNTPs during
mammalian DNA repair [18]. Gautam et al. found that RRM1
remains relatively constant throughout the cell cycle, suggesting
RRM1 may have functions outside the formation of ribonucleotide
reductases [19]. Recently, it has been reported that UVA-induced
ROS can transiently and reversibly oxidize the RRM1 subunit,
which may depend on singlet oxygen production and the
presence of intracellular GSH [20]. Therefore, it is critical to study
how RRM1 maintains the balance between antioxidants and ROS
for radiation-induced ferroptotic cell death.
As a critical tumor suppressor, p53 activates multiple target

genes and coordinates numerous reactions to suppress tumor-
igenesis, such as arresting the cell cycle, causing senescence, and
inducing apoptosis [21]. A recent function ascribed to p53 is the
regulation of ferroptosis, and it has a dual role in controlling
ferroptosis [22]. It has been reported that p53 induces ferroptosis
by inhibiting SLC7A11 transcription [23]. In contrast, activating the
p53-p21 pathway makes cells more resistant to ferroptosis [24],
but the specific mechanism is unclear.
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In this study, we identified that RRM1 regulates radiation and
chemotherapeutics induced ferroptosis. RRM1 deficiency impairs
the stability of p53 and sensitizes different types of cancer cells to
ferroptosis by reducing GPX4 expression. Mechanistically, knock-
down of RRM1 stimulates the binding of the ubiquitinating
enzyme MDM2 and p53 while inhibiting the binding of the
deubiquitinating enzyme USP11 to p53, thereby increasing the
ubiquitination of p53. The instability of p53 results in lower
expression of p21, which causes an increase in lipid ROS and a
decrease in cell survival time by inhibiting GPX4. Additionally, we
verified that targeting RRM1 could also increase radiation-induced
apoptosis signals and cause crosstalk between radiation-induced
ferroptosis and apoptosis.

RESULTS
RRM1 is highly expressed upon radiation
Based on The Cancer Genome Atlas (TCGA) enriched dataset, we
analyzed the expression levels of RRM1 in human cancers. It was
shown that the RRM1 expression was higher in the different
clinical samples than in the corresponding normal tissues (Fig. 1A).
Next, we examined the effect of γ-ray on RRM1 expression in
cancer cells. With the increase of radiation dose, the expression
level of RRM1 increased significantly (Fig. 1B). After a fixed-dose
(5 Gy), RRM1 expression also increased over time (Fig. 1C).
Additionally, although RRM1 is less expressed in non-cancerous
cells (HIEC cells), it is still up-regulated by radiation (Fig. S1A, B).
Overall, RRM1 was overexpressed in cancer tissues compared with
normal tissues and was up-regulated upon radiation.
To identify genes or pathways associated with RRM1 after

radiation, we conducted RNA sequencing analysis. Short-hairpin
RNA (shRNA) was used to knockdown RRM1 in HCT116 and Hela
cells (Fig. 1D). After IR treatment, 224 genes were differentially
expressed in RRM1Low cells compared to RRM1High cells (Fig. 1E).
Furthermore, Gene Set Enrichment Analysis (GSEA) compared all
genes between RRM1Low group and RRM1High group (Fig. 1F). The
RRM1low phenotype is significantly enriched for gene sets
associated with oxidative stress pathway, p53 pathway, and
apoptosis pathway.

Target RRM1 promotes radiation-induced ferroptosis
Radiation induces ferroptosis in cancer cells, and both radiation
and ferroptosis are associated with ROS [14]. To verify whether
RRM1 regulates radiation-induced ferroptosis, we performed a
series of experiments. As shown in Fig. 2A, the knockdown of
RRM1 increased the ROS levels induced by radiation in cancer
cells. Ferroptosis is characterized by lipid peroxidation [8]. Indeed,
we found that RRM1 knockdown cells increased radiation-induced
lipid peroxidation and MDA (Malondialdehyde) levels (Fig. 2B, C).
Furthermore, ferroptotic events such as glutathione (GSH)
depletion and glutathione disulfide (GSSG) generation are
promoted (Fig. 2D). Moreover, GPX4, a glutathione peroxidase
that can inhibit ferroptosis, was highly expressed after radiation
(Fig. 2E). However, compared with control shRNA cells, GPX4 was
significantly decreased in RRM1 knockdown cells upon radiation
(Fig. 2E). In addition, the activity of GPX was markedly inhibited in
knockdown RRM1 cells after radiation (Fig. 2E). Taken together,
those above results show that targeting RRM1 promotes radiation-
induced ferroptosis.

RRM1 regulates the ubiquitination of p53
Our data provide strong support that RRM1 regulated the
radiosensitivity of cancer cells by triggering ferroptosis. However,
the potential mechanism by which RRM1 regulates this process
remains unclear. We found that radiation triggered the nuclear
aggregation of RRM1, which was initially located in the cytoplasm
(Fig. 3A). In addition, after radiation, p53 also accumulates in the
nucleus (Fig. 3A). Next, the expression level of p53 protein was

examined to elucidate the relationship between RRM1 and p53 in
radiation-induced ferroptosis. In HCT116 and Hela cells, p53
expression was significantly increased after radiation, but RRM1
knockdown inhibited this effect (Fig. 3B). RRM1-mediated the
decreasing of p53 stability reduced the expression level of p53
protein. As expected, knockdown of RRM1 was shown to promote
p53 polyubiquitination after radiation (Fig. 3C).
The stability of p53 protein is precisely regulated by the

ubiquitin-proteasome system. As a negative regulator of p53,
MDM2 ubiquitinates and degrades p53 [25]. Ubiquitin-specific
protease USP11 deubiquitinates and stabilizes p53 [26]. The
interaction of p53 with MDM2 or USP11 was confirmed (Fig. 3D, E).
The expression of MDM2 was significantly elevated in RRM1
knockdown cells upon radiation, while the expression of USP11
was decreased. Furthermore, we evaluated the interaction
between p53 and USP11 or MDM2 in control and RRM1
knockdown cells, respectively. As shown in Fig. 3G, knockdown
of RRM1 enhanced the p53/MDM2 interaction and weakened the
p53/USP11 interaction after radiation treatment. Together, these
data indicate that RRM1 regulates p53 ubiquitination through
MDM2 and USP11.
In addition, higher MDA levels were detected in p53-deficient

cells after radiation (Fig. 3H). Meanwhile, the depletion of GSH, the
production of GSSG, the activity of GPX, and the expression of
GPX4 all indicate that p53 deficiency promotes radiation-induced
ferroptosis (Fig. 3I, J).

RRM1 regulates GPX4 by inhibiting the p53-p21 signal axis
As a canonical target gene of p53, p21 (also known as CDKN1A) is
involved in several cellular activities, such as cellular stress
responses, metabolism, and cell cycle [27]. We found that RRM1
knockdown combined with radiation decreased p21 protein levels
(Fig. 4A). The p53-p21 pathway can promote cancer cell survival
following serine deprivation by increasing glutathione levels and
maintaining redox balance [24, 28]. To examine the role of p21 in
radiation-induced ferroptosis, siRNA and the inhibitor UC2288
were used, respectively. Both of them can successfully reduce p21
expression (Fig. S2A, B, Supplementary Materials). As shown in Fig.
4B, the expression levels of GPX4 were decreased in p21
knockdown cells compared with control cells upon radiation.
Similarly, the p21 inhibitor UC2288 increased radiation-induced
oxidative stress and lipid peroxidation (Fig. 4C, D) and markedly
promoted a series of radiation-induced ferroptosis events,
including MDA production (Fig. 4E), GSH consumption, and GSSG
generation (Fig. 4F), reduced GPX activity, and inhibition of GPX4
expression (Fig. 4G). Furthermore, compared with non-irradiated
cells, the p21 agonist LAQ824 increased GPX4 expression after
radiation (Fig. S2C, D, Supplementary Materials). In addition, we
demonstrated that GPX4 did not interact with p53 or p21 protein
in HCT116 and Hela cells using Co-IP methods (Fig. 4H).
Collectively, our results indicate that inhibition of the p53-p21
signaling axis indirectly inactivates GPX4 through GSH depletion.

RRM1 regulates chemosensitivity in cancer cells
Cisplatin is an extremely effective and widely used anti-cancer
drug. However, many cancers have developed resistance to
cisplatin therapy [29, 30]. Cisplatin can induce ferroptosis in A549
and HCT116 cells at appropriate concentrations [31]. To determine
whether RRM1 also regulates cisplatin-induced ferroptosis, we
performed combination treatment studies with RRM1 knockdown
and cisplatin. As predicted by our hypothesis, RRM1 knockdown
increased the production of oxidative stress and lipid peroxidation
in cisplatin-induced cells (Fig. 5A, B). Our results also demon-
strated that suppression of RRM1 significantly promoted cisplatin-
induced ferroptotic events, including MDA production, GSH
depletion, and GSSG generation (Fig. 5C, D). Moreover, the
expression of GPX4 and the activity of GPX were significantly
reduced after cisplatin treatment combined with RRM1
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knockdown (Fig. 5E). In addition, it has been reported that
gemcitabine is a chemotherapeutic drug targeting RRM1 [32].
Combined gemcitabine with ferroptosis inducer erastin increased
oxidative stress and lipid peroxidation of cancer cells and
decreased the expression level of SLC7A11 protein (Fig. S3,
Supplementary Materials). Taken together, these data indicate that
RRM1 inhibition combined with cisplatin can promote the
occurrence of ferroptosis, thereby regulating the chemosensitivity
in cancer cells.

RRM1 regulates radiation-induced apoptotic signaling and
causes crosstalk between ferroptosis and apoptosis
We found that RRM1 was overexpressed in the tumor. Further-
more, gene set enrichment analysis revealed that the apoptotic
pathway was enriched in RRM1 knockdown cells (Fig. 1F).
Therefore, we investigated the apoptotic signaling of radiation
in RRM1 knockdown cells. As shown in Fig. 6A, B, cell viability and
colony formation in cancer cells were reduced when the radiation
was combined with RRM1 knockdown. Consistently, high levels of
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apoptotic protein expression (cleaved caspase-3, cleaved caspase-
7, and cleaved caspase-9) were detected in RRM1-knockdown cells
after radiation (Fig. 6C). Notably, the expression of puma protein
was also significantly increased (Fig. 6C). Furthermore, RRM1
knockdown significantly promoted the expression of γH2AX
protein, a marker of DNA damage upon radiation (Fig. 6D, E).
The above results indicate that the downregulation of RRM1
promotes radiation-induced apoptotic signaling.

Ferroptosis is thought to be distinct from cell death types
such as necrosis, autophagy, apoptosis, necroptosis, but recent
studies have revealed the interplay between ferroptosis and
apoptosis [33]. To confirm the relationship between radiation-
induced ferroptosis and apoptosis mediated by RRM1, HCT116
cells and Hela cells were treated with the ferroptosis inhibitor
ferrostatin-1 and activated cysteine proteases were tested.
Compared with radiation alone, a higher expression of apoptotic
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proteins (cleaved caspase-3, cleaved caspase-7) was detected in
RRM1-knockdown cells after radiation with ferrostatin-1 treat-
ment (Fig. 6F). Notably, in control vector cells, highly expressed
apoptotic proteins were also detected upon radiation and
ferrostatin-1 treatment. The above results indicate that RRM1
causes the crosstalk of radiation-induced apoptosis and
ferroptosis. That is, when inhibiting the radiation-induced
ferroptosis, the radiation-induced apoptosis signal compensa-
tory increased.

DISCUSSION
RRM1 has been less studied recently, even though it is a critical
factor. Therefore, apart from providing dNTPs for DNA synthesis,
the biological function of RRM1 is still unknown [18]. Recent data
indicate that UVA-induced ROS can transiently and reversibly
oxidize the RRM1 subunit, suggesting that RRM1 may be involved
in oxidative stress [20]. Here, we demonstrate for the first time a
direct connection between RRM1 and radio-/chemotherapy-
induced ferroptosis in cancer cells. Our study identified RRM1 as
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a negative regulator of radio-/chemotherapy-induced ferroptosis.
RRM1 increases the instability of p53 by regulating the physical
interaction of p53 with the ubiquitinating enzyme MDM2 and the
deubiquitinating enzyme USP11, subsequently suppressing p21
and GPX4, thereby promoting the accumulation of lipid peroxida-
tion and occurrence of radiation-induced ferroptosis. In summary,
our findings offer new mechanistic insight into the regulation of
RRM1 and indicate that the lack of RRM1 exacerbates ferroptosis
of cancer cells upon DNA damage, and targeting RRM1 improves
radio-/chemotherapy.
Accumulating evidence has demonstrated that tumor cells are

prone to synthesize more antioxidants to resist radiation-induced
ROS [5, 6]. Our findings show that radiation significantly increases

the expression and activity of the antioxidant enzyme GPX4, which
is consistent with previous studies [14]. This adaptive response of
GPX4 may promote the survival of cancer cells during radiotherapy,
leading to radioresistance. Using the online GEPIA database analysis,
we showed that high protein levels of RRM1 were observed in
multiple types of human cancers. RNA sequencing and GSEA
analysis indicate that the high expression of RRM1 after radiation
may be associated with oxidative stress, DNA repair, apoptosis.
Importantly, lower GPX4 expression and activity were detected in
RRM1 knockdown cells after radiation, suggesting that the balance
between ROS and the antioxidant system was disrupted, further
supporting the role of RRM1 in targeting the tumor antioxidant
system to increase radiosensitivity.
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Our study revealed that p53 is ubiquitinated in RRM1 knock-
down cells upon radiation. Subsequently, we determined that
MDM2 and USP11 were up-regulated and down-regulated in
RRM1 knockdown cells, respectively, after radiation. MDM2 and

USP11 play a vital role in the process of p53 ubiquitination
modification. As a negative regulator of p53, MDM2 ubiquitinates
and degrades p53 [25]. Furthermore, the stability of p53 is also
regulated by deubiquitinating enzymes (DUBs) [34]. As a positive
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regulator of p53, ubiquitin-specific protease USP11 can deubiqui-
tinate and stabilize p53 [26]. Our data clearly show that a
deficiency in RRM1 promotes the interaction between MDM2 and
p53 and weak the binding of USP11 and p53, indicating that RRM1
regulates the stability of p53 through ubiquitination and de-
ubiquitination system. Taken together, our findings strongly imply
that RRM1 is a regulator of p53 stability after radiation.
As the “guardian of the genome,” p53 controls cell survival and

division under various stresses [35]. Beyond regulating intracellular
processes such as the cell cycle, autophagy, and apoptosis, recent
studies have shown that p53 modulates ferroptosis through
transcriptional or posttranslational mechanisms [23]. Studies have
shown that p53 enhances ferroptosis by inhibiting SLC7A11
expression or promoting the expression of GLS2 and SAT1.
Conversely, p53 can inhibit ferroptosis by inducing CDKN1A/p21
expression or directly attenuating DPP4 activity [22]. The dual role
of p53 in controlling ferroptosis makes the molecular mechanisms
of ferroptosis more complex than previously thought. In our study,
compared with wild-type cells, p53-deficient cells promoted
radiation-induced ferroptosis. These results further confirmed that
the ferroptosis signal mediated by RRM1 is closely related to the
ubiquitination degradation of p53.
It has been reported that increased expression of wild-type p53

reduced ferroptosis signaling under cystine deprivation, and
transactivation of the canonical p53 target gene p21 may be
involved in this process [24, 28]. We found that p21 acts an
essential role in the radiation-induced ferroptosis regulated by
p53. Inhibition of p21 promoted radiation-induced lipid peroxida-
tion and ROS and triggered a series of ferroptotic events. Notably,
neither p53 nor p21 interacted with GPX4. The above results
indicate that the p53-p21 signaling axis increases radiation-
induced ferroptosis through regulating the consumption of GSH
and indirectly inactivating the antioxidant enzyme GPX4 in RRM1
knockdown cells. In addition, compared with control shRNA cells,
the DNA damage signal and downstream apoptotic cascade were
markedly increased in RRM1 knockdown cells upon radiation.
Moreover, RRM1-mediated crosstalk between radiation-induced
apoptosis and ferroptosis preliminarily suggested that there might
be a reciprocal transformation network between the two forms
of death.
In summary, our study identified a novel regulatory role of

RRM1, causing an imbalance of the antioxidant system in cancer
cells to reverse radio- and chemoresistance (Fig. 7). The new
function of RRM1 as a negative regulator of radio-/chemotherapy-
induced ferroptosis can be used to design new cancer treatments.
Future studies will explore the crosstalk mode between RRM1’s
regulation of apoptosis and ferroptosis.

MATERIALS AND METHODS
Cell culture and radiation
HCT116, Hela, HEK293T, and HIEC cells were purchased from the ATCC. All
cells were cultured in DMEM medium supplemented with 10% fetal bovine
serum and 1% penicillin/streptomycin. We used a Biobeam GM gamma
irradiator (Leipzig, Germany). The instrument is routinely maintained (dose
rate= 3.27 Gy/min).

ROS and lipid peroxidation analysis
Measurements were performed as previously described [14]. Cells were
treated with 10 μM CM-H2DCFDA (ThermoFisher, C6827) (to detect ROS) or
5 μM BODIPY 581/591 C11 dye (Invitrogen, D3861) (to detect lipid
peroxidation) in medium for 30min. Next, the cells were digested to
obtain a cell suspension. Detection was performed by flow cytometer (BD
FACS AriaIII, BD Biosciences).

Measurement of GPX activity
Glutathione peroxidase (GPX) activity was measured using Beyotime’s
Cellular Glutathione Peroxidase Assay Kit (S0056). The cell lysate was mixed
with GPX detection working solution and reacted at 25 °C for 15min.
Reactions were initiated using a peroxide reagent (t-Bu-OOH) and
absorbance was measured at 340 nm for 20min (measured every minute).
Calculate the activity value of glutathione peroxidase in the sample
according to the OD value.

MDA assay
Intracellular lipid peroxidation was detected using Beyotime’s MDA
detection kit (S0131M). After the collected cells were lysed, the cell lysates
were treated with MDA standard solution. Afterward, mix the above liquid
with the thiobarbituric acid (TBA) working solution. The absorbance of the
MDA-TBA complex was measured at 532 nm, and the content of cellular
MDA was calculated.

Analysis of GSH and GSSG
Beyotime’s GSH and GSSG kit (S0053) was used to measure intracellular
glutathione (GSH) and glutathione disulfide (GSSG) levels. After the cells
were collected, the samples were deproteinized. Next, the samples were
then subjected to two flash freeze-thaw cycles (liquid nitrogen and 37 °C
water bath). After 5 min at 4 °C, centrifuge at 10,000 g for 10minutes.
Measure the concentrations of GSH and GSSG in the supernatant using a
microplate reader at 412 nm.

Antibodies
The experimental procedure was as described previously [36]. The antibodies
used are as follows: RRM1 (600732-2-Ig, 1:1000, Proteintech, Rosemont, IL,
USA), p53 (10442-1-AP, 1:1000, Proteintech, Rosemont, IL, USA), GPX4
(ab125066, 1:1000, Abcam, Cambridge, UK), MDM2 (#86934, 1:1000, Cell
Signaling Technology, Danvers, MA, USA), USP11 (22340-1-AP, 1:1000,
Proteintech, Rosemont, IL, USA), p53 (#2524, 1:1000, Cell Signaling
Technology, Danvers, MA, USA), Ubiquitin (#3936, 1:1000, Cell Signaling
Technology, Danvers, MA, USA), p21 (sc-6246, 1:5000, Santa Cruz, CA, USA),
Puma (55120-1-Ap, 1:1000, Proteintech, Rosemont, IL, USA), cleaved caspase-9
(sc8355, 1:1000, Santa Cruz, CA, USA), caspase-7 (#9492 S, 1:1000, Cell
Signaling Technology, Danvers, MA, USA), cleaved caspase-3 (MAB835, 1:1000,
R&D Systems, Minneapolis, MN, USA), γH2AX (05-636, 1:1000, Sigma, Merck
KGaA, Darmstadt, Germany), β-actin (T0022,1:3000, Affinity, San Francisco, CA,
USA), and Histone H3 (AF0009, 1:1500, Beyotime, Shanghai, China).

RNA sequencing
A total of 1 × 106 cells were plated per well in a 10 cm dish. Both the control
and RRM1 knockdown cell lines were treated with radiation (γ-ray, 5 Gy). After
24 hours, the total RNA extraction was used Trizol (Invitrogen, Shanghai,
China). Samples were sent to Suzhou Jinweizhi Company for sequencing at
Illumina Hiseq 4000 system. Pathways associated with radiation treatment
were enriched using Gene Set Enrichment Analysis (GSEA) software.

Immunofluorescence staining
Cells were fixed with 4% paraformaldehyde after a brief rinse with PBS.
0.2% Triton X-100 was used to permeabilize cells. Afterwards, cells were
blocked for 2 hours. Next, cells were incubated overnight at 4 °C with
primary antibodies diluted in blocking buffer. On the second day, after

Fig. 7 Schematic illustration of the proposed model. The
mechanism of RRM1-mediated radiosensitization of cancer cells.
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washing the cells with PBS, incubate the secondary antibody for 1 hour at
room temperature in the dark. Nuclei were counterstained with DAPI.

Statistical analysis
The experiments were performed three times independently. The mean
plus or minus the standard error is a representation of statistical data. Two
groups were compared by Student’s t-test, and multiple groups were
compared by two-way ANOVA. P < 0.05 represents a significant difference.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns= not significant.

DATA AVAILABILITY
All data are available in the main text or the supplementary materials.
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