Published in final edited form as: *Nature*. 2009 April 2; 458(7238): 655–659. doi:10.1038/nature07763.

Clustering of IP₃ receptors by IP₃ retunes their regulation by IP₃ and Ca²⁺

Taufiq-Ur-Rahman¹, Alexander Skupin², Martin Falcke^{2,3}, and Colin W. Taylor¹

¹Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK

²Mathematical Cell Physiology, Max Delbrück Centre for Molecular Medicine, Robert Rössle Str. 10, 13092 Berlin, Germany

³Helmoholtz Centre Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin, Germany

Abstract

The versatility of Ca^{2+} signals derives from their spatio-temporal organization 1,2. For Ca^{2+} signals initiated by inositol trisphosphate (IP₃) this requires local interactions between IP₃ receptors (IP₃R)3,4 mediated by their rapid stimulation and slower inhibition4 by cytosolic Ca^{2+} . This allows hierarchical recruitment of Ca^{2+} release events as the IP₃ concentration increases5. Single IP₃R respond first, then clustered IP₃R open together giving a local Ca^{2+} puff, and as puffs become more frequent they ignite regenerative Ca^{2+} waves 1,5-9. We demonstrate, using nuclear patch-clamp recording 10, that IP₃R are initially randomly distributed with an estimated separation of ~1 µm. Low concentrations of IP₃ cause IP₃R to aggregate rapidly and reversibly into small clusters of ~4 closely associated IP₃R. At resting cytosolic $[Ca^{2+}]$, clustered IP₃ sensitivity than lone IP₃R. Increasing cytosolic $[Ca^{2+}]$ reverses the inhibition caused by clustering, IP₃R gating becomes coupled, and the duration of multiple openings is prolonged. Clustering both exposes IP₃R to local Ca^{2+} rises and increases the effects of Ca^{2+} . Dynamic regulation of clustering by IP₃ tunes IP₃R sensitivity to IP₃ and Ca^{2+} , facilitating hierarchical recruitment of the elementary events that underlie all IP₃-evoked Ca^{2+} signals 3,5.

IP₃-activated currents recorded from patches excised from the outer nuclear envelope of DT40 cells10 expressing rat IP₃R3 are entirely due to IP₃R3 (Fig. 1). With 10 μ M IP₃ in the pipette solution (PS) the single channel open probability (P_0) was 0.44 \pm 0.05 (n = 6) and the mean open time (τ_0) was 11.9 \pm 1.6 ms. The distribution of closed times (τ_c) had two components (Fig. 1d). Recordings in the on-nucleus configuration confirmed these results (not shown). The results are consistent with the gating scheme shown in Figure 1d (see Supplementary Methods).

The number of channels within a patch $(1.34 \pm 0.13, n = 109)$ can be estimated reliably from the largest multiple of simultaneous openings to the unitary current level (Fig. 1e, Methods). The distribution of IP₃R in a patch is random: it is not significantly different from a Poisson distribution (χ^2 , p>0.05; Fig. 1f, Supplementary Table 1). Others suggested that IP₃R are clustered in the nuclear envelope11,12, but it seems likely that in making repeated recordings from the same nucleus they stimulated nuclei with IP₃ before recording and thereby caused IP₃R clustering (see below).

Channel activity (P_0 , Fig. 2a-c), but not the number of active IP₃R (Fig. 2d), increased with IP₃ concentration (EC₅₀ = 1.38 ± 0.03 μ M for patches with one IP₃R). There was more than

Author information Correspondence and requests for materials should be addressed to C.W.T. (cwt1000@cam.ac.uk)..

one IP₃R in 57% of active patches, and each opened to the same γ (Fig. 1e, 2a), but NP_0 (the overall channel activity) was less than expected from the summed behaviour of lone IP₃R (Fig. 2e). For multi-IP₃R patches, the sensitivity to IP₃ of NP_0 was also significantly reduced (EC₅₀ = 2.47 ± 0.25 µM for patches with 3 IP₃R, Fig. 2c, Supplementary Table 2). Do IP₃R behave independently in such multi-IP₃R patches or do they interact, like some ryanodine receptors13,14? For each of the four states in patches with three IP₃R (closed and 1, 2 or 3 simultaneously open IP₃R), P_0 predicted from the binomial distribution matched the observed P_0 (Fig. 2f, Methods). Similar results were obtained for patches with different numbers of IP₃R and for type 1 IP₃R (Supplementary Figs 1, 2). At resting cytosolic [Ca²⁺], therefore, each IP₃R within a multi-IP₃R patch behaves identically and opens independently.

How can randomly distributed IP₃R that open independently behave with such uniformity, and yet so differently from lone IP₃R, when a patch fortuitously contains several IP₃R? Recordings from Xenopus nuclei also suggest that heterogenous behaviour of lone IP₃R becomes more uniform when patches contain several IP₃R15. We suggest that IP₃ causes IP_3R to cluster16 and that clustered IP_3R are less active. To test this hypothesis, nuclei were bathed in IP₃ (10 μ M, 2 min) before forming seals for patch-clamp recording. In these paired experiments, the mean number of IP₃R per patch was unaffected by IP₃-pre-treatment (Supplementary Table 1), confirming that IP₃ neither inactivated IP₃R nor affected the area of membrane trapped beneath the patch. But the distributions of IP₃R were very different before and after IP₃ treatment (Fig. 3a). In naïve nuclei IP₃R were randomly distributed (Fig. 3b), but their distribution after IP₃-pre-treatment differed significantly from the Poisson distribution (p<0.05): many patches had no IP₃R, single IP₃R were underrepresented, and several patches had unusually large numbers of IP_3R (Fig. 3c). This clustering of IP₃R fully reversed within 8-10 min of removing IP₃ (Fig. 3a, d). P_0 of lone IP₃R from naïve nuclei (0.44 \pm 0.05, n = 6) was indistinguishable from P₀ of the only lone IP₃R caught within a patch after IP₃ pre-treatment (0.41). P_0 for each IP₃R within a cluster was also indistinguishable for recordings from naïve (0.24 \pm 0.01, n = 18) and IP_3-pretreated nuclei (0.25 \pm 0.01, n = 18). Furthermore, there was no decrease in P₀ during recordings that outlasted the IP3 pre-treatment (Supplementary Fig. 3). We conclude that clustering, rather than IP₃ per se, decreases P_0 .

The decrease in P_0 as IP₃R cluster is identical whether clustering is evoked by application of IP₃ to an isolated patch (Fig. 2e, h) or the entire nucleus (Fig. 3e). Both reduce P_0 to ~54% that of lone IP₃R. The latter condition better replicates the situation *in vivo*, confirming that results with isolated patches (Figs 1, 2) faithfully report the behaviour of IP₃R roaming freely within the nuclear envelope. The effect of cluster size on P_0 indicates that pairing of IP₃R is sufficient to cause the maximal decrease in P_0 . Additional IP₃R can join a cluster, and their activity is attenuated, but IP₃R within larger clusters are no more inhibited than pairs of IP₃R (Figs 2g, h, Supplementary Table 2). IP₃R associate with actin4 and microtubules17, but neither is required for clustering-evoked changes in P_0 (Supplementary Fig. 4).

To examine the effects of clustering on IP₃R gating, we compared mean open time (τ_o , Supplementary Information) of lone IP₃R with τ_o for single channel openings from patches with several (*N*) IP₃R (blue line in Fig. 3f). These τ_o should be similar if lone and grouped IP₃R behave identically. For multi-IP₃R patches, we also measured the duration of events in which all IP₃R were simultaneously open ($\tau_{o,N}$ red line in Fig. 3f), and from that calculated τ_o for individual, independently gated IP₃R (= $N\tau_{o,N}$). Both analyses gave the same result: τ_o for IP₃R within a cluster was reduced to 47% of that for lone IP₃R (Fig. 3f). A similar analysis of closed states confirmed that neither was affected by clustering (Supplementary Fig. 5, Supplementary Table 3). IP₃-evoked clustering almost doubles the rate of channel closure (1/ τ_o) and this is alone sufficient (Supplementary Fig. 6, Supplementary Table 4) to

account for the decreased P_0 of clustered IP₃R (Fig. 2g). Clustered IP₃R open for half as long as lone IP₃R (5.4 *vs* 11.9 ms), and pairing of IP₃R is enough to cause the full effect (Fig. 2g). Other regulators of IP₃R usually influence τ_c and so rates of channel opening4. The difference is important because τ_o will affect the time course of the initial Ca²⁺ release within elementary events7 and thereby Ca²⁺-mediated interplay between clustered IP₃R. This is confirmed by simulations of intracellular Ca²⁺ spikes, where the ~50% decrease in τ_o of clustered IP₃R causes the frequency of Ca²⁺ spiking to decrease by 4-fold (Supplementary Fig. 7).

Within a patch, cluster size is limited to the number of IP_3R fortuitously caught beneath the patch-pipette, but for nuclei pre-treated with bath-applied IP₃ the clusters are larger (Fig. 3c). This demonstrates that a maximal concentration of IP_3 causes >93% of IP_3R to cluster $(85/91 \text{ IP}_3 \text{R} \text{ from } 88 \text{ nuclei pre-treated with IP}_3)$ and the average cluster contains $4.25 \pm$ 0.38 IP₃R (Methods). Inhibition of IP₃R within a cluster is not caused by feedback inhibition4 from Ca²⁺ passing through neighbouring IP₃R. Both BS and PS have the same $[Ca^{2+}]$ and are buffered with BAPTA, the inhibition occurs at positive (Fig. 2) and negative holding potentials (Supplementary Discussion), and clustered IP₃R open independently (Fig. 2f). Because permeating ions cannot regulate neighbouring IP₃R under our recording conditions, inhibition must be mediated by contacts between IP_3R . From this, we estimate that the average separation of IP₃R falls from ~1 μ m to ~20 nm after clustering, and that clusters are $\sim 2 \,\mu$ m apart (Supplementary Discussion). These spacings concur with confocal measurements suggesting that a Ca^{2+} puff originates from a cluster ~50 nm wide and that clusters are ~3 µm apart18. When expressed at high densities, IP₃R19 and ryanodine receptors20 form arrays with each tetrameric receptor contacting four others. We speculate that IP₃-evoked clusters (of 4.25 ± 0.38 IP₃R) exploit similar contacts and so, with single IP₃R, form the fundamental units of Ca^{2+} signalling (Fig. 3g).

IP₃-evoked clustering is complete within seconds of stimulation with a maximal concentration of IP₃ (Supplementary Fig. 3). To resolve the time course, we used photolysis of caged IP₃ rapidly to increase the IP₃ concentration bathing IP₃R trapped beneath the patch-pipette. IP₃R were initially quiescent and then rapidly activated when IP₃ was photoreleased (Fig. 3h). Irrespective of the number of IP₃R caught within a patch, τ_0 was initially similar for all IP₃R (~10 ms). It then remained stable for many minutes for lone IP₃R (11.4 ± 0.5 ms), but τ_0 fell within 2.5 s to 5.8 ± 0.3 ms for patches containing more than one IP₃R (Fig. 3i, Supplementary Fig. 8). Using τ_0 to report IP₃R clustering suggests that clustering is complete within 2.5 s of IP₃ addition. A similar analysis of P_0 suggests a half-time for clustering of ~1.5-2 s (Fig. 3i). Our evidence that clustering does not require the cytoskeleton and measurements of IP₃R3 mobility21,22 suggest that diffusion alone may be sufficient to allow IP₃R3 clustering within a few seconds (Supplementary Discussion).

We can define the IP₃ sensitivity of clustering by measuring the extent to which P_0 of each IP₃R within a multi-IP₃R patch ($P_0 = NP_0/N$, Supplementary Abbreviations) falls below P_0 of an identically stimulated lone IP₃R (P_{lone}). This demonstrates that IP₃R clustering (EC₅₀ < 300 nM) is ~10-times more sensitive to IP₃ than channel opening (EC₅₀ = 2.02 μ M, Fig. 3e). Steady-state exposure to low IP₃ concentrations that evoke Ca²⁺ puffs5,7 would, by assembling IP₃R clusters, allow both generation of puffs and loss of Ca²⁺ blips23.

Clustering moves IP₃R (~1 μ m apart) from being insulated from their neighbours by Ca²⁺buffering to domains (~20 nm apart) where they will instantly experience high local [Ca²⁺] whenever a neighbour opens24 (Supplementary Fig. 7). Hitherto (Figs 1-3), we prevented such interactions by using K⁺ as charge-carrier and recording at a free [Ca²⁺] (200 nM) that mimics a resting cell. Subsequent experiments include 1 μ M free [Ca²⁺] with IP₃ in PS to simulate the [Ca²⁺] near open IP₃R. For simplicity we use K⁺ as charge-carrier. With 1 μ M

Page 4

 $[Ca^{2+}]$ in PS, IP₃R activity was increased: P_0 for lone IP₃R almost doubled, as τ_c decreased (Fig. 4a)4. Neither the number of IP₃R/patch (1.12 ± 0.24) nor their random distribution (Fig. 4b) was affected by Ca²⁺, but the interplay between IP₃R was altered. Whereas clustering reduced the overall activity of IP₃R (NP_0) at resting [Ca²⁺] (Fig. 2e), the inhibition was reversed by increased $[Ca^{2+}]$, such that the collective activity of a pair of $IP_{3}R(NP_{0})$ was the same as that predicted from the summed activity of two lone $IP_{3}R$ (Fig. 4c). This did not result from disaggregation of clusters because at increased $[Ca^{2+}]$, IP₃R no longer opened independently. In patches with two IP₃R (open-channel noise prevented analysis of larger clusters), open probabilities did not fit the binomial distribution (Fig. 4e): double open and closed events were over-represented (Supplementary Fig. 9). Furthermore, there were many examples of IP₃R opening and closing directly to and from states with both IP₃R open (Fig. 4d). For paired IP₃R, the double openings were prolonged by 50% (Fig. 4f), but 47% less frequent than expected (Fig. 4g). The overall increase in P_0 for double openings was therefore small (12%) and counteracted by a 39% decrease in the probability of only one IP₃R being open and a 116% increase in the probability of both being closed (Fig. 4e). Clustered IP₃R exposed to increased $[Ca^{2+}]$ do not therefore behave independently. Their gating is coupled13,14: they are more likely to open and close together, and their simultaneous openings are prolonged (Supplementary Fig. 9). Coupled gating is not caused by local increases in cytosolic $[Ca^{2+}]$, and must instead result from physical coupling of IP₃R. Under physiological conditions, clustered IP₃R are more likely to experience increased [Ca²⁺] (because their neighbours may release it), and they are also tuned to respond most to it. By suppressing IP₃R activity at resting [Ca²⁺], clustering increases the impact of a subsequent local increase in $[Ca^{2+}]$ (Supplementary Fig. 7). Within a cluster, increased Ca^{2+} increases P_0 (as it does for lone IP₃R), but it also reverses the inhibition evoked by clustering and it causes coupled gating. These interactions exaggerate the effect of Ca²⁺ within a cluster (Fig. 4h). We conclude that IP₃ dynamically regulates the assembly and behaviour of Ca²⁺ puff sites. IP₃ rapidly drives IP₃R into small clusters, wherein their IP₃ and Ca²⁺ sensitivities are re-tuned to exaggerate Ca²⁺-mediated recruitment of IP₃R and allow hierarchical recruitment of Ca²⁺ release events (Fig. 4h, Supplementary Fig. 7)5,7.

METHODS SUMMARY

Nuclei from DT40-IP₃R3 cells25 were used for patch-clamp recording from excised patches10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Supported by The Wellcome Trust (CWT), The Biotechnology and Biological Sciences Research Council (CWT), a scholarship from the Jameel Family Trust (TUR), and the IRTG "Genomics and Systems Biology of Molecular Networks" of the Deutsche Forschungsgemeinschaft (MF). We thank S. Dedos for help with DT40 cells, D. Prole and B. Billups for advice, and T. Kurosaki for providing DT40KO cells.

References

- 1. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 2000; 1:11–21. [PubMed: 11413485]
- Rizzuto R, Pozzan T. Microdomains of intracellular Ca²⁺: molecular determinants and functional consequences. Physiol. Rev. 2006; 86:369–408. [PubMed: 16371601]

- Marchant J, Callamaras N, Parker I. Initiation of IP₃-mediated Ca²⁺ waves in Xenopus oocytes. EMBO J. 1999; 18:5285–5299. [PubMed: 10508162]
- Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca²⁺ release channels. Physiol. Rev. 2007; 87:593–658. [PubMed: 17429043]
- 5. Bootman MD, Berridge MJ, Lipp P. Cooking with calcium: the recipes for composing global signals from elementary events. Cell. 1997; 91:367–373. [PubMed: 9363945]
- Horne JH, Meyer T. Elementary calcium-release units induced by inositol trisphosphate. Science. 1997; 276:1690–1694. [PubMed: 9180077]
- Marchant JS, Parker I. Role of elementary Ca²⁺ puffs in generating repetitive Ca²⁺ oscillations. EMBO J. 2001; 20:65–76. [PubMed: 11226156]
- Shuai J, Rose HJ, Parker I. The number and spatial distribution of IP₃ receptors underlying calcium puffs in Xenopus oocytes. Biophys. J. 2006; 91:4033–4044. [PubMed: 16980372]
- Sneyd J, Falcke M. Models of the inositol trisphosphate receptor. Prog. Biophys. Mol. Biol. 2005; 89:207–245. [PubMed: 15950055]
- Dellis O, Dedos S, Tovey SC, Rahman T-U, Dubel SJ, Taylor CW. Ca²⁺ entry through plasma membrane IP₃ receptors. Science. 2006; 313:229–233. [PubMed: 16840702]
- Mak D-O,D, Foskett JK. Single-channel kinetics, inactivation, and spatial distribution of inositol trisphosphate (IP₃) receptors in *Xenopus* oocyte nucleus. J. Gen. Physiol. 1997; 109:571–587. [PubMed: 9154905]
- Ionescu L, Cheung KH, Vais H, Mak DO, White C, Foskett JK. Graded recruitment and inactivation of single InsP₃ receptor Ca²⁺-release channels: implications for quantal Ca²⁺ release. J. Physiol. 2006; 573:645–662. [PubMed: 16644799]
- Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ. Res. 2001; 88:1151–1158. [PubMed: 11397781]
- Marx SO, Ondrias K, Marks AR. Coupled gating between individual skeletal muscle Ca²⁺ release channels (ryanodine receptors). Science. 1998; 281:818–821. [PubMed: 9694652]
- 15. Mak D-O,D, Foskett JK. Effects of divalent cations on single-channel conduction properties of *Xenopus* IP₃ receptor. Am. J. Physiol. 1998; 275:C179–C188. [PubMed: 9688849]
- Tateishi Y, et al. Cluster formation of inositol 1,4,5-trisphosphate receptor requires its transition to open state. J. Biol. Chem. 2005; 280:6816–6822. [PubMed: 15583010]
- Bourguignon LY, Iida N, Jin H. The involvement of the cytoskeleton in regulating IP₃ receptormediated internal Ca²⁺ release in human blood platelets. Cell Biol. Int. 1993; 17:751–758. [PubMed: 8220303]
- Dargan SL, Parker I. Buffer kinetics shape the spatiotemporal patterns of IP₃-evoked Ca²⁺ signals. J. Physiol. 2003; 553:775–788. [PubMed: 14555715]
- Katayama E, et al. Native structure and arrangement of inositol-1,4,5-trisphosphate receptor molecules in bovine cerebellar Purkinje cells as studied by quick-freeze deep-etch electron microscopy. EMBO J. 1996; 15:4844–4851. [PubMed: 8890158]
- Yin CC, Blayney LM, Lai FA. Physical coupling between ryanodine receptor-calcium release channels. J. Mol. Biol. 2005; 349:538–546. [PubMed: 15878596]
- Fukatsu K, Bannai H, Zhang S, Nakamura H, Inoue T, Mikoshiba K. Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites. J. Biol. Chem. 2004; 279:48976–48982. [PubMed: 15364918]
- Ferreri-Jacobia M, Mak D-O,D, Foskett JK. Translational mobility of the type 3 inositol 1,4,5trisphosphate receptor Ca²⁺ release channel in endoplasmic reticulum membrane. J. Biol. Chem. 2005; 280:3824–3831. [PubMed: 15537642]
- 23. Sun X-P, Callamaras N, Marchant JS, Parker I. A continuum of Ins*P*₃-mediated elementary Ca²⁺ signalling events in *Xenopus* oocytes. J. Physiol. 1998; 509:67–80. [PubMed: 9547382]
- 24. Falcke M. Reading patterns in living cells the physics of Ca²⁺ signaling. Adv. Phys. 2004; 53:255–440.

- Boehning D, Joseph SK, Mak D-O,D, Foskett JK. Single-channel recordings of recombinant inositol trisphosphate receptors in mammalian nuclear envelope. Biophys. J. 2001; 81:117–124. [PubMed: 11423400]
- Prole DL, Lima PA, Marrion NV. Mechanisms underlying modulation of neuronal KCNQ2/ KCNQ3 potassium channels by extracellular protons. J. Gen. Physiol. 2003; 122:775–793. [PubMed: 14638935]

Europe PMC Funders Author Manuscripts

Europe PMC Funders Author Manuscripts

Figure 1. IP₃R are randomly distributed

a, IP₃-evoked Ca²⁺ release from permeabilized DT40-IP₃R3 (EC₅₀ = 281 ± 46 nM) and DT40-KO cells (means ± SEM, n 3). Immunoblot with IP₃R3-specific antiserum (10 µg membrane protein/lane, 220-kDa marker shown). **b**, Currents recorded from excised patches with 10 µM IP₃ in PS. No currents were detected without IP₃ (n = 20), with heparin (100 µg/ml) and IP₃ (n = 15), or with IP₃ in DT40-KO cells (n > 30). C denotes closed state. **c**, *i*-V relationship for IP₃-evoked current ($\gamma_{\rm K} = 121 \pm 2.8$ pS, n = 7). **d**, Dwell time distribution of single IP₃R3 stimulated with 10 µM IP₃. Open time distribution of this typical recording is fitted with a single probability density function (pdf) with $\tau_0 = 10.4$ ms (mean = 11.9 ± 1.6 ms, n = 6). The pdf for the τ_c distribution has two components (1.07 ms, 88% and 109 ms, 12%). Dwell time distributions are consistent with the gating scheme (Supplementary Methods, Supplementary Figs 5, 6). **e**, Typical all-points current amplitude histogram of an excised patch containing 3 IP₃R stimulated with 10 µM IP₃; C and O denote closed and open states. **f**, Observed and predicted numbers of IP₃R/patch from 109 patches (mean = 1.34) stimulated with 10 µM IP₃.

Figure 2. Lone IP₃R are more active than clustered IP₃R at resting cytosolic Ca²⁺ a, Typical records from patches (2 IP₃R/patch) stimulated with IP₃ (μ M). b, c, Effect of IP₃ on P₀ of patches containing a single IP₃R (b) or on NP₀ of patches with 3 IP₃R (c) (n 4). d, Numbers of IP₃R detected in each patch for each IP₃ concentration (n = 9-25). e, Predicted (ie NP_{10ne}) and observed NP₀ for patches containing 1-5 IP₃R (n 3; n = 2 for 5-IP₃R patch). f, For patches with 3 IP₃R, observed/predicted values are shown for the indicated numbers of simultaneous openings (Supplementary equation 4). g, P₀ as a function of the number of IP₃R within a patch after stimulation with 10 μ M IP₃ (Supplementary equation 5). h, Effect of IP₃ on P₀ for lone IP₃R and IP₃R within multi-IP₃R patches (n 4).

Figure 3. Reversible clustering of IP₃R by IP₃

a, Numbers of IP₃R detected in patches from naive nuclei (n = 63), after pre-treatment with bath-applied IP₃ (10 μ M, ~2 min; n = 88), or the latter after recovery for 8-10 min without IP_3 (n = 40). **b-d**, Observed and predicted numbers of IP_3R /patch. **e**, Effects of IP_3 on IP_3R clustering and gating. Clustering is reported by P_0/P_{lone} for patches with 2 or 3 IP₃R, and gating by NP_0 for patches with 2 IP₃R (EC₅₀ = 2.02 ± 0.20 μ M). f, τ_0 for patches with 2 or 3 IP₃R measured from the duration of single channel openings (blue line, τ_{single}) or calculated from the duration of openings to the N^{th} level (red line, $\tau_{\text{calculated}} = N \cdot \tau_{o,N}$). These are compared with τ_0 for lone IP₃R (τ_{lone}). Typical trace is from a patch with 2 IP₃R. g, IP₃ drives IP₃R into small clusters consistent with arrays (grey) formed by IP₃R at high density 19. Within a cluster, each IP₃R opens independently, but closes more rapidly than a lone IP₃R. **h**, Typical recording from a patch containing 4 IP₃R with IP₃ released from caged IP₃ in PS by flash photolysis (electrical noise caused by the flash is shown). i, From records similar to h (Supplementary Fig. 8), P_0 (from NP_0/N) and τ_0 were measured during each 0.5 s interval after the flash (1.5 s for first interval). The ratio (multi-IP₃R patch/lone IP₃R) is shown for both τ_0 and P_0 . Results (means ± SEM) are from 4 (single) and 7 (multiple, with 2-4 IP₃R/patch) patches.

Figure 4. Clustering retunes Ca²⁺ regulation of IP₃R

a-e, Patches were stimulated with PS containing 10 µM IP3 and (unless otherwise stated) 1 μ M Ca²⁺. **a**, Typical recording and summary data (n = 5-6) from lone IP₃R show that increasing Ca²⁺ increases P₀ by reducing τ_c . **b**, Observed and expected numbers of IP₃R/ patch. c, Observed and predicted NP_0 for patches containing 1 or 2 IP₃R and stimulated with $10 \,\mu\text{M}$ IP₃ in PS containing 200 nM or $1 \,\mu\text{M}$ Ca²⁺ (n = 5-6). **d**, Typical recording from a patch with 2 IP₃R, enlarged (red) to highlight transitions directly between closed (C) and double open (O2) states. **e**, Observed and predicted P_0 for closed (C) and single (O1) or double openings (O2) for patches with 2 IP_3R (n = 6, Supplementary equations 4, 5). f, Observed and expected durations of events when both IP₃R are simultaneously open $(\tau_{0,2})$ or closed ($\tau_{c,2}$) for patches with 2 IP₃R (n = 6, Supplementary equations 6, 7). g, Observed and predicted numbers of transitions to each of the 3 states in a patch with $2 IP_3 R$ (n = 6)26. **h**, At resting $[Ca^{2+}]$, IP₃ drives IP₃R into small clusters wherein IP₃R gate independently, but with reduced P_0 and IP₃ sensitivity. Ca²⁺ reverses the inhibition imposed by clustering, openings within a cluster are more synchronized, and simultaneous openings are prolonged. Clustering primes IP₃R to respond by repressing their activity, and then allowing Ca^{2+} to unleash the coordinated gating of clustered IP₃R (Supplementary Fig. 7).